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ABSTRACT 

This dissertation is devoted to the effects of the circumferential ring on the loss of 

stability of the conical shells loaded by an axial force. The truncated conical shell with different 

shell thicknesses and base angles at the lower edge are investigated in this thesis. The main aim 

is a proposal a new method to calculation of load carrying capacity of the conical shell structures 

with a base angle less than 25° loaded by axial force. The proposed method is applicable for 

different radial stiffness of the circumferential ring. Two dimensionless similarity parameters 

are used in this method. Numerical models are created in COSMOS/M package program. The 

numerical analyses were performed for different angles, shell thickness and radial stiffness of 

circumferential ring. Empirical relationships are established based on the results of the 

numerical analysis.  

KEYWORDS 
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NÁZEV 

Ztráta stability tenkostěnných kuželových skořepin s obvodovým prstencem zatížených osovou 

silou. 

SOUHRN 

Tato dizertační práce se zabývá vlivem obvodového prstence na ztrátu stability 

kuželových skořepin zatížených osovou silou. V této dizertační práci jsou zkoumány komolé 

kuželové skořepiny s rozdílnou tloušťkou pláště a úhlem vzepětí. Hlavním cílem je návrh nové 

metody pro výpočet únosnosti komolých kuželových skořepin s úhlem vzepětí nižším než 25° 

zatížených osovou silou. Navržená metoda je aplikovatelná pro různé radiální tuhosti 

obvodového prstence. V rámci této metody jsou použité dva bezrozměrné podobnostní 

parametry. Numerické modely jsou vytvořeny v programu COSMOS/M. Numerické analýzy 

byly provedeny pro různé úhly vzepětí, tloušťky pláště skořepiny a radiální tuhosti obvodového 

prstence. Na základě výsledků numerických analýz jsou stanoveny empirické vztahy. 

KLÍČOVÁ SLOVA 

Kuželová skořepina, Obvodový prstenec, Únosnost, Osové zatížení, MKP 
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NOMENCLATURE 

Symbols 

����� [���] Cross-sectional area of the circumferential ring 

�� [−] Dimensionless boundary condition parameter 

� [��] Flexural rigidity 

� [���] Modulus of elasticity 

�� [���] Tangent Modulus 

���� [�] Limit load 

��� [�] Critical load 

����������� [−] Normalized axial load 

� [��] Length of the conical shell edge 

� [��] Moment 

� [�] In-plane force 

�� [�] Primary force in � direction 

�� [�] Primary force in � direction 

� [�] Transverse shear force 

��� [−] Quality of production 

��� [�] Primary shear force 

� [−] Shape factor 

����� [��] Width of the circumferential ring 

��,� [���] Yield stress 

�� [���] Ultimate tensile stress 

ℎ [��] Height of the relatively stiff pipe 

�� [−] Load factor 

�� [−] Buckling stress coefficient 

� [��] Length of the cylindrical shell 

�� [��] Equivalent length of the conical shell 

�� [��] 
Reference length (length of ruler to measure 

imperfections) 

� [−] Number of half waves in � direction 

� [−] Number of half waves in � direction 

� [��] Middle surface radius 

�� [��] Upper radius of the conical shell 

�� [��] Bottom radius of the conical shell 

�� [��] Equivalent radius of the conical shell 

� [−] Axis in longitudinal direction 

� [��] Displacement in � direction 

� [��] Displacement in � direction 

�  [��] Displacement in � direction 
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� [��] Middle surface thickness 

������ [��] Shell thickness of the conical shell 

� [−] Axis in radial direction 

Γ [−] Rigidity parameter of the circumferential ring 

�� [���] Base angle (Angle at the lower edge) 

��- � [−] 
Elastic imperfection reduction coefficient 

(Reduction coefficient) 

�� [���] Half-cone angle 

� [−] Plastic range factor 

� [−] Axis in tangential direction 

��� [−] Partial safety factor 

� [��/��] Shear strain 

���� [���] Buckling meridional membrane stress 

�����  [���] Elastic critical buckling stress 

����  [���] Design value of the buckling stress 

����  [���] Characteristic buckling stress 

�� [−] Squash limit relative slenderness 

�� [−] Plastic limit relative slenderness 

�� [−] Relative slenderness 

�� [−] Buckling reduction factor 

�  [−] Dimensionless geometric parameter 

� [−] Interaction exponent 

Δ�� [−] Characteristic imperfection amplitude 

� [−] Poisson’s ratio 

� [��/��] Strain 

Abbreviations 

ECCS European Convention for Constructional Steelwork 

FEM Finite Element Method 

GNA Geometrically Nonlinear Elastic Analysis 

GMNA Geometrically and Materially Nonlinear Analysis 

GMNIA 
Geometrically and Materially Nonlinear Analysis with 

Imperfection  

LBA Linear Buckling Analysis 

MNA Materially Nonlinear Analysis 

NASA National Aeronautics and Space Administration 
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1 INTRODUCTION 

Thin-walled shells have a widespread application in aerospace, mechanical, civil and 

structural engineering concepts in different shapes and types such as robots, shelters, domes, 

tanks, silos, machinery and energy absorbers (Figure 1.1). They have also significant 

importance for carrying liquids, pressurized gasses, and hazardous substances in road haulage, 

railroad and water transports. The use of the curved skin of vehicles as a load bearing member 

has similarly revolutionized the construction of aircraft. In the construction of all kind of 

spacecraft, the idea of a thin but strong skin has been used from the beginning. The demands in 

the thin-walled shells are quite prevalent as stated above. However, the thin-walled shells are 

considerably prone to loss of stability. Therefore, there is a great concern for the designers 

achieving maximum strength with a cost-efficient solution in the shells. 

