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Abstract. Rapid growth in the volume of unsolicited and unwanted messages has inspired the 

development of many anti-spam methods. Supervised anti-spam filters using machine-learning 

methods have been particularly effective in categorizing spam and non-spam messages. These 

automatically integrate spam corpora pre-processing, appropriate word lists selection, and the 

calculation of word weights, usually in a bag-of-words fashion. To develop an accurate spam 

filter is challenging because spammers attempt to decrease the probability of spam detection by 

using legitimate words. Complex models are therefore needed to solve such a problem. How-

ever, existing spam filtering methods usually converge to a poor local minimum, cannot effec-

tively handle high-dimensional data and suffer from overfitting issues. To overcome these prob-

lems, we propose a novel spam filter integrating an N-gram tf.idf feature selection, modified 

distribution-based balancing algorithm and a regularized deep multi-layer perceptron NN model 

with rectified linear units (DBB-RDNN-ReL). As demonstrated on four benchmark spam da-

tasets (Enron, SpamAssassin, SMS spam collection and Social networking), the proposed ap-

proach enables capturing more complex features from high-dimensional data by additional lay-

ers of neurons. Another advantage of this approach is that no additional dimensionality reduc-

tion is necessary and spam dataset imbalance is addressed using a modified distribution-based 

algorithm. We compare the performance of the approach with that of state-of-the-art spam filters 



(Minimum Description Length, Factorial Design using SVM and NB, Incremental Learning 

C4.5, and Random Forest, Voting and Convolutional Neural Network) and several machine 

learning algorithms commonly used to classify text. We show that the proposed model outper-

forms these other methods in terms of classification accuracy, with fewer false negatives and 

false positives. Notably, the proposed spam filter classifies both major (legitimate) and minor 

(spam) classes well on personalized / non-personalized and balanced / imbalanced spam da-

tasets. In addition, we show that the proposed model performs better than the results reported 

by previous studies in terms of accuracy. 

 

1 Introduction 

Spam can be defined as an unsolicited and unwanted message sent electronically by a sender 

that has no current relationship with the recipient [20]. Email spam, a subset of electronic spam, 

consumes users’ time, as users must identify and remove undesired messages; it also takes up 

limited mailbox space and buries important personal emails [83]. Meanwhile, SMS spam is 

typically transmitted over a mobile network [21]. Recently, social network spam has received 

increased attention from both researchers and practitioners due to both the considerable amount 

of spammers and the potential negative effects of social network spam on convenience and 

understanding of all the followers [85]. 

It would be impossible to identify the first person who sent spam. The idea of spam is very 

simple: to send a message to millions of people and profit from the one person who replies. The 

availability of unlimited pre-pay SMS packages has enabled the same approach for SMS spam. 

Increasing the cost of sending spam and reducing the burden spam places on users require 

highly accurate spam filters [64].  

Serious negative effects on the worldwide economy have been observed as a result of high rates 

of spam [37,46,56], including reduced productivity, the costs associated with delivering spam, 



and the costs due to viruses or phishing attacks. Therefore, an effective spam filter may also 

improve user productivity and reduce the consumption of information technology resources 

such as the help desk. For individuals, more accurate spam filters may increase their trust in 

email communication [77]. 

Various spam filters have been developed with machine learning methods being particularly 

effective, including methods such as Naïve Bayes (NB) classifiers [7,51], decision trees [16,65], 

support vector machines (SVMs) [8,23], k-nearest neighbor algorithm (k-NN) [39], K-means 

clustering [53], artificial immune systems (AIS) [81], multilayer perceptron neural network 

(MLP) [19,78], and meta-learning methods [42,77]. Machine learning approaches aim to auto-

matically construct word lists and their weights by classifying messages into two classes; the 

incoming message is either spam or not spam. Misclassifying a legitimate message as spam (a 

false positive) and misclassifying spam as non-spam (a false negative) carries costs [84]. This 

is a challenging task because spammers usually attempt to decrease the probability their mes-

sages are detected as spam by using legitimate words [64]. Alternative approaches to machine 

learning methods have also been developed, such as black (white) lists of spammers (trusted 

senders) and hand-crafted rules [77]. Recent surveys [17,21,31] suggest that Bayesian ap-

proaches remain highly popular with researchers, while neural networks (NNs) are significantly 

under-researched. By contrast to Bayesian approaches, NNs (and SVMs) are more computa-

tionally expensive, limiting their maximum potential application to online spam filtering [17]. 

However, NNs have recently shown promising potential for classifying text, especially when 

equipped with advanced techniques, such as rectified linear units and dropout regularization 

[55]. Such techniques can address the main limitations of existing spam filters, namely their 

optimization convergence to a poor local minimum, problems with handling high-dimensional 

data, and problems with overfitting. To overcome these drawbacks is a challenging task to solve 



such a complex problem. Therefore, we propose a novel DBB-RDNN-ReL spam filter that in-

tegrates a high-dimensional N-gram tf.idf feature selection, a modified distribution-based bal-

ancing algorithm (DBB) [11], and a regularized deep multi-layer perceptron NN model with 

rectified linear units (RDNN-ReL) [35] to capture complex features from the high-dimensional 

data. Compared to existing spam filters [4,48,71,82], an important advantage of the proposed 

approach is that no additional dimensionality reduction is necessary. In fact, here we show that 

dimensionality reduction methods specifically designed for high-dimensional datasets deterio-

rate the performance of DBB-RDNN-ReL. 

We initially investigated regularized NNs for spam filtering and presented the results in a con-

ference paper [9]; we present significantly extended results here. Unlike the previous version, 

limited to shallow NNs (with one hidden layer), here we use a deep NN with two and three 

hidden layers. Additional hidden layers enable feature hierarchies to increase complexity and 

abstraction. More complex features can be captured by additional layers of neurons, which re-

combine features from previous layers to handle high-dimensional data. In the case of spam 

filtering, this allows larger bags of words to be utilized as NN inputs, which is desirable. In 

addition, we propose a modification of DBB algorithm to address the issue of imbalanced spam 

datasets. Unlike under-sampling and total replacement in the original version of the DBB algo-

rithm [11], artificially generated data are used to over-sample the minority class in training data. 

This approach can be justified by the fact that, unlike the NB classifiers used in [11], RDNN-

ReL can effectively handle large datasets [35]. Further, this paper examines the effects of using 

feature space size and N-gram lengths (unigrams, bigrams, and trigrams) as NN inputs. Finally, 

the results are compared with several state-of-the-art methods for spam filtering, showing that 

the deep learning NN architecture not only significantly increases the accuracy of spam filtering 

compared with shallow NNs but also outperforms the state-of-the-art methods for spam filtering 

on three benchmark datasets.  



