
Webalyt: Implemetation of Architecture for
Capturing Web User Behaviours With Feedback

Propagation
Petr Filip, Lukáš Čegan

Faculty of Electrical Engineering and Informatics
University of Pardubice

Pardubice, Czech Republic
Email: petr.filip1@student.upce.cz, lukas.cegan@upce.cz

Abstract—In the world of the Internet where people are
consuming web-content, more and more emphasis is placed on
user friendliness of web-pages. It means increasing web-page
usability and better user-experience. Increasing quality of user-
experience (UX) is the task of UX developers. They should always
base their work on the best practices and research. Each web-
page has its own specificity and it leads to new challenges for
the UX developers. One of the biggest issues is the problematic
view of a web-page on specific devices with specific web-browser
versions. Tools for capturing user behaviour are available, but
there are issues with data ownership and with the development of
new functionality. Actually, there are no free easily scalable and
extendable products for user data gathering on the market. In
this paper, implementation of architecture (based on Spring Boot
microservices) for capturing web user behaviours with feedback
propagation is introduced. Architecture implementation is easily
scalable and extendable. All of the components are described in
detail. At the end of this paper, summary and limitation of created
architecture is discussed. Webalyt is helpful for understanding
user behaviour and improving user-experience.

Index Terms—User-Experience, Web User Behaviour, Analyt-
ical Tool, Microservices, Spring Boot

I. INTRODUCTION

Based on capturing of web user behaviour, it is possible
to make improvements of user-experience. This is primarily
about making a web-page more user-friendly. It also means
bug fixing in a design layout of web-pages for specific
devices such as mobile phones with a specific web-browser
version. According to user behaviour, it is possible to make
segmentation of user and target product offerings that fit
exactly to the user. This discipline is called personalization
and it is provided by recommendation systems. It is also
possible to track information about used users’ devices, type
of connection, and data from various sensors which are built
in the device.

A combination of these sources of information can be used
for dynamic web-page adaption such as optimising of image
size, or dynamic changing of font-size [1]. In the case of
companies which are focused on e-commerce, optimisation
can lead to increased revenues from selling goods or services
over the Internet.

Gathering of these data brings new challenges for software
companies focused on developing (near) real-time processing
systems of data and big data. One of the most critical decisions
in software development is about used technologies and pro-
posed architecture which should be chosen based on specific
system requirements.

This work is aimed on building modular real-time data gath-
ering architecture with feedback propagation which focuses on
web analytics and user-experience. Implementation is based
on open web analytics platform called Webalyt [2]. Designed
software is touching topics such as big data, software engi-
neering, stream processing, data modeling, business analysis
and recommendation systems.

The next sections describe related works which are divided
to two segments, analytical tools and real-time data processing
tools. The following section is architecture implementation
with detailed component description and component interac-
tions. This section also presents selected examples of data and
components. At the end of the paper, there is a discussion
which is focused on evaluation of presented proof-of-concept
and its limitations.

II. RELATED WORKS

A. Analytical Tools

Matomo [3] (named Piwik [4] in the past) and Open Web
Analytics [5] belong among the best known open-source
analytical tools. These tools are written as monolithic apps,
which means that the scaling is more complicated. Obviously,
scaling is based on event queuing and the event can be
processed later. The main used technology is PHP, which is
not the best option for long-running data analysis. But one of
the biggest advantages is that it is easy to deploy and run on
cheap hardware – for small traffic.

Another well known analytical tool is Google Analytics.
One of the biggest issues is data ownership, because they are
stored on Google servers. Free version of this service has
limitations, too [6], [7]. Also many other similar tools with
various functionalities are available [8].

Next category of analytical tools which is worth mentioning
is tools which do not offer business analysis, but provide

analysis for UX developers, specifically user session recording
and replaying. It means, every user action is recorded and later
can be replayed. These tools use WEB APIs of web-browsers
[9]. These tools are SmartLook, SessionStack, MouseFlow,
MouseStats, CrazyEgg, MonkeyTracker, Inspectlet, FullStory,
KISSmetrics and LogRocket. The last mentioned, unlike the
other tools above, provides request recording with duration
of every request and log recording. It is very helpful for
JavaScript debugging.

The aforementioned software have unknown implemen-
tation, that means functionality is limited by the software
supplier. And it is very similar with extendability of the
solution, which is very low. Ordinarily, these tools contain
only session replay with click heat maps. Even with those
that have really interesting and useful data, a full analysis is
not provided. Moreover, the previously mentioned software are
paid and provided as a service.