The load carrying capacity of a structure which is computed by merely linear buckling 

formulations is not a reliable way regarding safety aspects for nonstandard structures. These 

approaches may give higher loads than the real carrying capacity. Thus, the loss of stability 

approach is a vital issue to simulate real system response under axial loading.  

Determining the load carrying capacity of the nonstandard structure might be 

infeasible by referring the procedures within the context of the standards and recommendations 

because it is difficult to estimate the nonlinearity of the structure. Likewise, the 

recommendations and standard methods are based on the linear theory of the shells.  

In present days, updated standards and recommendations provide useful approaches. 

They solve stability of the conical shells with the base angle which is higher than 25° and 

clamped lower end [5,6]. Nevertheless, the standard methods are not applicable for the shells 

which have the base angle less than 25°. Besides, the rules which are included in the 

recommendations can be applied only to conical shells which have clamped edges or edge with 

the very stiff ring. In other words, if a conical shell has either base angle less than 25° or 

free/flexible radial stiffness at the edges, these rules cannot be applied. 

Effects of the circumferential ring on the load carrying capacity of a conical shell have 

a significant role. Effectiveness depends on the radial stiffness of the circumferential ring. It is 

quite indispensable to determine the contribution of the ring only by itself. Additionally, this 

implementation is an alternative way to commonly used stiffeners and similar methods against 

system collapse. At the same time, it is easy for manufacturing scheme. It is a robust process to 

optimize a structure by understanding the individual influence of each design criteria.  

Numerical studies (FEM) are leading guides in developing an empirical relationship 

to estimate limit states of a structure as a function of primary parameters (i.e., overall geometry, 

slenderness, type of loading and boundary conditions). Numerical studies can be used instead 

of experiments. Otherwise, performing experiments for each geometrical configuration can be 

time and cost consuming. 
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a. Orion spacecraft by NASA [1] b. Uacs typ 451.1 type four-axle wagon [2] 

  

c. Rocketdyne F-1 rocket engine [3] d. Double corrugated hopper mount 

galvanized bins [4] 

Figure 1.1. Conical shells in typical usage. 

This study focuses on the load carrying capacity of the conical shells with a base angle 

less than 25° which have flexible boundary ring under axial loading. This area has lack of 

knowledge in the literature. Therefore, the main goal of the study is assigned to propose of a 

new method to estimate load carrying capacity of the conical shell structure with a base angle 

less than 25° for different radial stiffnesses under axial loading. The influence of the 

geometrical initial imperfection is included in the proposed method. A new reduction 

coefficient that simulates the effect of the initial imperfection on the load carrying capacity is 

suggested different from the standard and recommendations [5,6]. Thus, the load carrying 

capacity of the conical shells which stay in the non-linear area, that is mentioned above, can be 

estimated without any need of numerical analysis. 

The study also aims to derive two dimensionless similarity parameters. These 

parameters allow for evaluation of the load carrying capacity of the conical shell for numerous 

configuration of geometrical dimensions in a wide range. One of these parameters represents 

the general geometrical form of the conical shell in terms of base angle, shell thickness, and 

radius. The other one characterizes the radial stiffness of the circumferential ring which is 

located around the lower edge of the conical shell. 

The range of the base angle (��) of the conical shell is chosen between 10° and 20°. 

The study also mentions the influence of the circumferential ring stiffness on the loss of 

stability. The boundary conditions are assigned according to fixed supported (infinite radial 

stiffness), simply supported (zero radial stiffness) and flexible radial stiffness at the lower edge.  

Numerical models and simulations are performed using FEM package program COSMOS/M 

[9]. 
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2 GENERAL TERMINOLOGY ABOUT THE FIELD OF THE STUDY 

2.1 General Terms 

In this part, some general terms, which are included in the recommendation and the 

present study, are described [5]. 

Ideal shell  

Ideal shell is defined as a structure that has perfect geometry, uniformly distributed 

material behavior, and absence of residual stress. That is to say, the ideal shell means a structure 

with no initial imperfection. 

Imperfection  

Imperfection is defined as the difference between ideal and real shell. Imperfection 

might be geometrical, such as differences between the ideal shape and the real shape of the 

shell. Additionally, it may be observed as a fluctuation of the shell thickness, inhomogeneous 

boundary conditions, residual stress, loading imbalances, non-uniformly distributed mechanical 

properties of the material, etc. in the real applications. 

Limit load 

Limit load is the load which defines limit state of the structure and it is obtained from 

experiments or non-linear FEM analysis. The limit load may be a smooth maximum on the 

curve (Figure 2.1b). However, the limit load may also be a sharp peak on the curve. The curve 

pattern depends on location and direction of the displacement which is shown at the abscissa 

[5]. 

 
(a) 
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(b) 

Figure 2.1. (a) Changing geometry of the structure, (b) Load-displacement response [5]. 

Nonstandard structure  

The additional bending effect occurs in nonstandard structural elements. For instance, 

a conical shell with base angle higher than 25° which is clamped on the radial direction (a 

standard structure) under uniform axial load has almost a clear membrane stress. However, a 

bending state occurs at the beginning of the loading from nature of the conical shell structure 

with the base angle less than 25° (nonstandard structure). For this reason, linear FEM analysis 

or theoretical calculations cannot be used to evaluate the load carrying capacity in nonstandard 

structural elements (conical shells with the base angle less than 25°, spherical cap, etc.). The 

results may show the load carrying capacity of the structure multiple times higher than real. 

When designing nonstandard structures, numerical computational controls or experiments are 

required. 