Specifically, we compare the proposed approach with several state-of-the-art spam filters and 

machine learning algorithms commonly used to classify text [41] in terms of their accuracy, 

including rates of false positives and false negatives. We demonstrate that the DBB-RDNN-

ReL outperforms other methods on three benchmark spam datasets: Enron, SpamAssassin, and 

SMS spam collection. We also show that the proposed spam filter performs better than methods 

previously tested using these datasets. The main contribution of this paper is a novel spam filter 

methodology that has all four of the following properties: (1) deep learning architecture enables 

learning complex features from high-dimensional N-gram spam data; (2) it is effective as no 

dimensionality reduction is necessary; (3) the problem of imbalanced spam datasets is handled 

using a modified DBB algorithm (4) it is effective for all kind of spam datasets, including per-

sonalized / non-personalized e-mail spam, SMS spam and social network spam. The results 

obtained from extensive comparative analyses confirm the effectiveness of our approach com-

pared with the state-of-the-art spam filtering methods, providing more accurate classification 

on personalized / non-personalized and balanced / imbalanced spam datasets. 

The remainder of this paper is organized as follows. Section 2 briefly reviews related literature. 

Section 3 presents the research methodology, including spam datasets, their pre-processing, and 

the RDNN-ReL model, along with methods used for comparative analysis. The experiments 

are performed in Section 5, and Section 6 discusses the obtained results and concludes. 

 

2 Spam Filtering Using Machine Learning: A Literature Review  

Spam filtering techniques can be categorized into non-machine learning and machine learning 

approaches. The former include legislative approaches [15,68], changes to protocols and mod-

els of operation [34], rule-, signature-, and hash-based filtering, whitelists and blacklists, and 

traffic analysis [17]. Kaya and Ertugrul [40] proposed an effective approach based on the prob-

ability of using characters in similar orders with respect to their UTF-8 values.  



Machine learning spam filters automatically identify whether or not a message is spam based 

on its content [26]. Following [61] and [83], automated spam filtering can be defined as follows. 

Let D = {d1, d2, … , di, … , dN} be a message set and C = {spam, legitimate} be a class set. The 

task of a spam filter is to build a model to classify each message di ∈ D as spam or legitimate. 

With machine learning approaches, spam filtering starts with text pre-processing [32], with 

tokenization performed first to extract the words (multi-words) in each message. Next, typi-

cally, the initial set of words is reduced by stemming, lemmatization, and stop-words removal. 

Bag-of-words (BoW; also known as the vector-space model) is a common approach to represent 

the weights of the pre-processed words. Term frequency–inverse document frequency (tf.idf) is 

a popular specific weighting scheme. Feature selection algorithms, such as filters or wrappers 

[4,48,71,82], may then be applied to reduces the size of the feature space, which is useful mainly 

because not all classification methods can handle high-dimensional data. Finally, machine 

learning methods are applied to classify the pre-processed dataset.  

The first spam classifiers employed NB algorithms due primarily to their simplicity and com-

putational efficiency [7,51,59]. Concerning SVM, another popular spam-classification algo-

rithm, it was showed that SVMs are robust to both different datasets and pre-processing tech-

niques [23]. Its superiority to NB, k-NN, decision trees, and MLP approaches was demonstrated 

is recent comparative studies [45,75,82]. AISs [76] represent another promising method for 

spam filtering. Zitar and Hamdan [86] used a genetic algorithm to train AISs to improve the 

filter performance. Meta-learning algorithms [29] have also recently attracted increasing atten-

tion [69]. The combination of boosting and SVM outperformed single classifiers on several 

benchmark datasets in [70]. Similarly, boosting and bagging were reported to perform signifi-

cantly better than NB and SVM in a stylometric spam filter [63]. Laorden et al. [46] proposed 

an anomaly-based spam-filtering system that uses a data reduction algorithm on the labelled 

dataset, reducing processing time while maintaining high detection rates. Incremental training 



also reduces processing time [60]. The above-mentioned classification methods usually require 

sufficient labelled data for the training process, data which are not always available in real-

world applications. Semi-supervised approaches have therefore been employed to overcome 

this problem [2]. In addition, Bosma et al. [13] introduced a framework for unsupervised spam 

detection in social networking sites, based on user spam reports.  

 

3 Research Methodology 

The research methodology employed in this study is introduced in Fig. 1. We used three well-

known benchmark datasets as spam corpora so that the performance of the proposed spam filter 

can be easily compared with the results of previous studies. The corpora were pre-processed 

with traditional methods, and the bags of words were selected according to their tf.idf ranking. 

The RDNN-ReL model can be effectively handle the high dimensionality of these features, as 

will be shown by comparative analysis with the benchmark models. 

 

Fig. 1: Research methodology 

 

3.1 Datasets 

To evaluate the performance of different spam filters, several benchmark datasets are usually 

employed. In this paper, to examine the performance of the RDNN-ReL model compared to its 

competitors, we used the following publicly available spam datasets: (1) Enron 1 , (2) 

SpamAssassin2, (3) SMS3 and (4) Social networking4. 

The popular Enron dataset [51] has both spam and ham email messages and has been used in 

many studies, as overviewed in [31]. The dataset, also called Enron 1, contains a total of 5,172 

                                                           
1 http://csmining.org/index.php/enron-spam-datasets.html 
2 http://csmining.org/index.php/spam-assassin-datasets.html 
3 https://archive.ics.uci.edu/ml/datasets/SMS+Spam+Collection 
4 http://ilps.science.uva.nl/framework-unsupervised-spam-detection-social-networking-sites/ 

http://csmining.org/index.php/spam-assassin-datasets.html


emails, with 3,672 legitimate and 1,500 spam emails. The messages are in their original forms 

of non-Latin encodings, with several slight modifications (legitimate emails owners of the mail-

boxes sent to themselves and a handful of virus-infected emails were removed).  

The SpamAssassin dataset [34], another popular corpus used as a benchmark in many studies, 

contains 3,252 emails, of which 2,751 are legitimate and 501 are spam emails. Compared to the 

Enron spam dataset, this dataset is notably more imbalanced, with 84.6% legitimate emails. 

Comprised of emails randomly collected over a given time period, the dataset is suitable for 

testing non-personalized spam filters [63]. Almost all headers were reproduced as received. 

A SMS spam dataset [4] was chosen here to diversify the spam corpora. Unlike the Enron and 

SpamAssassin datasets, the SMS spam dataset includes 4,827 legitimate and 747 spam SMS 

messages, for a total of 5,574 messages. The sources used in this corpus were the Grumbletext 

Web site (425 SMS spam messages), the NUS SMS Corpus (3,375 legitimate SMS messages), 

450 legitimate SMS messages collected from Caroline Tag’s PhD thesis, and the SMS Spam 

Corpus v.0.1 Big (1,002 legitimate SMS ham messages and 322 spam messages). The average 

legitimate SMS had 13.18 tokens while the average spam SMS had 23.48 tokens. 

The Social networking dataset consists of messages and spam reports from Hyves, the Dutch 

social networking cite [13]. The original dataset was collected in the year 2010. Unsolicited and 

promotional messages were labelled as spam. Most of these messages were non-commercial 

spam messages, such as friend and group invitations or requests to follow a user on Twitter. 