Current technologies for real-time data processing are not
easy to deploy and scale. On the current market, there is no
free scalable tool for user tracking behaviour with supported
horizontal scaling. But the main feature which is missing
is real-time feedback propagation to the user interface. In
addition, cross-domain user-session identification is not con-
sidered.

B. Tools for Real-Time Data Processing

The technical part of this paper is focused on using available
technologies for real-time data processing. Firstly, two main
architecture concepts need to be introduced.

• Lambda architecture – is composed from batch layer,
speed layer and serving layer. Common processing on
this architecture is following – the speed layer creates
transient results which are lately replaced by results from
batch layer. As indicated, the biggest disadvantage is
double implementation of transformation logic (speed and
batch layer), which increases maintenance.

• Kappa architecture – is very similar and simplified
lambda architecture, but the batch layer is removed. The
main idea is that the data are processed as stream. The
main advantages are easy development, debug and test.

In this proof-of-concept, Kappa architecture is implemented
because of faster and easier development [10], [11].

There is a large number of technologies and solutions
for real-time data processing [12]–[14]. For example Apache
Samza, Apache Storm, Apache Flink and Apache Spark. The
above-mentioned technologies have some disadvantages which
are not suitable with following requirements.

Functional and non-functional requirements for software
development are specified in the following list:

• easy to deploy – primarily independent on HDFS or
YARN,

• easy to extends – this is ensured via service registry
pattern and interface communication,

• scalable – micro-services architecture naturally support
scaling,

• real-time processing with feedback – computed results
are sent to the web-browser which reacts on the feedback.
This feedback can affect the user interface such as content
zooming, layout adaption, or update of advertisement,

• data ownership – stored data are not managed by 3rd
party companies (optional),

• open-source – for transparent code which should lead to
higher development speed and better code quality.

The best-practices of software development were emphasized
during the development phase [15]–[19].

III. IMPLEMENTED ARCHITECTURE

Component distributed microservice Webalyt architecture
for data collecting is based on Apache Kafka [20], Spring
Boot framework, and MySQL database (will be replaced
by Apache Cassandra which provides super easy horizontal
scaling). Due to used technologies, designed architecture is
easily scalable and extendable. One of the biggest advantages
is that architecture is “cluster-free”, which means no cluster
resource manager such as YARN or MESOS is needed (like
in the case of Hadoop). Usually it is hard to setup whole
environment.

Presented solution uses Spring Boot module which contains
an embedded servlet container (Tomcat), and compilation of
the project source code generates a JAR file, which is possible
to run without any special system dependencies (only Java is
needed) and complicated configurations. That also allows us to
use a popular container solution such as Docker for deploying
of architecture. Proposed architecture is also independent of an
infrastructure solution and can be run on top of Amazon Web
Services, Google Cloud Platform, or on a single machine self-
hosted solution. That also means, modules are easy to debug
for developers. All of the used components are developed as
open-source that brings many advantages in the development
stage.

Implementation of the Webalyt architecture is composed
of a few types of components which are divisible to two
groups, namely system components for configuration and data
processing components.

Figure 1 shows complete architecture with interaction be-
tween components. The left-hand side of the figure shows a
system configuration layer which contains system components.
The right-hand side is a streaming layer which processes data.
All of the components are described in the following part.

A. Configuration Server

The architecture contains a lot of components and it is
hard to maintain because configuration of every component
is time consuming. This problem is solved by using a Spring
Cloud Config module which “provides server and client-side
support for externalized configuration in a distributed system”
[21]. All configuration files are kept in a Git repository, that
naturally allows changes to auditing. A necessary condition
for correct behaviour is visibility of the Webalyt Configuration
server across the network. When a new instance of the Webalyt
module has been started then settings for the module are get

Fig. 1: Architecture of Implementation with Interaction among
Components

from the configuration server and used accordingly. For this
purpose, the default Spring Cloud Config implementation is
used.

B. Service Manager

The Service Manager (SM) gathers and provides informa-
tion about all registered modules, such as type of service,
module name, IP address and port. This information about
registered services are used by the Webalyt web-server for
serving of JavaScript code to web-browsers. The service
discovery is provided via the Spring Cloud Eureka module
[22]. From the system point of view, this component keeps
watching for states of other modules.