As an example, an arch with an eccentric load is illustrated in Figure 2.1. In this 

example, during the load increases, the shape of the structure changes. The changed shape has 

a lower stiffness than the original one. The structure stays stable until the loading reaches a 

local maximum and this local maximum is named as limit load. In this situation, the slope of 

the load-displacement curve equals to zero (Figure 2.1 b). At that moment, the structure attains 

the maximum load carrying capacity. Afterward, the lower loads cause displacement increment 

and, the structure becomes unstable [5].  As a consequence of this instability, the structure 

transforms to inverted shape its original form. Structures such as arches, spherical caps, etc. 

show this kind of behavior. The nonstandard structural elements always correspond to nonlinear 

collapse or nonlinear buckling phenomena. 

Critical load 

The critical load is the load which describes the limit state of the structure and it is 

predicted from analytical calculations or linear FEM analysis. It is seen as the critical point on 

the load-displacement curve. After this point, the displacement begins to grow in a new pattern 

which is entirely different from the pre-buckling pattern.  

Standard structure  

A standard structure can be considered as a simple structural element which can be 

described by analytical relationships. Commonly used standard structural elements include a 
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geometrically simple design such as a cylindrical shell, a torus, a conical shell with a base angle 

higher 25° and clamped edge.  

The analytical solution is based on linear theory. Linear buckling is investigated only 

in standard construction elements. In the linear buckling, the critical point divides the 

compression balance into compression and bending equilibrium. Relationships for solving the 

linear stability of standard elements can be derived from the basic differential description in 

closed form. In the standard structural elements, the membrane stress is apparently superior to 

the bending stress. Thus, the difference between the theoretical value of the critical load and 

the actual strength of structure can be allowable in this case. 

The analytical methods for the design of standard structural elements are laid down by 

the modern regulations and standards. The scope of the calculation methods for a particular 

design is precisely defined in the standards [5,6]. 

Geometric nonlinearity 

When a structure has deformation under any kind of loading, its stiffness can change 

due to some factors. If this deviation of the stiffness of the structure is caused only by changes 

in the geometry, the nonlinear behavior is defined as geometric nonlinearity. Nonlinear analysis 

becomes necessary when the stiffness of the structure behaves nonlinearly under its operating 

conditions.  

In other words, geometrical nonlinearity significantly affects load-displacement 

characteristic if the large displacement occurs (see Figure 2.2). 

 

 

Figure 2.2. A load-displacement curve. 

Material nonlinearity 

If the change of the stiffness of the structure caused only by the material properties, 

this behavior is called material nonlinearity.  A linear material model assumes the slope of the 
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stress-strain curve as a constant. This means, when the load is increased, stress and deformation 

increase linearly and if the load is removed, the structure returns to its original shape according 

to the slope of the curve.  

 

Figure 2.3. A stress-strain curve [32]. 

Young’s Modulus is a constant of proportionality in a linear material model. It 

represents the slope of the linear part of the stress-strain curve (Figure 2.3). For highly nonlinear 

materials, this modulus may only be applicable at very low strains. 

Circumferential Ring 

It is the structural member which passes around the circumference of the shell. It is 

usually used as a tool for attachment of the shell to another structural member to increase radial 

stiffness of the structure. 

Transverse load 

The transverse load is applied perpendicular to the longitudinal axis of a member. It 

causes the member to bend and deflect from its original position, with internal tensile and 

compressive strains accompanying the change in curvature of the member. Transverse loading 

also induces shear forces that cause shear deformation of the material and increase the 

transverse deformation of the member.  

2.1.1 Analysis Types 

The limit state of the loss of stability can be determined using kind of analyses in FEM, 

according to EN 1993-1-6 [6]. These types depend on the geometry, material, and condition of 

the structure. They are classified as follows; 

Linear Analysis (Linear Buckling Analysis LBA) determines the linear eigenvalues of 

the thin-walled shell structure. It gives the eigenvalue (critical load) and its corresponding shape 

of loss of stability. The additional bending effect, which occurs in the nonstandard structural 

element, is not taken into account in this analysis. Therefore, LBA numerical analysis cannot 

be used to evaluate the loss of stability of nonstandard structures. 
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Geometrically Nonlinear Analysis (Geometrically Nonlinear Elastic Analysis GNA) 

is applied to the ideal structure. Linear elastic material behavior is used. However, geometric 

nonlinearity (large displacement) is considered. 

Materially Nonlinear Analysis (MNA) is applied to the ideal structure. The nonlinear 

elastic-plastic material model has an active role (material nonlinearity) (Figure 2.3). On the 

other hand, large displacement is neglected while performing the analysis. The results give 

plastic limit state load. 

Geometrically and Materially Nonlinear Analysis (GMNA) calculates the geometric 

nonlinearity and the nonlinear elastic-plastic material behavior for the ideal structure. The 

results of the analysis show the limit load of the geometrically and materially nonlinear shell 

structure. 

 Geometrically Nonlinear Analysis with Imperfection Included (GNIA) is an analysis 

that includes initial imperfections (not ideal structure). Large displacement is considered, and 

linear elastic material behavior is used. 

Geometrically and Materially Nonlinear Analysis with Imperfection Included 

(GMNIA) is an analysis that includes initial imperfections. Large displacement and material 

nonlinearity are considered. The result of the analysis is the limit load of the real structure in 

case of loss of stability in the elastic-plastic state. By comparing the results of the GMNA 

analysis, it is possible to determine the effect of initial imperfections on the strength of the 

structure. 

2.2 Loss of Stability 

The loss of stability is defined as a sudden drop in the carrying capacity of the structure. 

This reduction in the carrying capacity accompanies large displacement on the structure. The 

loss of stability happens instantaneously, and after this process, distortion on the structure often 

can be seen obviously with the unaided eye (Figure 2.4). In case of loss of stability, the structure 

takes a new equilibrium state. 

The structure behaves in a new equilibrium state as before losing its stability. The load 

carrying capacity of the deformed structure can rise again. It can resist against higher load until 

further loss of stability. However, the shell structures can completely collapse even with the 

first stability loss (e.g. a spherical cap). 