The dataset contains 355 legitimate and 466 spam messages. The messages are represented as 

an array of JSON objects with the following fields: the bag of words representation of the mes-

sage (each word was assigned an anonymized id) and the annotation of the object (spam / ham). 

Similarly to SMS spam, messages in social networks are generally short, corresponding to 

sparser datasets. The average legitimate message had 33.15 tokens while the average spam 

message had 34.70 tokens.  



To study the performance of the DBB-RDNN-ReL in comparison with those of the other spam 

filtering method, we first investigated the complexity of the spam datasets. To control the da-

tasets’ complexity, we applied several of the measures proposed by [36] in the Keel software. 

We included F1 Fisher’s discriminant ratio to measure overlaps of individual feature values, 

N1 to measure the separability of classes’ distributions and L1 to measure linear separability of 

classes. The high value of F1 suggests that the SpamAssassin dataset is a more linear problem 

with less overlaps compared with the other three datasets, whereas the SMS dataset seems to 

represent a strongly nonlinear problem, probably attributed to the greater variety of corpus 

sources included in this dataset. The values of the N1 and L1 suggest that the SpamAssassin 

dataset has larger margins between classes and is more linearly separable, respectively. Gener-

ally, the linear separability of classes increased with the dimensionality of the datasets. 

 

Fig. 2: Complexity measures of spam datasets 

 

3.2 Data Pre-processing 

Before attempting to classify legitimate and spam messages, we performed data pre-processing. 

First, all words were converted to lower-case letters, and tokenization was performed. Uni-

grams, bigrams, and trigrams were used as tokens, with the following delimiters: 

.,;:'"()?!. Furthermore, we removed stop-words from represented messages using the 

Rainbow stop-word handler. Stop-words usually provide no semantic information, adding noise 

to the model [46]. The Snowball stemmer was used as a stemming algorithm. To represent the 

weights of the pre-processed words, we used tf.idf, the most common BoW approach. In this 

scheme, weights wij are calculated as follows: 

 

wij = (1 + log(tfij)) × log(N/dfi),         (1) 



 

where N denotes the total number of messages, tfij is the frequency of the ith word in the jth 

message, and dfi denotes the number of messages with at least one occurrence of the ith term. 

Unlike raw term frequency, tf.idf considers both term rareness and document length. To select 

the most relevant words, we ranked them according to their tf.idf weights. For our experiments, 

we used the Top 200, 1,000, and 2,000 words, in a BoW fashion. Related studies have reported 

that the most relevant 2,000 words are enough to classify documents [22]. It is also important 

to include bigrams and trigrams, as previous studies have indicated their potential value [32]. 

By contrast, using too many features in a spam filter may not only extend calculation time but 

also deteriorate classification performance due to the higher complexity. Therefore, the use of 

various numbers of top N-grams may also be considered a feature selection method in spam 

filtering.  

To handle the problem of imbalanced datasets, a modified version of DBB algorithm is pro-

posed here. The original version of the DBB combines under- and over-sampling with total 

replacement of the training set. In this algorithm, new artificial data are created based on learn-

ing probability distributions from the training set. Specifically, probability distribution P(xi ck) 

is learnt for each feature xi, i=1,…,n, and for each class ck. By using these distributions, a 

smaller dataset can be artificially generated to enhance the effectiveness of NB algorithms [11]. 

As RDNN-ReL can effectively handle large datasets [35], we modified the DBB algorithm in 

order to over-sample the minority class. In other words, the modified DBB algorithm works 

without replacement, adding b new samples from minority class to the training set. Thus, over-

lapping among classes is reduced in Algorithm 1. The Gaussian probability distribution was 

selected because it performed best for spam datasets in [11]: 

𝑓(𝑥𝑖 = 𝑤𝑖𝑗) =
1

𝜎√2𝜋
𝑒𝑥𝑝 [−

(𝑤𝑖𝑗−𝜇)
2

2𝜎2
],           (2) 



where  and  respectively represent the mean and standard deviation of weights for feature xi 

restricted to class ck. 

 

Algorithm 1. 

Inputs: training set: Dh, minority class: ck, number of features: n, number 

of new instances to sample for minority class: b  

Output: balanced training set: Dhbalanced  

For minority class ck∈C {  

For each feature xi, i=1,…,n { 

learn Gaussian probability distribution Pik from Dhxi,C}; 

  Dhbalanced ← Dh; 

For p=1 to b {  

newD = new double[n+1];  

For each feature xi {  

newD[i] = sample value from Pik; 

newD[n+1]=ck //add class label;  

Dhbalanced = Dhbalanced ∪ newD}; 

  }  

} 

return Dhbalanced; 

 

3.3 Model of a Deep Neural Network 

This section introduces the RDNN-ReL model. Complex tasks require many hidden units to 

model them accurately. Deep NNs with many parameters are extremely powerful machine 

learning systems that contain multiple hidden layers to process complicated relationships be-

tween inputs and outputs. However, the large number of these relationships leads to sampling 

noise. As a result, complex adaptation to training data may lead to overfitting, preventing high 



accuracy on testing data. Overfitting can be effectively addressed through dropout regulariza-

tion. In dropout, the units (hidden and visible) in a NN are temporarily removed from the net-

work, including all their incoming and outgoing connections. In the fully connected layers of a 

feed-forward NN, dropout regularization randomly sets a given proportion (usually half) of 

activations to zero during training, thus omitting hidden units that activate the same output. 

Commonly used sigmoidal units reportedly suffer from the vanishing gradient problem, often 

accompanied by slow convergence of optimization to a poor local minimum [49]. Rectified 

linear (ReL) units tackle this problem. When activated above 0, their partial derivative is 1. 

Moreover, ReL units saturate upon reaching 0, a characteristic that might be helpful in scenarios 

in which hidden activations are used as input features for the classifier. The ReL function can 

be defined as follows: 

 



 


otherwise             0

0 if        
)0,max(

xwxw
xwh

T

i

T

iT
ii ,                 (3) 

 

where wi is the weight vector of the ith hidden unit and x is the input vector. The ReL function 

is therefore one-sided and does not enforce a sign symmetry or anti-symmetry. The main dis-

advantage of ReL is the fact that an NN using this function can easily obtain sparse representa-

tion. On the other hand, such an NN has less intensive computation, exploiting the sparsity by 

avoiding the need to compute the exponential function in activations. The combination of drop-

out regularization and ReL units has shown promising synergistic effects [38]. 

We examined different numbers of hidden layers (from one to three) and units in the hidden 

layers (from 10 to 200; see Fig. 3). Training of the RDNN-ReL was performed with the mini-

batch gradient descent algorithm, which updates the synapse weights for every mini-batch b of 

m training examples as follows: 



𝜃 = 𝜃 − 𝜂∇𝜃𝐽(𝜃𝑤
(𝑗:𝑗+𝑚)𝑐(𝑗:𝑗+𝑚)),            (4) 

where every mini-batch includes m training examples,  are the parameters of the RDNN-ReL, 

J() is an objective function to be minimized w.r.t. to the parameters , and  denotes learning 

rate. 