C. Web-Server

The Webalyt web-server is used as an input gateway for
data and it is responsible for the following three tasks. The
first responsibility is receiving of incoming data which are
created by plugins in the clients web-browsers. The second
responsibility is checking data format, and the third is pushing
to the Apache Kafka’s topic.

From this topic, data are moved to the basic ETL processor,
which is used for data transformation of the incoming data to
a suitable format for plugins.

The Webalyt web-server also collects JavaScript codes of
other plugins and composes all of those codes into one file
which is served to the client web-browser. This approach
reduces the number of HTTP requests between the web-
browser and server to one. The final JavaScript file can be
minimised and cached. When a new plugin is registered, then
the JavaScript code is updated.

The target composed JavaScript file contains a function
for sending the created JSON object to the server at regular
intervals. This approach is more efficient than sending data
immediately to the server every time.

In listing 1, data-structure of JSON generated by plugins
which are running in the client web-browser is shown. Gen-
erated data which are created by plugins are collected into
one main JSON object. As shown, the “mp” object (mouse
move recorder plugin) has a collection of captured information
about mouse-moves (attributes “x” and “y”) in time (attribute
“timestamp”). Data are collected when a specific event is fired.

Listing 1: Example of Incoming Data in HTTP Request

{
” pageView ” : {

” pageViewId ” : ” a898385d ” ,
” s e s s i o n I d ” : ” 5 edc06c9 ” ,
” p a t h U r l ” : ” / i n d e x . h tml ” ,
” w e b s i t e I d ” : ” 1 0 1 ” ,
” t imes t amp ” : ”2018−03−08T16 : 3 6 : 2 0 . 2 3 2 Z”
} ,
”mp ” : [
{

” t imes t amp ”:”2018−03−08T16 : 3 6 : 2 1 . 5 7 7 Z”
” x ” : 9 0 4 ,
” y ” : 4 4

} ,
{

” t imes t amp ”:”2018−03−08T16 : 3 6 : 2 2 . 6 1 1 Z”
” x ” : 9 2 0 ,
” y ” : 4 4

}
]

}

One of the most important objects is the “pageView”. This
object contains meta information about a current user. Namely,

• pageViewId – represents currently rendered page. The
identification must avoid being the same across all of the
system, because all of the plugin data are marked with
this identifier,

• sessionId – is an identifier assigned to a user in a time.
Identifier is stored in local storage,

• pathUrl – represents initial path of url address,
• websiteId – is a website identifier which is introduced in

Webalyt system (multi web-site support),
• timestamp – is assigned when the object is created.

D. Base ETL Processor

The base ETL processor contains an algorithm for generic
data processing. The data are got from the Kafka and then
processed in the following steps:

1) split JSON object according to direct child nodes (ex.:
“mp” and “pageView” in listing 1) whose names are
corresponding to the Webalyt Plugins (natural selection
of Kafka topic),

2) enrich every JSON object with the identifier
“pageViewId”,

3) compute Kafka partition,
4) push to Kafka.

E. Apache Kafka

Apache Kafka “is used for building real-time data pipelines
and streaming apps. It is horizontally scalable, fault-tolerant,
wicked fast, and runs in production, in thousands of compa-
nies”. Webalyt architecture use Kafka as a publish-subscribe
message system for data which have to be processed. The
components (basic ETL processor and plugins) are getting data
from the exactly specified topic.

F. Plugin

Plugins are composed from the following parts:
• JavaScript code – which will be collected by the web-

server and served to the web-client. The JavaScript code
produces data which are processed by the ETL process.
The code can react to feedback from the evaluation
plugins.

• ETL process – prepares data for saving to data storage
and other logic can be implemented. Data processing can
be stateless or stateful, depending on the implementation
of processing.

• Feedback function – sends hint to web-server which
propagates data to web-client.

How simple the writing of a plugin can be is shown
in listing 2. Insertion of the array “mousePositions” to the
object “mp” is automatically provided by the Webalyt Platform
based on plugin configuration. As shown in the listing, event
listener fires the function every time when mouse moved
and it generates a huge amount of data. In this case, data
approximation of mouse movement should be considered [23].