The maximum design load should never reach a level corresponding to the loss of 

stability of the shell structure. Loss of stability can occur due to unexpected overloading of the 

structure (insufficient dimensioning or mistakes under operation, etc.). In some cases, it is 

possible to continue to use this shell structure in a new equilibrium state until another loss of 

stability is reached. However, its carrying capacity must be verified. A conical roof sheet with 

the reinforcing ribs may be shown as an example for this case. Even after the limit state of loss 

of stability of the conical roof panel is achieved, the load carrying capacity of the conical roof 

panel may not be affected significantly. 
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Figure 2.4. Failure examples caused by loss of stability in practice [33, 34 and 35]. 

The loss of stability is investigated for the shell structures with three phenomena, 

1. Nonlinear collapse 

2. Nonlinear buckling 

3. Linear buckling 

In the nonlinear collapse, deformed shell structure has axially symmetric shape. While 

the load increases gradually, the shell structure deforms to its opposite position (Figure 2.6 

point A). This kind of deformation is typical for thin-walled structures which do not have purely 

membrane stress. The bending stress is dominant on this collapse due to the form of the 

structure (conical shells with a base angle less than 25°, spherical caps, etc.). 

In this process, the stiffness of the shell structure behaves contrary to the applied load. 

In case the load is sustained after the slope of the curve reaches zero value (Figure 2.6 Point A), 

the structure can have considerable deformation. Finally, it collapses suddenly and 

dramatically. This situation is explained as a term “snap-through buckling,” and it is often seen 

on shallow arcs and spherical caps because of their very nonlinear characteristics.  

At the beginning of the loading, they deform rather small in comparison to loading 

increment. However, when the load reaches nearly to the limit value, deformation rate of the 

structure increases during the structure approaches neutral equilibrium state. Afterward, the 

structures reach “snap-through” and “post-buckled” status respectively. At the end of the 

process, they are seen as an inverted form of the original shape (Figure 2.5). 
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Figure 2.5. Failure of the Metrodome’s roof arising from the weight of snow and ice [36]. 

Nonlinear buckling is a typical expression of axially asymmetric shaped deformation 

of the shell structure. Nonlinear buckling may occur earlier or further reaching nonlinear 

collapse (Figure 2.6 Points B). 

Linear buckling occurs at the bifurcation point (Figure 2.6 Point C). On this type of 

failure, deformation starts to get higher values after it reaches the critical load or bifurcation 

point. Following to this point on the load-displacement curve, a new path appears that is quite 

different from the pre-buckling path. The structure takes a new equilibrium shape. The new 

deformed shape of the shell has waves. Number and characteristic of the waves depend on the 

loading type of the shell structure. 

It needs to be determined critical load by linear (eigenvalue) analysis for the evaluation 

of linear buckling. Analytical solutions are based on linear shell theory. This approach is only 

applicable for standard structures. On the other hand, analyzing the nonlinear collapse or 

nonlinear buckling is necessary to assess the strength of the nonstandard structure against loss 

of stability [37]. 

 

Figure 2.6. Equilibrium curves for loss of stability of a shell structure [37]. 

Figure 2.6 exhibits an example of equilibrium curve for loss of stability of a conical 

shell. By depending on the displacement of the node at the center of the conical shell, the 
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equilibrium curve represents the progression of the axial load. The nonlinear collapse of the 

structure appears at point A or D, and nonlinear buckling occurs at point B.  

The first curve shows the behavior of the ideal conical shell structure and the second 

curve symbolizes a real application of a conical shell structure at Figure 2.6. The carrying 

capacity of a shell structure under operating condition may be affected by the initial 

imperfection.  

Eigenvalue or linear buckling analysis gives a critical load of an ideal linear elastic 

conical shell structure at point C. This point is relatively higher than the limit load of the ideal 

conical shell structure.  

The equilibrium curve is shown symbolically above (Figure 2.6). On the other hand, a 

numerical analysis result for the nonlinear collapse can be seen in Figure 2.7. In the analysis 

process, nonlinear collapse and nonlinear buckling of the conical shell are observed. Parameters 

of the conical shell are assigned as the shell thickness ������ = 1.6 mm , the base angle �� =

15°, the cross-section area of the circumferential ring ����� = 30 mm �, the ratio ��/������ =

372.5 for this numerical analysis. Axially symmetrical nonlinear collapse occurs at the 88. step 

consequence of increasing of the load. 

 

 

Figure 2.7. Representation of nonlinear collapse and nonlinear buckling behavior on the 

equilibrium curve. 

Beyond the nonlinear collapse at step 150, a number of waves appear on the shell 

structure, and equilibrium curve starts to follow a new path.  At that point, nonlinear buckling 

takes place.  
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3 LITERATURE REVIEW 

Stability of the thin-walled shell structures has been studied by many prominent 

authors. Results of their studies are embedded in standards, regulations, and recommendations. 

In this dissertation, two of the most important documents of them are cited. These are 

“Recommendations for Design of Steel Shell Structures ECCS” [5] and the “European Standard 

for Design Steel Structures EN 1993-1-6-2007 [6]. On the standards and recommendations, 

limit state of the shell structures is given in consequence of plasticity, fatigue, cyclic plasticity, 

and buckling. Some of the studies which are concerned in this dissertation study are outlined 

below; 

In one of the earliest research in the area, Lackman and Penzien experimentally 

investigated the buckling of conical shells under axial loading [13]. Arguing with the work of 

Seide [10], the authors were included the Poisson’s Ratio in so-called correction factor ‘C’ to 

include the effects of small deflections and no-defects. Conical shells with 20° and 40° half-

cone angles were manufactured for experiments using nickel material. Nickel was selected for 

experiments due to the high yield strength and good electroplating properties for manufacture. 