On the one hand, this algorithm reduces the updates’ variance, thus achieving a more stable 

convergence. On the other hand, calculating the gradient w.r.t. a mini-batch makes this algo-

rithm highly effective because it utilizes highly optimized matrix optimizations present in deep 

learning. The structure and parameters of the RDNN-ReL learning were found using a grid 

search procedure.  

 

Fig. 3: The structure of regularized deep neural network with rectified linear units for spam 

filtering (crossed neurons are dropped) 

 

3.4 Performance Evaluation 

We used common measures to evaluate the performance of the spam filter, namely Accuracy, 

FP (false positive) rates, and FN (false negative) rates. FP are legitimate messages that are 

mistakenly regarded as spam, whereas FN are spam messages that are not detected. See the 

confusion matrix in Table 1. 

 

Table 1 

 

Accuracy can be defined as the percentage of correctly classified messages  

 

Accuracy = (TP + TN) / (TP + FP + FN + TN),                   (5) 

 



where TP is the number of spam messages classified as spam and TN is the number of legitimate 

messages classified as legitimate.  

FP rate (type I error) is calculated as a percentage, the number of legitimate messages incor-

rectly classified as spam divided by the number of all legitimate messages 

 

FP rate = FP / (FP + TN).                      (6) 

 

Lastly, FN rate (type II error) is also a percentage, the number of spam messages incorrectly 

classified as legitimate divided by the number of all spam messages 

 

FN rate = FN / (FN + TP).           (7) 

 

4 Comparative Spam Filters 

To demonstrate the effectiveness of the DBB-RDNN-ReL, we compared the results with recent 

approaches proposed for spam classification, namely (1) Minimum Description Length [6], (2) 

Factorial Design using SVM and NB [8], (3) Incremental Learning C4.5 [66], (4) Random For-

est [42], (5) Voting [54], and (6) CNN. These comparative methods were used as they represent 

the state-of-the-art machine learning approaches to spam filtering with supervised learning. We 

briefly describe these methods below. In addition, we used several traditional machine learning 

methods, such as k-NN, AIS, MLP and AdaBoost to include all types of machine learning meth-

ods presented in previous review studies [31]. 

Minimum Description Length  

The Minimum Description Length (MDL) for spam filtering, as introduced in [6,67], is based 

on the idea the model that fits better the data results in a more compact description for the data. 

In other words, the model is selected that provides the shortest description length, represented 



by the sum of the description length of model M, L(M), and the description length of data X 

when encoded by model M, L(X│M). In this study, we use the MDL variant also known as the 

compression-based spam filter [6]. This algorithm first searches for a term in the training data-

base, and then it either updates the number of messages on the class (spam or non-spam) the 

term appeared or inserts the term in the database. Thus, the model is incrementally built by the 

term frequencies.  

Factorial Design Analysis using SVM and NB 

In the spam filter proposed by [8], factorial design analysis (FDA) is used to obtain the optimal 

filter setup. Specifically, FDA finds the best combination of three text pre-processing parame-

ters for SVM and NB classifiers. The parameters are represented by stop-words removal 

(yes/no), lemmatization (yes/no), and the number of features (128/1024), leading to 23 factorial 

design matrix. In [8], SVM-based spam filter performed better without stop-words removal and 

lemmatization, whereas these linguistic techniques were effective for the NB classifier. For 

both spam filters, performance increased with a high level of features. 

Incremental Learning with C4.5 Decision Tree 

The J48 training algorithm is a popular version of the well-known C4.5 decision tree [58]. J48 

generates a decision tree model with varying classification rates based on cross-validation. Us-

ing fewer features to create the model may benefit performance efficiency by minimizing the 

number of branches on the tree which must be calculated. In this study, we use an incremental 

learning mechanism using C4.5 (IL_C4.5) proposed to better adapt to the dynamic environment 

[66]. In this algorithm, a critical attribute is selected based on the maximum value of Gain Ratio, 

and the base of association rules is formed using the paths from root nodes to leaf nodes. 

Voting 

Voting is an ensemble method, combining the decisions of several base learners. Here we use 

the combination of NB, SVM, and Stochastic Gradient Descent (SGD) classifiers proposed for 



SMS spam filtering in [54]. This approach employs majority voting, and it was reported to be 

more effective in spam filtering than the above-mentioned classifiers trained individually. This 

was attributed to computational effectivity, fast convergence, and resiliency to overfitting [54]. 

Random Forests 

Recently, it was showed that Random Forests are effective classifiers in spam filtering owing 

to its non-differentiable decision boundary [42]. Random Forests [14] combine tree predictors 

in such a way that each single tree depends on the values of a random vector sampled inde-

pendently from the others, and all trees in the forest have the same distribution. Once the num-

ber of trees in the forest grows large enough, the generalization error for the forest converges 

to a limit. The generalization error depends on two factors: the strengths of individual trees and 

the correlations between them. Using a random selection of features to split each node yields 

error rates that compare favorably to AdaBoost, but that are more robust with respect to noise, 

thus improving the performance of a spam filter [44].  

Convolutional Neural Network 

A CNN is a variant of MLP, utilizing layers with convolving filters that are applied to the local 

features of adjacent layers [47]. The filters in any given layer form a feature map and share the 

same parametrization. Each hidden layer comprises multiple feature maps, obtaining a complex 

data representation. To capture the most important feature for each feature map, a max-pooling 

operation is applied over that map. Although originally developed for the computer vision do-

main, CNNs have recently shown effectiveness in text-categorization tasks [43]. Despite this 

interest in their use in general text categorization, to the best of our knowledge CNNs have not 

yet been applied to spam filtering. 

 



5 Experimental Results 

The most important parameter of the modified DBB algorithm to set is the number b of new 

instances to sample for minority class. The imbalance ratios ranged from 1:1.3 (Social network-

ing) to 1:6.5 (SMS) in the spam datasets. First, we tested the datasets without over-sampling 

(b=0) as the baseline. In further experiments, we set b to achieve the imbalance ratio of 1:2 and 

1:1, respectively. In this study, the RDNN-ReL was trained using a mini-batch gradient descent 

algorithm with the following parameters: number of hidden layers = {1, 2, 3}; number of units 

in the hidden layer = {10, 20, 50, 100, 200}; learning rate = {0.05, 0.10}; size of each mini-

batch used in computing gradients b = 100; input layer dropout rate = 0.2; hidden layer dropout 

rate = 0.5; and number of iterations = 1000. The structure and parameters of the RDNN-ReL 

were found using a grid search procedure, and we did the same for each comparative method. 

To estimate the generalization performance of the classifiers, we used 10-fold cross-validation 

on the three spam datasets, with the overall performance estimate represented by the average 

and standard deviation over the 10 classifiers. 

In the first run of experiments, we investigated the effects of (1) the number of features and (2) 

the number of N-grams on the accuracy of the DBB-RDNN-ReL model. Table 2 shows that 

DBB-RDNN-ReL performed best for spam datasets with high dimensionality of 2,000 features. 