Listing 2: JavaScript Code of Webalyt Plugin for Tracking of
Mouse Position

v a r mpPlgn = {
shortName : ”mp” ,
fu l lName : ”Mouse p o s i t i o n p l u g i n ” ,
m o u s e P o s i t i o n s : [] ,
methodBody : f u n c t i o n () {

document . body . a d d E v e n t L i s t e n e r (’
↪→ mousemove ’ , f u n c t i o n (e) {
v a r mp = {} ;
mp . t imes t amp = new Date () ;
mp . x = e . c l i e n t X ;
mp . y = e . c l i e n t Y ;
mpPlgn . m o u s e P o s i t i o n s . push (mp) ;

}) ;
} ,
o n I n i t : f u n c t i o n () {

t h i s . m o u s e P o s i t i o n s = [] ;
} ,
onAf t e rSend : f u n c t i o n () {

t h i s . o n I n i t () ;
} ,
g e t D a t a F o r S e n d i n g : f u n c t i o n () {

re turn t h i s . m o u s e P o s i t i o n s ;
}

} ;
w e b a l y t . a d d P l u g i n (mpPlgn) ;

Writing of specialised plugins is very easy, because the
platform contains a main module for message processing.
Code example 3 shows how easy plugin implementation is. It
is sufficient to extend class and override method “processMes-
sage” which processes single item at a time.

Listing 3: Java Code of Webalyt Plugin for Processing of
Mouse Position

@Service
p u b l i c c l a s s M o u s e P l u g i n E t l S e r v i c e ex tends

↪→ A b s t r a c t P l u g i n E t l <MousePos i t i on> {
@Override
p r o t e c t e d void p r o c e s s M e s s a g e (

↪→ M o u s e P o s i t i o n o b j e c t) {
/ / imp lemen t t h e p r o c e s s l o g i c

}
}

Some plugins have more difficult data transformation or
evaluation logic. This leads to lower data throughput and
slower feedbacks. Due to modular architecture, it is possible
to horizontally scale every plugin. For example, a plugin
for processing one instance of mouse scroll module can be
enough. But this is not the case for mouse move processing.
Just adding a new instance of a plugin will increase the
performance.

G. Base Data Structure for Data Storing

Figure 2 shows proposed hierarchical data structure. This
research currently uses only “pageview”, “session” and “plu-
gins data”. For the use of “user” object, implementation of
session ID sharing is needed [24]. The data structure reflects
gathered data with respect on manner of usage.

Gathered data of each user could contain specific pattern,
such as mouse speed, which can be used for data segmentation.
For example, it could be possible to recognise how user is
experienced in web usage according to this information. Then,
it is possible to prepare A/B test with updated layout for every
user group.

IV. DISCUSSION AND CONCLUSION

In this paper, implementation of component architecture
(based on Spring Boot framework and Apache Kafka) was
introduced. While Apache Kafka is a commonly presented
and used software in big companies (which deal with real-
time data processing), Spring Boot is not so often highlighted.
Connection of these two technologies achieved a flexible,
extendable, scalable and clear solution for data gathering and
processing. Architecture also allows the implementation of
plugins in different technologies such as PHP, Scala and etc.
Presented implementation, which reflects Kappa architecture,

Fig. 2: Proposed Base Data Structure of Data Storage

is actually sufficient, but for the future development, moving to
Lambda architecture needs to be considered, because business
analysis based on data aggregation (which needs access to
a complete set of records) could be the next requirements.
Influencing of device resources by data compression and
encoding is another issue.

Comparison with previously mentioned software is not
possible due to proprietary implementation. Ordinary, data
from the client are encoded and sent to the server at regular
interval. The data structures of data sets are different and
depend on software supplier. In comparison with software
for real-time processing, easy development and clear solution
were achieved due to Spring Boot framework.

Complete proposed Webalyt architecture is very complex
and contains another few components such as modules for
data evaluation and visualisation. Future work will be focused
on implementation of replaying users’ sessions in relation to
web-page performance evaluation for discovering bottlenecks
in the use of web-pages. It will include implementation of
different kinds of plugins which capture all user actions,
such as scrolling, mouse movement, and information about
system actions such as DOM mutation observation and loading
performance. Combination of the results can give a new
perspective on how web-page is really used.

ACKNOWLEDGEMENT

The work has been supported by the Funds of University
of Pardubice, Czech Republic. This support is very gratefully
acknowledged.