The results of the axial loading experiments were compared to proposed theory and previous 

studies in terms of critical buckling load and failure pattern. The conclusions were drawn on 

the suitability of the proposed equation, which includes a proper correction factor, to predict 

the critical buckling load of axially loaded conical shells. In addition, it was noted that the 

correction factor should be chosen according to the true radius of curvature of the base of the 

conical shell, rather than the mid-height curvature.  

As one of the pioneers in the field, Weingarten et al. studied and discussed the stability 

of cylindrical and conical shells under axial loading. Both steel and Mylar polyester sheet 

materials were used for an extensive experimental programme. Mylar specimens have the 

ability to retake their shape after buckling because the buckling happened as an elastic 

deformation which allowed to use one specimen in more than one tests. Steel specimens 

exhibited diamond shaped buckles usually, but some specimens with large radius-to-thickness 

ratio exhibited elastic buckling just as the Mylar specimens displayed (Figure 3.1). However, 

this did not allow for retesting the steel specimens more than once as it was with Mylar 

counterparts, and this was attributed to the effects of imperfections [15].  

 

Figure 3.1. Experimental buckle pattern for 30° conical shell [15]. 
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Similar to the previous researchers, experimental data indicated that the buckling 

coefficient varied with radius – thickness ratio (Figure 3.2 (top)). They found that the analytic 

theory was useful in establishing the significant parameters. However, the accuracy of the 

theoretical approach was required to be checked experimentally. The lower bound which was 

established during the study was found to be applied to cylinders and conical shells (Figure 3.2 

(bottom)). Although the theory correctly predicted the critical parameters involved, design 

carrying capacity must be found by experimental methods. Since the current theories were not 

sufficient to determine exact numerical values of the parametric coefficients. 

In a subsequent paper, Weingarten et al. investigated the elastic stability of thin-walled 

cylindrical and conical shells under combined internal pressure and axial loading. The extensive 

experimental data indicated that elastic pressurized cylinders carry a higher amount of axial 

load than unpressurized cylinders. The variation of the net load with internal pressure was 

observed to be dependent on the radius-to-thickness ratio. Experimental carrying capacity 

obtained for conical shells were in good agreement with small deformation theory predictions 

for sufficiently high pressures. The results indicated that the end support condition might be 

more critical for conical shells than it is for cylinders. The authors also specified that it was 

possible to design curves to be recommended in the low-pressure region despite insufficient 

data [16]. 

 

 

Figure 3.2. Experimental results and their comparison to the previous research data (top), and 

comparison of axial compression coefficients for conical shells with the lower bound curve 

for cylinders (bottom) [15]. 
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Singer investigated the buckling of circular conical shells under uniform axial loading 

by setting Poisson’s ratio equal to zero. Not much information could be drawn from the study 

due to the age of the resource (1965) and the way it was presented. However, as a result of the 

author’s investigation, the instability behavior of thin conical shells under axial loading, within 

the bounds of linear theory, is similar to that of cylindrical shells. The author also expressed 

that the disagreement of the predictions of linear theory with the experimental result was also 

similar. However, the linear analysis has practical value in cases of combined loading for 

orthotropic or closely stiffened shells [17].  

In mathematical analysis, Tani and Yamaki studied buckling of conical shells under 

axial loading in different boundary conditions. They used a methodology previously developed 

by the authors to solve the problem of buckling of conical shells under torsion. The problem 

was analyzed under four sets of boundary conditions, including both clamped and simply 

supported cases. Upon observing convergence problems, the authors introduced a set of 

additional parameters (� and ��). With the help of these parameters, it was observed that the 

effect of clamping was significant for short shells with � less than 10. Additionally, 

axisymmetric buckling appears for � less than 2, 3, and 10. Through detailed calculations, the 

correlations to the buckling of equivalent cylindrical shells are clarified which facilitates the 

estimation of critical load for any given conical shell [18]. 

Two different solution methods to analyze asymmetric elastic buckling of axially 

compressed conical shells available in the literature were extensively compared by Pariatmono 

and Chryssanthopoulos [19]. The authors employed the F (stress function) – W (out-of-plane 

displacement of the conical shell) approach similar to Tani and Yamaki [18], but with two 

different displacement functions were used. After explaining the approaches, which were also 

proposed by previous researchers as well as theirs, they presented the comparison data for 

simply supported conical shells in tables for both models. In terms of buckling load parameter 

values, overall, good correlations were obtained with Tani and Yamaki’s model as well as with 

Baruch’s model. The correlations were slightly worse for small half-cone angle values. 

However, they reported that there was considerable disagreement between the final modes 

obtained by either model (Figure 3.3). In the light of this information, the authors mentioned 

that the equations that Baruch developed could represent the failure modes better than Tani and 

Yamaki’s model.  

After the analysis of simply supported conical shells, the authors progressed into 

applying the same procedure to clamped support condition. In this condition, the difference in 

failure modes was not as dramatic as it was in simply supported condition. The reason was 

observed as the effect of clamping as it shifts the maximum amplitude region from the ends of 

the conical shell towards the center of it.  
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Figure 3.3. Mode composition for simply supported conical shells: Equation (8) Tani and 

Yamaki, Equation (9) Baruch [19]. 

Tavares expressed the mathematical approach to identify the stresses, strains, and 

displacements of complete or thin conical shells loaded along the meridian. Axisymmetric 

loadings were considered either distributed or concentrated. The assumptions of first-order-

approximation shell theory (Kirchoff-Love hypothesis) was applied to the described model. 

Following the assumptions, the author described in detail the lengthy governing equations and 

their solutions. It was seen that a complete conical shell with lateral load could be obtained as 

a particular case and in a second step a conical shell with load at the vertex. As a conclusion, it 

was stated that the derived expressions could be used for a conical shell with edge loads taking 

the applied load equal to the unit and using the expressions for the second interval [20]. 