However, increasing the feature complexity by using bigrams or trigrams was effective only 

for the SpamAssassin dataset, which suggests that SpamAssassin presents the most complex 

spam-filtering problem of the three datasets. Unigrams provided sufficient complexity for spam 

filtering the remaining two datasets. Note that it was not possible to extract bigrams and tri-

grams from the Social networking datasets because the order of words in the bag of words 

representation in the JSON objects was already reorganized. Student’s paired t-test at p = 0.05 

was used to test differences in performance. The average differences over all k=10 pairs of 

validation folds were tested with k-1 degrees of freedom. Specifically, this test checks whether 



the average difference in the performance of two compared classifiers is significantly different 

from zero. 

 

Table 2 

 

Table 3 presents more insight into DBB-RDNN-ReL behavior in terms of how the performance 

of DBB-RDNN-ReL is affected by the numbers of hidden layers and features. The results indi-

cate that additional hidden layers are beneficial only when using high-dimensional data. In other 

words, for n = 200, DBB-RDNN-ReL performed best with one hidden layer (except for the 

Social networking dataset). The benefits of additional hidden layers, that is, the development 

of feature hierarchies and recombinations to increase complexity and abstraction were achieved 

when using n = 2000 features, regardless of the number of N-grams.  

 

Table 3 

 

In the further set of experiments, we demonstrated the dominance of the modified DBB algo-

rithm over its original version. Fig. 4 shows that the modified version of the DBB outperformed 

its original counterpart for all the spam datasets, regardless of the number of features. The 

greatest improvement was achieved for the SMS and Social networking dataset, suggesting that 

the oversampling modification is particularly suitable for sparse spam datasets. 

 

Fig. 4 Classification accuracy of DBB-RDNN-Rel with original vs. modified DBB algorithm 

 



Several previous studies on spam filtering have utilized feature selection to decrease data di-

mensionality, because not all classifiers can gracefully handle high dimensions [82,83]. In ad-

dition, due to a lower complexity, reductions in dimensionality may even improve the perfor-

mance of machine learning methods. The selection of relevant features requires an objective 

function and a search strategy. Here, we examined the effect of feature selection on DBB-

RDNN-ReL performance using two different feature selection algorithms specifically designed 

for high-dimensional datasets [30]. Generally, filter feature selection methods are preferred in 

high-dimensional problems due to their computational efficiency. We applied a fast correlation-

based filter (CBF) as a subset evaluator and particle swarm optimization (PSO) as a search 

method. CBF evaluates a feature subset by considering the individual predictive ability of each 

feature along with the degree of redundancy between them [79]. The following settings were 

used for the PSO algorithm: number of particles in the swarm = 20; mutation probability = 0.01; 

individual weight = 0.34; inertia weight = 0.33; and social weight = 0.33. To achieve superior 

learning performance, the advantages of filters and wrappers have recently been combined in 

hybrid feature selection methods. The best possible classification performance of a particular 

machine learning algorithm can thus be achieved with similar time complexity as filter algo-

rithms. Here, we used incremental wrapper feature subset selection (IWSS) with an NB classi-

fier proposed specifically to handle high-dimensional datasets [12]. This wrapper with an em-

bedded NB classifier presents the advantages of a wrapper search alongside the time complexity 

of a filter algorithm, which is achieved through feature ranking. To alleviate feature selection 

bias, the selection methods were applied separately to the 10 training datasets. The CBF_PSO 

method performed better on the SMS dataset, whereas the IWSS_NB dominated for the Enron 

dataset, regardless of the number of N-grams (Table 4). The highest accuracy was achieved 

with unigrams for both datasets. For the SpamAssassin and Social networking datasets, the 

feature selection methods performed similarly to each other. However, using feature selection 



led to comparatively ineffective performance of DBB-RDNN-ReL (see Table 3), indicating that 

reducing dimensionality deteriorates the accuracy of DBB-RDNN-ReL. Decreases in perfor-

mance were significant for the Enron and SMS datasets. 

 

Table 4 

 

In the further set of experiments, we compared the results of the DBB-RDNN-ReL to those 

obtained by other state-of-the-art spam filters, namely MDL [6], FDA [8], IL_C4.5 [66], Voting 

[54], and Random Forest [42]. All experiments were performed in Weka 3.8 environment. 

Namely, MDL discretization filter5 was used for the MDL, StringToWordVector for the facto-

rial design in the FDA, the modification of J4.8 without concept drift judgment for the IL_C4.5, 

and wekaDeeplearning4jCore 1.0.6 was used to train the CNN. 

The incrementally updateable MDL filter was used to select terms. For the FDA, the parameters 

were represented by stop-words removal (yes/no), lemmatization (yes/no), and the number of 

features (200/1000). In agreement with [8], SVM and NB were used as classifiers in the FDA 

framework. SVMs were trained by the SMO algorithm. In the experiments, we examined SVMs 

with a polynomial kernel function and complexity parameter C = {20, 21, 22, … , 28}. To train 

the IL_C4.5 spam filter, we used the J48 implementation of the C4.5 algorithm with confidence 

factor = 0.25 and minimum number of instances per leaf = 2.  Following the selection of base 

learners used in [54], NB, SVM and SGD algorithms were used in Voting. The setting of the 

SVM was the same as for the FDA, while Hinge loss function was used in the SGD. Finally, 

Random Forest worked with 100 random trees. 

As with the DBB-RDNN-ReL, the CNN was trained using a mini-batch gradient descent algo-

rithm with patch size 5×5 and max pool size 2×2, each with number of feature maps = {10, 20, 

                                                           
5 https://sourceforge.net/projects/weka-mdl-df/ 



50, 100, 200}; learning rate = {0.05, 0.10}; size of each mini-batch used in computing gradients 

b = 100; input layer dropout rate = 0.2; hidden layer dropout rate = 0.5; and number of iterations 

= 1000. 

Furthermore, we compared the results of the DBB-RDNN-ReL to those obtained by other ma-

chine learning methods used in previous spam filters, namely k-NN algorithm, logistic regres-

sion, MLP, AIS, and AdaBoost. We used the k-NN classifier with the Euclidean distance func-

tion and number of neighbors set to k = 3. The MLP was trained using a backpropagation algo-

rithm with the following parameters: number of neurons in the hidden layer = {10, 20, 50, 100, 

200}; learning rate = {0.05, 0.10, 0.30}; momentum = 0.2; and number of iterations = 1000. As 

a representative of AISs, parallel AIRS version 2 was trained with the following parameters: 

affinity threshold = 0.2; clonal rate = 10; hyper-mutation rate = 2; k-NN = 3; stimulation thresh-

old = 0.9; and number of allocable resources = 150. The AdaBoost M1 version was trained with 

Decision Stump as base learners and number of iterations = 10.  

Classification results are summarized in Table 5. Note that we examined nine configurations 

(200, 1,000, and 2,000 words using unigrams, bigrams, and trigrams). Here we report only the 

results for the best configurations in terms of accuracy. In order to evaluate the performance of 

different algorithms with different parameters set and the accuracy with different word-class 

sizes, FN and FP rates were chosen as performance criteria. As before, we employed Student’s 

paired t-test at p = 0.05 to test average differences in performance. 

