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Abstract. Fuzzy cognitive maps (FCMs) integrate neural networks and fuzzy logic to model complex non-
linear problems through causal reasoning. Interval-valued FCMs (IVFCMs) have recently been proposed
to model additional uncertainty in decision-making tasks with complex causal relationships. In traditional
FCMs, optimization algorithms are used to learn the strengths of the relationships from the data. Here, we
propose a novel IVFCM with real-coded genetic learning. We demonstrate that the proposed method is
effective for predicting corporate financial distress based on causally connected financial concepts. Specifi-
cally, we show that this method outperforms FCMs, fuzzy grey cognitive maps and adaptive neuro-fuzzy
systems in terms of root mean squared error.

1. Introduction

Fuzzy cognitive maps (FCMs) are employed for knowledge representation through signed fuzzy
weighted digraphs [13]. The nodes of the graphs stand for descriptive concepts usually expressed in
terms of fuzzy sets. The concepts are causally connected by directed edges labelled with fuzzy weights.
Thus, a high uncertainty can be incorporated. In addition, FCMs have the capacity to effectively model
nonlinear problems since a nonlinear activation function is used to transform the impact of the concepts.
These characteristics have made FCMs appealing for various economic and financial applications [7].

The development of FCMs is based on either expert knowledge or experimental data. Expert knowledge
is associated with subjectivity and therefore it fails to develop highly complex models. Therefore, various
learning approaches have been used to automatically design FCMs [11]. More precisely, the concepts are
usually proposed by an expert and a learning algorithm is then used to compute the parameters of FCM that
best fits the data. Evolutionary approaches such as genetic algorithms (GAs) [16] have been particularly
effective in learning FCMs. Alternatively, evolutionary approaches have also been employed to aggregate
the opinions of multiple experts [8].

To overcome the problems of traditional FCMs, several extensions of FCMs have been proposed. A
major issue to be addressed is determining the precise values of a weight matrix under strong uncertainty
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in dynamic and unstructured environments. This uncertainty can be handled by generalizing the concept
of fuzzy sets. As a result, intuitionistic FCMs [12], interval-valued FCMs (IVFCMs) [7], fuzzy grey cognitive
maps (FGCMs) [15] and interval-valued intuitionistic FCMs [14] have recently been introduced. The most
striking quality of these generalizations is the higher level of uncertainty that can be used to represent
concepts and relationships. The main differences between these extensions lie in their motivation and
their target application tasks, resulting in different inference mechanisms. However, little attention has
been focused on learning these FCM generalizations, with the exception of learning FGCMs for time series
forecasting [4].

In economic and financial decision making, intervals are used to represent the uncertainty associated
with an insufficient model accuracy and knowledge of context [14]. Moreover, causal interaction effects exist
between financial concepts such as the prediction of corporate financial distress [10]. Despite this interest,
no scholars have thus far applied FCMs or their generalizations to predict corporate financial distress. This
study bridges this gap by developing an IVFCM with genetic learning for predicting corporate financial
distress. In the proposed model, financial concepts are extracted from the corporate annual reports of U.S.
companies and causal relationships are estimated by using real-coded GAs. Financial distress is represented
by Altman’s Z-score, the most widely used financial distress measure [1]. In the presented case study, we
show that the proposed approach can serve as an appropriate decision support system for financial problems
with a strong uncertainty. To understand how financial concepts affect corporate financial distress is of
particular interest because corporate financial distress reduces information asymmetry in creditor-debtor
relationships. The early-warning systems for corporate financial distress are attracting widespread interest
also due to their importance for the stakeholders of firms, affecting financing and strategic decisions. The
proposed prediction model is aimed to provide an accurate and interpretable early-warning system to the
stakeholders.

This paper is organized as follows. Section 2 presents the theoretical background on IVFCMs. In Section
3, we demonstrate the effectiveness of this method for predicting corporate financial distress. Finally, this
paper is concluded with possible research directions.

2. IVFCMs with Genetic Learning

An FCM is a signed fuzzy weighted digraph with N nodes (concepts). The ith concept in the kth iteration
is labelled with fuzzy value ci

k. Fuzzy weight w ji in the range on [-1,1] denotes the sign and strength
of the causal relationship from the jth to the ith concept. Thus, positive (negative) fuzzy weight w ji, an
increase in c j

k will lead to an increase (decrease) in ci
k+1. To calculate ci

k+1, multiple edges usually have to be
considered. In addition, activation function f (usually a nonlinear function) can be employed to transform
the linear values of ci

k+1.