Teng and Barbagallo presented the buckling strength of rings attached to cone-

cylinder intersections. From FEM parametric study, simple formulae were first developed 

which could be used to estimate the stiffness of the rotational restraint provided by adjacent 

shell walls. This formula was derived to predict the flexural-torsional buckling strength of rings 

with an elastic rotational restraint. Later, the formulae were combined with an existing closed-

form solution based on thin-walled membrane theory. Numerical results were obtained using a 

FEM analysis which was able to model cross-section distortion. Comparisons between the two 

approaches showed that when the restraint stiffness is small, they agree with each other firmly. 

The approximation of the stiffness of the shell wall rotational restraint was suggested to be used 

for design purposes [21].  
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Chryssanthopoulos and Spagnoli studied the influence of edge constraint on the 

stability in nonlinear behavior. They used FEM analysis for stiffened conical shell under 

compressive load. In this study, the authors focused on various alternatives in specifying edge 

conditions. Also, the sensitivity of the response to the radial edge constraint was examined. 

They showed that both initial stiffness and the limit load could be severely reduced if radial 

edge displacements were not constrained. In this case, linear eigenvalue results could be 

misleading. Analogies were drawn between the conical shell and the more commonly 

encountered cylindrical shell. Also, the implications of these results for experimental studies 

and development of design formulations were discussed by authors [22].  

Chryssanthopoulosa et al. studied the design of stiffened conical shells against 

buckling using numerical models validated by experiments of regular conical shells [24]. They 

stated that the stiffened conical shell structures were needed to be treated differently than 

cylindrical structures. Therefore, the authors presented a design-based approach using FEM 

models. Firstly, tests were carried out with five unstiffened, and three stringer-stiffened conical 

shells and the results of load, strain, and displacement were used for the validation of the FEM 

model as seen in (Figure 3.4). The comparison results were found satisfactory. Failure of 

unstiffened conical shells emerged as an axisymmetric bulge near the small-radius end, whereas 

stringer-stiffened conical shells displayed local panel buckling failure which is non-

axisymmetric. In addition, the authors examined the imperfection sensitivity of stringer-

stiffened conical shells and found out that for practical stiffening ratios. The imperfection 

sensitivity of stringer-stiffened conical shells appears to be appreciably lower than that of their 

unstiffened counterparts. 

 

Figure 3.4. Validation of FEM model with the experiments. (a) unstiffened conical shell, (b) 

stringer-stiffened conical shell [24]. 

Spagnoli and Chryssanthopoulos investigated the effect of the different shell and 

stiffening parameters of conical shells under the axial loading. The authors studied the linear 

and nonlinear elastic carrying capacity response of the conical shell by means of an appropriate 

FEM model. They determined the critical load on the basis of linear analysis and also showed 
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the imperfection sensitivity through nonlinear analysis of imperfect conical shells. Different 

aspects of the behavior were quantified through suitably defined curvature parameters [25].  

Chryssanthopoulos and Poggi examined experimentally strength of unstiffened 

conical shells under axial loading. The paper presented the results during a test program 

involving unstiffened steel conical shell in compression. Thinner material (0.7 – 0.9 mm) was 

used to exploit the geometrical effects. The majority of the tests showed that the regular 

axisymmetric buckle was confined close to the small-radius end. A plastic mechanism 

approach, including second-order effects, was described and shown to be a simple and useful 

tool for predicting the collapse load. In addition, the approach showed the end-shortening as 

well. The derivation of the theoretical expression pertaining mechanism was summarized, and 

some aspects regarding the solution procedures were presented by authors. The comparison of 

the plastic mechanism approach with the experimental programme was found significant 

(Figure 3.5) [26]. Finally, the authors remarked that an imperfection effect/constant assumption 

should be made while using the plastic mechanism approach in the absence of experimental 

validation data. 

 

Figure 3.5. Comparison between experimental curves and mechanism approach [26]. 

Yu et al. researched flat-topped conical shells under the axial load through 

experimental and theoretical approach. Both elastic model and plastic model were proposed to 

describe the collapse process and to predict the load-displacement characteristics. Analytical 

expressions describing the load-displacement and energy-displacement relationships during the 

large displacement process were derived. Both elastic and plastic deformation models were 

proposed and formulated to describe the deformation process of the cell, and to predict the load-

displacement and energy dissipation characteristics. A good agreement was shown between the 

theoretical predictions and experimental results by authors [27].  

Thinvongpituk and El-Sobky examined the buckling behavior of aluminum conical 

shell under axial loading using the experiment and numerical model. The experiments were 

carried out with a number of specimens under quasi-static load in three different end conditions, 

i.e., simple support, top constraint, and base constraint. FEM models (Figure 3.6) were 

generated via ABAQUS software for every mode of deformation. It was revealed that the 

carrying capacity of the conical shell was reducing exponentially, while the mean radius to 

thickness ratio is increasing. Analysis results showed that the buckling mode is influenced by 
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the geometric parameter (Rm/t – mean radius to thickness ratio) and end condition. The end 

constraint was found to have a significant effect on the carrying capacity of the conical shell, 

such as the conical shells having a constraint at the top edge yield higher load. The result from 

FEM was compared to the experimental result, and good agreement was achieved [28].  

 

Figure 3.6. Model and definition of the axisymmetric buckling modes of constant [28]. 

Gupta and co-workers investigated the buckling behavior of aluminum conical shell 

and analyzed the behavior of rolling and stationary plastic hinges during deformation [29]. The 

authors used aluminum conical shells with varying top and bottom edge dimensions while 

keeping either of the top or bottom edge dimension as constant (Figure 3.7), resulting in 40 

different specimens. These specimens were under quasi-static axial loading in order to analyze 

the energy absorption properties. Load-displacement curves were observed during testing from 

which the absorbed energy values were obtained. The authors supported their study with 

numerical modeling using ANSYS FEM software while taking into account the influence of 

rolling and stationary plastic hinges in the buckling pattern. During the axial loading, the tests 

were stopped periodically to measure the rolling plastic hinge radii.  