The results show that DBB-RDNN-ReL achieved higher classification accuracy on the Enron, 

SMS and Social networking datasets than the other algorithms, while FDA+SVM slightly out-

performed DBB-RDNN-ReL on the SpamAssassin dataset. Besides DBB-RDNN-ReL, the 

CNN, FDA+SVM, Voting and Random Forests algorithms show quite good results for the En-

ron, SMS and Social networking datasets. For the SpamAssassin dataset, only AIRS2Parallel, 



MDL and FDA+NB were significantly outperformed by DBB-RDNN-ReL. This may be at-

tributed to a high linear separability of the SpamAssassin dataset. 
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The DBB-RDNN-ReL algorithm also performed significantly better than most of the other al-

gorithms in terms of FN rate (Table 6), with nearly one-tenth as many false negatives than the 

third-best Random Forest algorithm on the Enron dataset. For the SMS and SpamAssassin da-

tasets, the difference in FN rates were also significant except Voting on the SpamAssassin da-

taset. For the Social networking dataset, FDA+NB performed best, suggesting that it is effective 

in detecting spam messages in social networking. However, this is achieved at the expense of a 

high rate of legitimate messages mistakenly classified as spam (Table 7). 
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Regarding FP rate, DBB-RDNN-Rel also showed good results, but it only achieved the best 

score for the most complex SMS dataset (Table 7). FDA+NB performed significantly better 

than DBB-RDNN-ReL for FP on the Enron dataset. For the SpamAssassin dataset, the DBB-

RDNN-Rel was not significantly outperformed on FP rates by any compared method, but Ada-

Boost, Voting and IL_C4.5 had fewer errors. In addition, Adaboost and MDL performed better 

than the DBB-RDNN-Rel on the Social networking dataset in terms of FP rate. However, these 

methods should not be preferred due to a relatively poor performance on detecting spam mes-

sages (FN rate performance).  



Since the original SpamAssassin and SMS datasets are strongly imbalanced in favor of legiti-

mate messages, the methods’ classification performance in terms of FN and FP rates is partic-

ularly important. It is therefore notable that DBB-RDNN-ReL performed reasonably well on 

both measures. 
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To detect statistical differences in the performance of the used spam filters across the four da-

tasets (and all the twelve configurations of the datasets), we performed nonparametric Friedman 

test because the reliability of parametric tests could not be guaranteed. In this test, Friedman 

statistic is used to rank the methods. Average ranks were calculated in case of ties. The null 

hypothesis was tested which states that all the spam filters perform similarly. The Friedman p-

values obtained in Table 8 indicate the existence of significant differences between the evalu-

ated spam filtering methods except FP rate. To determine which spam filters performed signif-

icantly worse, we next performed the Holm post-hoc procedure (DBB-RDNN-ReL was used 

as a control algorithm).  This procedure adjusts the level of significance in a step-down manner 

[28]. The results show that only FDA+NB and AIRS2Parallel were significantly outperformed 

for all the three datasets, while four existing spam filters (FDA+SVM, Voting, CNN, and Ran-

dom Forest) performed statistically similar at p=0.05. Notably, Voting performed well in terms 

of FN rate, indicating a high accuracy on minor (spam) classes. This is in agreement with pre-

vious studies on spam filtering [54]. 
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To further demonstrate the effectiveness of the proposed spam-filtering model, we compared 

the average accuracy obtained with that of previous studies that examined the same datasets. 



To ensure fair comparability of the results, Table 9, Table 10 and Table 11 only report accura-

cies obtained with 10-fold cross-validation. Similarly, Table 12 presents the area under ROC 

curve obtained with 10-fold cross-validation. 

Regarding the Enron dataset (Table 9), the best performance thus far reported was achieved by 

Bagged Random Forest [60] and Deep Belief Networks [70]. The results for Random Forest 

obtained here agree with those from [60]. Therefore, we believe that these results suggest that 

DBB-RDNN-ReL performs better other methods in terms of accuracy. Even larger increases in 

accuracy were achieved in the case of the SMS dataset (Table 10). The SVM proposed in [4] 

has performed the best so far on this dataset, and the SVM used here reproduced similar results, 

suggesting that our approach is also more effective for SMS spam filtering. For the SpamAssas-

sin dataset, several methods have performed similarly to ours in previous studies, including 

SVM, AIS, NB, and Boosting, and our comparative results corroborate these findings. How-

ever, DBB-RDNN-ReL achieved slightly higher accuracy than prior studies have reported, as 

presented in Table 11. 

 

Table 9 

Table 10 

Table 11 

 

6 Conclusion 

This study demonstrates that the DBB-RDNN-ReL outperforms existing spam filtering meth-

ods on two of three datasets in terms of classification accuracy. More importantly, it classified 

both major (legitimate) and minor (spam) classes well. The comparative analysis with the state-

of-the-art spam filters showed that DBB-RDNN-Rel ranked first, but FDA+SVM, Voting and 



Random Forest spam filters achieved statistically similar performance on the benchmark spam 

datasets.  

By contrast, the remaining algorithms performed relatively poorly in terms of accuracy, FN or 

FP rates. The proposed spam filter also outperformed previous approaches on all datasets under 

investigation, implying that deep NNs represent a promising technique for constructing spam 

filters. The results also suggest that the performance of DBB-RDNN-ReL improves with higher 

data dimensionality and that feature selection deteriorates performance. Furthermore, the use 

of unigrams and bigrams with two hidden layers seems sufficient for DBB-RDNN-ReL to be 

effective. The relatively large number of units in the hidden layers were examined mainly due 

to the high number of input features. However, the results showed that adding too many hidden 

layers and units would model noise in the training data, eventually causing poor generalization 

performance. 

The main limitation of the proposed model is that it is significantly more computationally in-

tensive than the other algorithms (Table 12), with average elapsed training time about ten times 

higher than that of FDA+SVM for SMS dataset, about thirty times higher than that of 

FDA+SVM for the Enron dataset, and about hundred times higher for the SpamAssassin da-

taset. On one hand, this finding limits the application of DBB-RDNN-ReL as an online spam 

filter [64]. On the other hand, the results suggest that DBB-RDNN-ReL can be effectively used 

for static datasets. Returning to challenges specific to spam filters, we conclude that the DBB-

RDNN-ReL classifier may effectively address imbalanced class distributions and uncertain 

misclassification costs, as well as complex text patterns. However, its high computational ex-

penses make it difficult to tackle the problem of concept drift. Further investigation and exper-

imentation regarding concept drift is therefore strongly recommended. It would also be inter-

esting to assess the effects of additional text components, such as the syntactic structure and 

semantic features, on classification accuracy. A further study could also assess the performance 



of DBB-RDNN-ReL in terms of multi-objective optimization [10]. Finally, we believe that the 

proposed method can be effectively applied to related high-dimensional imbalanced text cate-

gorization problems such as news classification or social network profiling.  
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Table 1: Confusion matrix for spam filtering 