Definition 1. Inference in FCMs is expressed as:

ck+1
i = f (ck

i +

N∑
j=1

j,i

ck
j × w ji), (1)

Inference in conventional FCMs must be reformulated to accommodate the additional level of uncer-
tainty. In IVFCMs, interval-valued fuzzy sets (IVFSs) are used instead of fuzzy sets. In IVFS A, the degree of
membership is defined by an interval [µA

L(x), µA
U(x)], where µA

L(x) denotes the lower extreme and µA
U(x)

represents the upper extreme, respectively, 0 ≤ µA
L(x) ≤ 1, 0 ≤ µA

U(x) ≤ 1. Note that the higher is the
length of the interval, the higher is the level of uncertainty.

Definition 2. For two IVFSs A and B, the addition, subtraction and multiplication operators are defined as follows
[3]:
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A ⊕ B =
{〈

x, [min(µL
A(x) + µU

B (x), µU
A (x) + µL

B(x)), µU
A (x) + µU

B (x)]
〉
|x ∈ X

}
, (2)

A 	 B =
{〈

x, [µL
A(x) − µU

B (x),max(µL
A(x) − µL

B(x), µU
A (x) − µU

B (x))]
〉
|x ∈ X

}
, (3)

A ⊗ B =
{〈

x, [µL
A(x) × µL

B(x),max(µL
A(x) × µU

B (x), µU
A (x) × µL

B(x))]
〉
|x ∈ X

}
. (4)

As demonstrated by [3], the operator of multiplication is defined on [0,1] and the remaining operators
represent the extensions of traditional addition and subtraction operators on fuzzy sets. Specifically, if xL

= xU, yL = yU (the case of traditional fuzzy sets, πA(x) = 0), then xL + yL for the addition and xL – yL for
the subtraction operator. As reported by [3], the reasoning in IVFCMs can benefit from several important
properties, such as associativity and commutativity. By using these operators, reasoning in IVFCMs can be
expressed as [7]:

ck+1
i = {[µL

A(c), µU
A (c)]}k+1

i = f ({[µL
A(c), µU

A (c)]}ki ⊕ (
N
⊕

j=1

j,i

({[µL
A(c), µU

A (c)]}kj ⊗ {[µ
L
A(w), µU

A (w)]} ji))). (5)

In other words, the lower and upper bounds [µA
L(c), µA

U(c)] of the i-th concept are calculated using an
activation function f, similarly as in eq. (1), but the addition, subtraction and multiplication operators are
replaced by those defined in eq. (2-4).

In this study, a real-coded GA was used to optimize the weight matrix W={w ji}, j,i, of an IVFCM
with respect to the RMSE (root mean squared error). The weight matrix W can be characterized by N(N–1)
variables. Since both lower and upper bounds [µA

L(w ji), µA
U(w ji)] have to be determined, each chromosome

in the GA comprises 2N(N–1) genes. Thus, each chromosome represents a candidate IVFCM.
Input training data vectors represent the initial values of the concepts (k=0). Note that µA

L(c)=µA
U(c) at

k=0. The RMSE was used as the fitness function in genetic learning. This was calculated as the difference
between the outputs of training data ym, k=1, 2, . . . , M (again note that yk

L=yk
U) and output ŷk predicted by

the IVFCM. Sigmoid function f was employed for the concept values’ transformation. To avoid overfitting,
the number of iterations in the IVFCM reasoning was fixed and set to 10 [15]. To obtain defuzzified output
ŷk, we calculated the average of the output IVFS as:

ŷk =
ŷL

k +ŷU
k

2 . (6)

As a result, the fitness function can be expressed in the following way:

RMSE =

√
1
M ×

M∑
m=1

(ŷm − ym)2. (7)

The genetic learning of IVFCMs can be defined as:
Input: training data vectors: {c(1), c(2), ... , c(M)}
Output: learnt weight matrix: W
Randomly initialize population Hi, i=1;
Evaluate population(Hi);
While (stopping condition is not satisfied) do

Hi+1 ← Select the best-fit individuals (Hi);
Crossover(Hi+1);
Mutation(Hi+1);
i← i+1;

return hbest ∈ Hi – chromosome with the best fitness value;
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Table 1: Description of the data

Category Variable Mean±St.Dev. Category Variable Mean±St.Dev.
Linguistic Optimism 0.0200±0.0041 Financial WC/TA2013 0.1349±0.0931

Realism 0.2992±0.0287 RE/TA2013 0.2810±2.3179
Profitability 0.0072±0.0016 EBIT/TA2013 0.2191±0.5931
Leverage 0.0299±0.0054 E/TL2013 1.8348±4.4409
Liquidity 0.0055±0.0045 S/TA2013 0.6970±4.3588