It was observed from the experiments that the deformation of conical shells was 

governed by Dm/t and Hc/t values. The deformation resulted in a first rolling plastic hinge 

followed by the diamond pattern for thicker shells, and integral lobes for thinner shells. The 

numerical study included the nonlinearities and therefore provided consistent deformation 

shape results. However, the force and energy absorption values between static experiments and 

numerical analysis were unacceptable. Furthermore, the study was very detailed, but it lacked 
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critical analysis. Lastly, a previously developed analytical model by the authors [23] was tested 

within the study, and considerable improvement was achieved due to the equation for the radius 

of rolling plastic hinge obtained experimentally. 

 

Figure 3.7. Geometrical details of conical aluminum specimens (top left), specimens before 

tests (bottom left), and various failure modes (right) [29]. 

Blachut et al. investigated the static stability of steel conical shells under axial loading, 

hydrostatic pressure, and the combination of these two [30]. For the experimental programme, 

five conical shells of 14° half-cone angle were used: two for axial loading, two for lateral 

pressure, and one for hydrostatic pressure. Of these specimens, the ones were under axial 

loading and were failed by collapse through excessive plastic straining at the top end (Figure 

3.8). Other conical shells which were under combined and lateral pressure were failed by 

buckling as they displayed seven dimples around the hoop direction, i.e., seven circumferential 

waves of the eigenmode. After the experiments, several numeric models were adopted for 

identifying the buckling parameters and eigenmodes as well. The authors found out that stress-

strain model with linear segments gave better results compared to the elastic-perfectly plastic 

material model in terms of buckling load prediction. However, for buckling pressure, the 

reverse was the case, and elastic-perfectly plastic model provided a better prediction for the 

conical shells under lateral pressure and combined loading. The authors stated that the 

predictions were satisfactory overall but advised that further investigation is required before 

definitive conclusions could be made.       
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Figure 3.8. Tested conical shells after axial loading [30]. 

Shakouri and Kouchakzadeh investigated the buckling response of two connected 

conical shells (Figure 3.9) under axial loading in simply supported boundary condition [31].  

Initiating the analysis with the governing equations for joined conical shells based on thin-

walled shell theory and theorem of minimum potential energy, the results of the numerical study 

was compared to four available literary information (Figure 3.9). The comparison showed good 

agreement of critical buckling load values, but slight differences were observed for 

circumferential wave number.  

 

Figure 3.9. The geometry of joined conical shells (left), comparison of results (dots) with 

another available study (lines) [31]. 

The results of their work revealed that the minimum buckling load of each separate 

shell could be used as the buckling load of joined shells for the long conical shell (L/R1 > 0.3). 

Other important outcomes of their research were; increasing the buckling load of joined shells 

when the conical shells move towards cylindrical shell. Using two joined conical shells is 

lightweight in the sense that it can resist higher axial loads compared to solo conical shells. 
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3.1 Scope of the Study 

Design criteria of the standard shell structures are provided with some analytical 

approximations within the context of standards and regulations. Whereas, designing of the 

nonstandard structures requires to perform numerical analysis or experiment. Geometric 

stiffness may decrease in nonstandard structures with the deformation which arises because of 

the loading. Therefore, it should not be forgotten that nonlinearity has a considerable influence 

on the load carrying capacity of the thin-walled shell structures. Linear calculations may give 

quite higher results than actual load carrying capacity for non-standard structures. 

As mentioned before, the conical shells with a base angle less than 25° behave highly 

nonlinear. Unfortunately, the limit load of these type of nonstandard structures is not 

determined in the literature, adequately. In addition to this, the standards and recommendations 

are not bright enough for conical shells with the low base angle which have flexible radial 

stiffness at the lower edge. Therefore, the standard methods are not applicable for the selected 

base angle and assigned boundary conditions in the study.  

Additionally, effects of the circumferential ring on the load carrying capacity of a 

conical shell have a significant role depending on the radial stiffness of the ring. It is quite 

indispensable to determine the contribution of the ring on load carrying capacity. It is a robust 

process to optimize a structure by understanding the individual influence of each design criteria. 

The main goal of this study is to propose a new method to estimate load carrying 

capacity of the conical shell structure with a base angle less than 25° for different radial 

stiffnesses under axial loading. The influence of the initial geometrical imperfection is included 

in the proposed method. A new reduction coefficient that simulates the effect of the initial 

imperfection on the load carrying capacity is suggested different from the standard and 

recommendations [5,6]. Thus, the load carrying capacity of the conical shells, which stay in the 

mentioned nonlinear area, can be estimated using the new proposed method without any need 

of numerical analysis. 

The study also aims to derive two dimensionless similarity parameters. These 

parameters allow evaluation load carrying capacity of the conical shell for numerous 

configuration of geometrical dimensions in a wide range. Derivation of nondimensional 

similarity parameters makes possible to simulate real applications with a simple model. This 

study also aims to clarify the effect of radial stiffness of circumferential ring on the load 

carrying capacity under axial loading. For this reason, the study includes some topics as follows, 

 Determination of the load carrying capacity of the conical shells which have a base angle 

of less than 25°. 

 Investigation of the influence of the radial stiffness on the limit load.  

 Evaluation of the effect of the initial geometrical imperfection on the load carrying 

capacity. 