 Actual 

Spam Legitimate 

Predicted 
Spam TP FP 

Legitimate FN TN 

 

Table 2: Effect of number of features and N-grams on DBB-RDNN-ReL accuracy 

Features / N-grams 
Dataset 

Enron SMS SpamAssassin Social networking 

200 / 1 96.23±0.84* 95.86±0.76* 99.45±0.45 90.14±3.87 

200 / 2 91.79±1.07* 88.96±0.80* 99.84±0.20 - 

200 / 3 82.36±1.55* 86.86±0.45* 99.84±0.22 - 

1000 / 1 98.37±0.59 98.23±0.57 99.75±0.28 92.27±3.04 

1000 / 2 95.83±0.87* 93.98±1.18* 99.82±0.22 - 

1000 / 3 87.79±1.47* 91.71±0.98* 99.70±0.32 - 

2000 / 1 98.76±0.57 98.51±0.51 99.79±0.25 92.81±2.84 

2000 / 2 96.69±0.81 95.50±0.93* 99.89±0.19 - 

2000 / 3 91.39±1.18* 92.98±0.84* 99.85±0.30 - 

* significantly lower (p=0.05). 

 



Table 3: Effect of number of hidden layers and features on DBB-RDNN-ReL accuracy 

Hidden layers / Features 
Dataset 

Enron SMS SpamAssassin Social networking 

1 / 200 96.23±0.84* 95.86±0.76* 99.84±0.22 89.69±3.75* 

1 / 1000 98.37±0.59 98.23±0.57 99.80±0.23 92.27±3.04 

1 / 2000 96.69±0.81 98.51±0.51 99.84±0.22 92.17±3.17 

2 / 200 95.05±1.41* 95.78±0.50* 99.45±0.45 90.14±3.87 

2 / 1000 97.93±0.84 98.17±0.48 99.82±0.22 92.20±3.00 

2 / 2000 98.76±0.57 98.47±0.39 99.89±0.19 91.96±3.21 

3 / 200 92.24±7.59* 90.25±4.77* 99.38±0.49 89.77±4.15* 

3 / 1000 84.80±11.93* 87.75±3.61* 99.75±0.19 92.81±2.84 

3 / 2000 87.49±14.18* 87.70±3.50* 99.89±0.19 92.81±3.07 

* significantly lower at p=0.05. 

Table 4: Effect of feature selection on DBB-RDNN-ReL accuracy 

Feature se-

lection N-grams 
Dataset 

Enron SMS SpamAssassin Social networking 

CBF_PSO 1 93.49±2.55* 96.44±0.72* 99.50±0.36 90.99±3.64 

CBF_PSO 2 88.89±1.35* 95.60±0.74* 99.47±0.37 - 

CBF_PSO 3 82.64±1.22* 92.32±0.92* 99.72±0.28 - 

IWSS_NB 1 94.39±0.99* 95.63±0.81* 99.54±0.40 91.84±2.44 

IWSS_NB 2 89.12±1.19* 92.81±0.92* 99.58±0.39 - 

IWSS_NB 3 84.52±1.34* 86.68±0.56* 99.47±0.46 - 

* significantly lower (p=0.05) compared to the best result without feature selection. 

Table 5: Accuracy of compared methods 

Method 
Dataset 

Enron SMS SpamAssassin Social networking 

MDL [6] 95.67±1.13* 97.99±0.55 94.43±1.19* 89.28±3.57* 

FDA+NB [8] 91.29±1.18* 94.95±0.88* 92.36±1.56* 82.98±7.08* 

FDA+SVM [8] 96.66±0.84 97.52±0.72 99.90±0.16 90.45±3.25 

IL_C4.5 [66] 93.35±1.29* 95.67±0.90* 99.72±0.31 88.65±3.84* 

Voting [54] 97.20±1.06 98.20±0.32 99.88±0.16 92.08±3.06 

Random Forest [42] 98.05±0.57 97.89±0.63 99.76±0.28 91.94±3.09 

AdaBoost 78.76±1.15* 88.65±0.60* 99.59±0.43 89.10±3.73* 

Logistic Regr. 94.54±1.04* 96.80±0.75 99.62±0.69 87.59±3.60* 

AIRS2Parallel 71.36±7.65* 87.31±2.83* 94.79±2.80* 80.42±7.78* 

MLP 96.29±2.84* 95.50±1.10* 99.61±0.36 88.97±3.86* 

k-NN 91.36±1.34* 93.57±0.78* 99.35±0.41 88.37±3.70* 

CNN 97.47±0.87 98.01±1.30 99.72±0.27 91.11±4.52 

DBB-RDNN-Rel 98.76±0.57 98.51±0.51 99.89±0.19 92.81±2.84 
* significantly lower (p=0.05). 

 



 

 

Table 6: FN rates of comparative methods 

Method 
Dataset 

Enron SMS SpamAssassin Social networking 

MDL [6] 0.0107±0.0105* 0.1341±0.0330* 0.0300±0.0330* 0.1673±0.0558* 

FDA+NB [8] 0.1209±0.0163* 0.1318±0.0388* 0.0694±0.0370* 0.0698±0.0509 

FDA+SVM [8] 0.0459±0.0178* 0.1192±0.0383* 0.0140±0.0184* 0.1126±0.0459* 

IL_C4.5 [66] 0.0608±0.0207* 0.2719±0.0604* 0.0167±0.0187* 0.1397±0.0545* 

Voting [54] 0.0247±0.0118* 0.1072±0.0259* 0.0040±0.0084 0.0900±0.0481* 

Random Forest [42] 0.0178±0.0121* 0.1403±0.0458* 0.0080±0.0136* 0.1000±0.0468* 

AdaBoost 0.6838±0.0340* 0.8190±0.0426* 0.0265±0.0272* 0.1706±0.0595* 

Logistic Regr. 0.0668±0.0200* 0.1210±0.0382* 0.0082±0.0355* 0.1502±0.0559* 

AIRS2Parallel 0.1220±0.1679* 0.8801±0.0885* 0.1888±0.1069* 0.2540±0.1450* 

MLP 0.0501±0.0823* 0.2294±0.0608* 0.0144±0.0211* 0.1424±0.0557* 

k-NN 0.0378±0.0158* 0.4534±0.0562* 0.0209±0.0187* 0.1609±0.0595* 

CNN 0.0347±0.0193* 0.1232±0.0947* 0.0100±0.0141* 0.0916±0.0457* 

DBB-RDNN-Rel 0.0017±0.0018 0.0953±0.0348 0.0010±0.0032 0.0900±0.0449* 
* significantly higher (p=0.05). 