Predicted output Z-score2015 2.1226±1.9363

3. Predicting Corporate Financial Distress

Recently, it has been reported that corporate financial distress can be predicted based on concepts
extracted from the documents (usually annual reports) related to assessed firms [6]. To develop an easy-to-
interpret model, we used the approach based on predefined rules (dictionaries). However, this approach
may be context-sensitive, requiring specific dictionaries for the financial domain. To address this issue, we
extracted the concepts from two perspectives, namely a sentiment and a topic perspective. The sentiment
perspective was based on the distionaries reported as the most discriminative in previous studies on
financial performance prediction, namely optimism and realism [6]. Diction 7.0 was used as the source
of these two dictionaries. The topic perspective was extracted by using the dictionaries for financial ratio
categories defined by [9]. In terms of predictive accuracy, profitability, liquidity and leverage dictionaries
were reported to be strongly correlated with financial performance. Moreover, strong relationships were
also observed between the financial ratio categories, which corresponds to the theoretical considerations of
the causal interaction effects between financial concepts [10].

To obtain the values of the above-mentioned five concepts, we first collected and preprocessed a set of
1329 U.S. firms’ annual reports for 2013. As the source of annual reports, we used the EDGAR System freely
available at www.sec.gov/edgar.shtml. First, we used tokenization and lemmatization for the linguistic
preprocessing of the documents. The tagged lemmas represented potential terms. Then, we compared
them with the five dictionaries of financial concepts. The overall word (raw term) frequency count was
used for each financial concept. This is words had the same weight within the category. The frequency
shows how much attention the firm’s management devoted to this financial concept in its communication
with stakeholders. To take the different lengths of the texts into account, the counts were normalized by
the length of the documents. The output variable was repretented by Altman’s Z-score for firms tradable
on the stock market [1]:

Z = 1.2 ×
WC
TA

+ 1.4 ×
RE
TA

+ 3.3 ×
EBIT
TA

+ 0.6 ×
E

TL
+ 1.0 ×

S
TA

, (8)

where WC is working capital, TA is total assets, RE is retained earnings, EBIT is earnings before interests
and taxes, E is the market value of equity, TL is the book value of total liabilities, and S is sales. The selection
of the profitatility, leverage and liquidity ratios and their corresponding weights were based on empirical
regression models using the sample of financially distressed/non-distressed firms [1]. The Z-score was
calculated for the 1329 U.S. firms for 2015 (the prediction horizon was two years). Table 1 presents the
descriptive statistics of the data. Since we also compare the performance of the concepts with the initial
values of the financial indicators, we refer to variables x1, x2, . . . , x5 for 2013 as well.

To learn the weight matrix of the IVFCM, we used a GA with a population size of 40, roulette selection,
crossover probability pc=0.8 and mutation probability pm=0.05, 100 generations were used as the stopping
condition. Each chromosome in the GA comprised 60 genes representing all lower and upper bounds of the
weights µA

L(w ji) and µA
U(w ji). 10-fold cross-validation was employed for the partition of training/testing

data. Hereinafter, we report the results on testing data in terms of the RMSE, mean absolute error (MAE)
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Table 2: Weight matrix of the IVFCM trained with GA (average over 10 experiments)

Optimism Realism Profitability Leverage Liquidity Z-score
Optimism [0.03,0.61] [0.00,0.03] [0.06,0.76] [-0.10,0.26] [-0.03,0.28]
Realism [0.07,0.12] [0.06,0.26] [0.41,0.54] [0.01,0.50] [-0.04,0.34]
Profitability [0.05,0.31] [0.10,0.57] [-0.03,0.71] [-0.01,0.03] [0.01,0.69]
Leverage [-0.10,0.42] [0.00,0.57] [0.01,0.31] [-0.05,0.57] [-0.24,0.93]
Liquidity [-0.64,0.54] [-0.30,0.43] [-0.09,0.67] [0.03,0.57] [-0.69,0.52]
Z-score [-0.25,0.47] [-0.27,0.52] [-0.12,0.77] [-0.28,0.72] [-0.20,0.50]

and mean absolute percentage error (MAPE). Table 2 presents the average values of the weights in the
trained IVFCMs. The large differences between the bounds of the weights denote strong uncertainty in the
causal relationships. A strong positive effect on financial performance was observed for the profitability
concept in particular. Both bounds of the target concept Z-score converged to the fixed equilibrium points
after about five iterations.