REFERENCES

[1] M. Nebeling, M. Speicher, and M. Norrie, “W3touch: Metrics-based
web page adaptation for touch,” in Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, ser. CHI ’13.
New York, NY, USA: ACM, 2013, pp. 2311–2320. [Online]. Available:
http://doi.acm.org/10.1145/2470654.2481319

[2] L. Čegan and P. Filip, “Webalyt: Open web analytics platform,” in 2017
27th International Conference Radioelektronika (RADIOELEKTRON-
IKA), April 2017, pp. 1–5.

[3] matomo.org, “#1 free web & mobile analytics software,” 2018.
[Online]. Available: https://matomo.org/

[4] S. A. Miller, Piwik web analytics essentials. Packt Pub., 2012.
[5] P. Adams, “Web analytics. open source.” 2018. [Online]. Available:

http://www.openwebanalytics.com/
[6] Google LLC, “Google analytics collection limits and quotas,” 2016.

[Online]. Available: https://developers.google.com/analytics/devguides/
collection/analyticsjs/limits-quotas

[7] ——, “Compare free and enterprise versions - google analytics
solutions,” 2018. [Online]. Available: https://www.google.com/analytics/
analytics/compare/

[8] I. Bekavac and D. G. Praničević, “Web analytics tools and web metrics
tools: An overview and comparative analysis,” Croatian Operational
Research Review, vol. 6, no. 2, pp. 373–386, 2015.

[9] Mozilla.org, “Introduction to web apis,” 2018. [Online].
Available: https://developer.mozilla.org/en-US/docs/Learn/JavaScript/
Client-side web APIs/Introduction

[10] J. Lin, “The lambda and the kappa,” IEEE Internet Computing, vol. 21,
no. 5, pp. 60–66, 2017.

[11] N. Marz and J. Warren, Big Data: Principles and best practices of
scalable realtime data systems. Manning Publications Co., 2015.

[12] V. Gurusamy, S. Kannan, and K. Nandhini, “The real time big data
processing framework: Advantages and limitations,” vol. 5, pp. 305–
312, 12 2017.

[13] W. Inoubli, S. Aridhi, H. Mezni, and A. Jung, “An experimental
survey on big data frameworks,” arXiv preprint arXiv:1610.09962, vol.
abs/1610.09962, 10 2016.

[14] X. Liu, N. Iftikhar, and X. Xie, “Survey of real-time processing
systems for big data,” in Proceedings of the 18th International
Database Engineering & Applications Symposium, ser. IDEAS ’14.
New York, NY, USA: ACM, 2014, pp. 356–361. [Online]. Available:
http://doi.acm.org/10.1145/2628194.2628251

[15] M. Stine, Migrating to Cloud-Native Application
Architectures. O’Reilly Media, Inc., 2015. [On-
line]. Available: http://www.oreilly.com/programming/free/files/
migrating-cloud-native-application-architectures.pdf

[16] M. Eisele, Modern Java EE Design Patterns. O’Reilly Media, Inc.,
2016. [Online]. Available: http://www.oreilly.com/programming/free/
files/modern-java-ee-design-patterns.pdf

[17] C. Richardson, “What are microservices?” 2017. [Online]. Available:
http://microservices.io/

[18] S. Newman, Building Microservices: Designing Fine-Grained Systems,
1st ed. O’Reilly Media, February 2015.

[19] M. Richards, “Microservices, antipatterns and pitfalls,” 2016.
[Online]. Available: http://www.oreilly.com/programming/free/files/
microservices-antipatterns-and-pitfalls.pdf

[20] J. Kreps, N. Narkhede, J. Rao et al., “Kafka: A distributed messaging
system for log processing,” in Proceedings of the NetDB, 2011, pp. 1–7.

[21] Pivotal Software, Inc, “Spring cloud config,” 2018. [Online]. Available:
https://cloud.spring.io/spring-cloud-config/

[22] Pivotal Software Inc. Spring cloud netflix. [Online]. Avail-
able: http://cloud.spring.io/spring-cloud-static/spring-cloud-netflix/1.3.
1.RELEASE/

[23] L. Čegan and P. Filip, “Advanced web analytics tool for mouse tracking
and real-time data processing,” 2017.

[24] M. Falahrastegar, H. Haddadi, S. Uhlig, and R. Mortier, “Tracking
personal identifiers across the web,” in Passive and Active Measurement,
T. Karagiannis and X. Dimitropoulos, Eds. Cham: Springer Interna-
tional Publishing, 2016, pp. 30–41.