Table 7: FP rates of compared methods 

Methods 
Dataset 

Enron SMS SpamAssassin Social networking 

MDL [6] 0.0566±0.0165* 0.0025±0.0038 0.0603±0.0124* 0.0282±0.0131 

FDA+NB [8] 0.0045±0.0057 0.0380±0.0083* 0.0776±0.0166* 0.3021±0.1946* 

FDA+SVM [8] 0.0283±0.0092* 0.0102±0.0056* 0.0036±0.0036* 0.0729±0.0460* 

IL_C4.5 [66] 0.0688±0.0159* 0.0079±0.0045* 0.0002±0.0011 0.0791±0.0497* 

Voting [54] 0.0294±0.0130* 0.0041±0.0032* 0.0007±0.0015 0.0648±0.0326* 

Random Forest [42] 0.0201±0.0073* 0.0027±0.0026 0.0014±0.0024 0.0552±0.0363* 

AdaBoost 0.0200±0.0800* 0.0044±0.0026* 0.0001±0.0004 0.0281±0.0249 

Logistic Regr. 0.0496±0.0125* 0.0182±0.0065* 0.0031±0.0038* 0.0899±0.0478* 

AIRS2Parallel 0.3535±0.1519* 0.0103±0.0371* 0.0272±0.0331* 0.1190±0.1853* 

MLP 0.0318±0.0361* 0.0165±0.0118* 0.0020±0.0031 0.0681±0.0610* 

k-NN 0.1062±0.0177* 0.0041±0.0030 0.0039±0.0034* 0.0577±0.0397* 

CNN 0.0215±0.0079* 0.0039±0.0021 0.0015±0.0025 0.0855±0.1007* 

DBB-RDNN-Rel 0.0212±0.0101* 0.0024±0.0024 0.0011±0.0018 0.0480±0.0194* 
* significantly higher (p=0.05). 

  



Table 8: Results of Friedman and Holm nonparametric tests 

Methods 

Accuracy FN rate FP rate 

Aver. 

Ranking 

Holm  

p-value 

Aver. 

Ranking 

Holm  

p-value 

Aver. 

Ranking 

Holm  

p-value 

MDL [6] 7.3 0.033* 7.8 0.026* 6.5 0.146 

FDA+NB [8] 10.5 0.001* 9.3 0.006* 8.5 0.029* 

FDA+SVM [8] 5.5 0.134 6.5 0.077 7.3 0.085 

IL_C4.5 [66] 7.9 0.018* 8.5 0.013* 7.5 0.069 

Voting [54] 5.1 0.173 2.0 0.892 7.1 0.093 

Random Forest [42] 3.3 0.496 4.1 0.364 4.5 0.468 

AdaBoost 9.5 0.003* 10.3 0.002* 4.8 0.414 

Logistic Regr. 6.3 0.077 5.8 0.134 8.3 0.037* 

AIRS2Parallel 11.0 0.000* 12.5 0.000* 8.8 0.023* 

MLP 8.5 0.010* 8.3 0.016* 9.3 0.014* 

k-NN 11.0 0.000* 9.8 0.003* 9.9 0.008* 

CNN 3.9 0.364 4.8 0.256 6.3 0.173 

DBB-RDNN-Rel 1.4 - 1.6 - 2.5 - 

Friedman p-value 0.002*  0.001*  0.304  
* significantly worse than DBB-RDNN-Rel (p=0.05). 

Table 9: Comparison of DBB-RDNN-ReL accuracy with the results of previous studies on the 

Enron 1 dataset 

Study Method Accuracy 

[70] Deep Belief Networks 97.43 

[1] AIS 90.00 

[3] Multivariate Bernoulli NB 94.79 

[71] Distinguishing Feature Selector 94.35 

[5] Minimum description length 95.56 

[60] Bagged RF 97.75 

[67] Enhanced genetic programming 94.10 

[50] RF 96.39 

[69] Relief + NB 96.30 

[32] k-means + SVM 97.35 

[17] Natural language toolkit NB 94.70 

[58] Incremental SVM 96.86 

[68] Boosted NB + SVM 95.60 

This study DBB-RDNN-ReL 98.76 
 

Table 10: Comparison of DBB-RDNN-ReL accuracy with the results of previous studies on the 

SMS dataset 

Study Method Accuracy 

[4] SVM 97.64 

[71] Distinguishing Feature Selector 97.44 

[72] χ2 filter + probabilistic classifier  90.17 

[2] Apriori + ensemble learning 96.21 

[52] Discriminative multinomial NB 96.46 

[23] Support Vector Domain Description 89.32 

This study DBB-RDNN-ReL 98.51 

 



Table 11: Comparison of DBB-RDNN-ReL accuracy with the results of previous studies on the 

SpamAssassin dataset 

Study Method Accuracy 

[14] Heuristic filter + NB 97.67 

[48] SVM 98.53 

[26] Case-based Reasoning 93.58 

[70] Deep Belief Networks 97.50 

[78] SVM 97.00 

[55] Isotropic PCA 98.89 

[83] Genetic optimized AIS 98.92 

[67] Enhanced genetic programming 98.60 

[69] OneR + NB 96.40 

[24] Maximum entropy + incremental learning 97.87 

[61] Natural language stylometry + Adaboost 95.70 

[68] Boosted NB + SVM 98.60 

This study DBB-RDNN-ReL 99.89 
 

Table 12: Comparison of DBB-RDNN-ReL accuracy with the results of previous studies on the 

Social network dataset 

Study Method Area under 

ROC 

[13] NB baseline  0.528 

[13] Report baseline 0.548 

[13] HITS unsupervised 0.767 

[13] HITS semi-supervised 0.801 

This study DBB-RDNN-ReL 0.961 

 

Table 13: Average elapsed training time in seconds 

Methods 
Dataset 

Enron SMS SpamAssassin Social networking 

MDL [6] 10.1864±1.4689 5.6712±1.0959 8.8657±0.6047 1.7175±0.0557 

FDA+NB [8] 0.8592±0.0374 1.5929±0.0773 1.0731±0.0643 0.0182±0.0052 

FDA+SVM [8] 5.4755±1.1081 6.8151±1.3511 1.7081±0.2148 0.9279±0.4131 

IL_C4.5 [64] 40.0021±3.6369 57.0352±2.2090 17.7206±1.8892 1.8255±0.1087 

Voting [52] 34.3022±2.0173 24.0878±1.0569 23.1259±0.6988 0.3704±0.0130 

Random Forest [40] 28.0200±0.3813 137.9478±2.7606 8.8578±0.6931 5.2441±0.1221 

AdaBoost 2.7871±0.0530 1.3228±0.0433 30.0971±5.5630 0.2033±0.0261 

Logistic Regr. 4.7599±0.8967 33.0418±4.9804 81.4898±10.8791 0.1585±0.0292 

AIRS2Parallel 21.2569±0.5605 22.7472±1.3016 12.8325±1.5599 0.3152±0.0252 

MLP 347.9439±9.1491 43.1749±0.3345 212.1962±5.3466 5.9765±0.0859 

k-NN 0.0018±0.0039 0.0015±0.0036 0.0033±0.0049 0.0009±0.0004 

CNN 170.7381±28.4784 225.1482±50.8137 16.4079±2.7690 68.5354±9.9256 

DBB-RDNN-Rel 183.5865±28.3987 62.7598±8.6043 181.8043±38.7057 25.8860±4.9062 

 

 