To compare the performance of the IVFCM-GA when predicting corporate financial distress, we em-
ployed FCM-GA [16], FGCM-GA [4] and two neuro-fuzzy methods used for financial distress prediction in
previous studies, namely adaptive neuro-fuzzy inference system (ANFIS-PSO) [2] and intuitionistic neuro-
fuzzy network (INFN-PSO) [5]. In the traditional FCM-GA, each chromosome of the GA comprises N(N–1)
genes, thus having lower computational complexity compared with the IVFCM-GA and FGCM-GA. In the
experiments with the FCM-GA and FGCM-GA, we used the same setting of the GA parameters. In contrast
to the operators defined for the IVFSs, FGCMs are based on the arithmetic of grey numbers. Also note that
unlike [4], the gain parameters of the sigmoid functions were not optimized.

For the ANFIS-PSO and INFN-PSO, we adopted the Pittsburgh approach to evolutionary-based fuzzy
systems, where each chromosome encodes a set of R if-then rules [5]. The PSO was used to tune the
parameters of the functions in the consequents. First, subtractive clustering algorithm was employed to
design membership/non-membership functions. To control complexity (granularity) and avoid the potential
overfitting risk, we tested various numbers of if-then rules (from R=2 to R=9) for each training dataset.
Thus, interpretability at the rule base and fuzzy partition levels were preserved. Second, the ANFIS and
INFN were tuned by a PSO with population=40, cognitive param.=2, social param.=0.7, inertia weight=0.8,
max. particle velocity=0.4, and 100 iterations as the stopping condition.

The results in Table 3 demonstrate that the IVFCM-GA with the linguistic concepts outperformed
that with the financial indicators. The results also suggest the generalizations of FCMs performed better
than the standard FCMs, indicating that strong uncertainty exists in the causal relationships. To test the
statistical differences in the performance of the compared methods in terms of the RMSE, we performed
the nonparametric Friedman test. First, the null hypothesis was tested that all the methods perform
similarly. The Friedman p-value (0.130) does not andicate the existence of significant differences between
the evaluated methods. However, the lowest average ranking was achieved by the IVFCM-GA. Second, we
used the IVFCM-GA as a control method in the post-hoc procedures (Friedman and Holm) to compare its
performance with those of the other methods. Significant differences at p<0.05 were detected by using the
Holm post-hoc procedure, whereas the results of the Friedman post-hoc procedure (p=0.157) indicate that
the FGCM-GA dit not perform significantly worse than the IVFCM-GA. Overall, the results of the post-hoc
tests indicate that the IVFCM-GA significantly outperformed the FCM-GA (p=0.066), ANFIS-PSO (p=0.034)
asd INFN-PSO (p=0.016).

4. Conclusion

In this paper, we develop a novel IVFCM with real-coded genetic learning. We show that this method
can be effectively used to corporate financial distress prediction. This can be attributed to its capacity of
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Table 3: Results for the IVFCM trained with GA vs. comparative methods

Method Measure Mean±Std.Dev. Method Measure Mean±Std.Dev.
IVFCM-GA RMSE 0.1421±0.0112 FGCM-GA [4] RMSE 0.1467±0.0113
(linguistic) MAE 0.0854±0.0075 MAE 0.0896±0.0058

MAPE 19.91±3.72 MAPE 20.57±3.91
IVFCM-GA RMSE 0.1706±0.0288 ANFIS-PSO [2] RMSE 0.1527±0.0134
(financial) MAE 0.1022±0.0146 MAE 0.1018±0.0084

MAPE 21.66±3.40 MAPE 22.73±4.28
FCM-GA [16] RMSE 0.1509±0.0139 INFN-PSO [5] RMSE 0.1524±0.0139

MAE 0.0925±0.0103 MAE 0.1012±0.0098
MAPE 20.87±3.97 MAPE 22.72±4.82

modelling the complex relationships among financial concepts. The fact that this method outperforms
traditional FCMs suggests that this applicalion domain is associated with a highly uncertain environment.
We also demonstrate that the reasoning based on IVFSs can be for this task more effective than that based on
grey numbers or adaptive fuzzy rule-based systems used in previous financial distress prediction studies.

The current findings add to a growing body of the research on the optimization of FCMs. However, as
mentioned above, alternative evolutionary approaches can be used to learn FCMs. Therefore, this study
can serve as a base for future research on IVFCM learning. Moreover, since the current study only examined
the learning of an IVFCM weight matrix, further research should focus on the optimization of the slope
parameter of sigmoid activation functions.
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