 Derivation of the dimensionless similarity parameters to evaluate limit load in a wide range 

of the conical shell geometries. 
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 Suggestion of a new methodology to estimate load carrying capacity for conical shells with 

a base angle less than 25°. 
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4 PROBLEM DESCRIPTION 

4.1 Analytical Study 

An analytical solution is a procedure for determining the load carrying capacity of the 

thin-walled conical shell structures which is described in the standards and recommendations. 

This method is based on the linear shell theory, and it is derived from the critical load under 

axial loading of the cylinder. Amount of this value is adjusted by counting in some coefficients 

for simulation of the real applications. These coefficients can be originated from the effect of 

boundary conditions, geometry, material model, initial imperfection, etc. In order to adapt the 

analytical approach to the conical shells for evaluating the critical load, the existing regulations 

are modified by finding out compatible correlation factors. “Principles of Structural Stability 

Theory” is taken as a reference for the derivation of the critical load [40].  

The assumptions are given below should be carried out by deriving the shell equations; 

 The thickness of the shell is smaller than the other dimensions of the shell; that is, the shell 

is thin. 

 Lateral displacements are lower than the thickness of the shell. 

 The material of the shell is homogenous, isotropic and has linear elastic material properties. 

 Lines which are normal to the middle surface before bending stay also straight and normal 

during bending. 

 The shell does not have any imperfection at any cross-section. 

A thin-walled circular cylindrical shell with length �, wall thickness �, and undeformed 

middle surface radius � is considered, as shown in Figure 4.1. The coordinate system �, �, and 

� describing any point on the middle surface together with all the displacement components �, 

�, and �  are illustrated in Figure 4.1. The forces and moment intensities act on a shell element 

having in-plane forces, transverse shears, bending moments and twisting moments [40]. 

  

Figure 4.1. Circular cylindrical shell and cylindrical shell element [38]. 
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The in-plane forces’ components in � and � directions are equal to their own forces, 

because the transverse shear forces can be neglected in these directions. Hence, it can be written 

as follows, 

���
��

+
����
��

= 0 Eq. 4.1 

���
��

+
����
��

= 0 Eq. 4.2 

The curvature of the element should be considered to determine the equation of 

equilibrium in the z-direction. As a consequence of the initial curvature of the shell, the �� 

forces (Figure 4.2) include a component in the z direction. It is equal to Eq. 4.3. 

 

Figure 4.2. The radial component of in-plane forces due to initial curvature. 

�� �
1

�
����� Eq. 4.3 

However, the other in-plane forces do not have a component in the z-direction due to 

the initial curvature. However, all the in-plane forces have z components as a result of the 

curvature which is caused by bending. These components due to the bending are added to Eq. 

4.3, and the in-plane forces in the z-direction is obtained as Eq. 4.4 using slightly deformed 

shell element (Figure 4.3b). 
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(a) (b) 

Figure 4.3. (a) Bending and twisting moments, (b) In-plane and shear forces in a slightly 

deformed shell element [40]. 

���
���

���
+ 2���

���

����
+ �� �

���

���
+
1

�
������ Eq. 4.4 

Transverse shear forces must be added to the z components of the in-plane forces. 

They are given by Eq. 4.5.  

�
���
��

+
���
��

����� Eq. 4.5 

The shear forces in Eq. 4.5 is calculated as seen in Eq. 4.6 and Eq. 4.7 corresponding 

to the equation of moment equilibrium for � and � axes in Figure 4.3a. 

���
��

=
����

���
−
�����

����
 Eq. 4.6 

���
��

=
����

���
−
�����

����
 Eq. 4.7 

Eq. 4.5 can be written as Eq. 4.8 using Eq. 4.6 and Eq. 4.7. 

�
����

���
− 2

�����

����
+
����

���
����� Eq. 4.8 

The equation of equilibrium in the z-direction can be achieved if Eq. 4.4 and Eq. 4.8 

are associated. 
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����

���
− 2

�����

����
+
����

���
+ ��

���

���
+ 2���

���

����
+ �� �

���

���
+
1

�
� = 0 Eq. 4.9 

The equations below (Eq. 4.10, Eq. 4.11 and Eq. 4.12) give the relationships of 

bending moments and curvatures in the shell. � is the flexural rigidity. 

�� = −� �
���

���
+ �

���

���
� Eq. 4.10 

�� = −� �
���

���
− �

���

���
� Eq. 4.11 

��� = �(1 − �)
���

����
 Eq. 4.12 

The strain of a shell in � direction can be expressed as Eq. 4.13, if deformation of the 

shell is relatively small.  

�� =
��

��
 Eq. 4.13 

The strain which is caused by the transverse bending must be supplemented to obtain 

the strain in the � direction for the shell ��. Because of the radial displacement � , element ��  

is displaced to ��̅� (Figure 4.4) and the resulting strain is seen in Eq. 4.14.  

 

Figure 4.4. Tangential strain due to radial displacement. 

� = −
�� − ��̅�

��
= −

��� − (� − � )��

���
= −

�

�
 Eq. 4.14 

Therefore, the total strain in the � direction is obtained as in Eq. 4.15. Besides, the 

shear strain ��� is shown in Eq. 4.16. 

�� =
��

��
−
�

�
 Eq. 4.15 
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��� =
��

��
+
��

��
 Eq. 4.16 

The middle surface shell forces can be stated in terms of the two-dimensional stress-

strain relations as follows, 

�� = ��� =
��

1 − ��
(�� + ���) Eq. 4.17 

�� = ��� =
��

1 − ��
(�� + ���) Eq. 4.18 

��� = ���� =
��

2(1 + ��)
��� Eq. 4.19 

Substitution of Eq. 4.13, Eq. 4.15, and Eq. 4.16 into these relations, the shell forces can be 

rewritten as, 

�� =
��

1 − ��
�
��

��
+ �

��

��
− �

�

�
� Eq. 4.20 

�� =
��

1 − ��
�
��

��
−
�

�
+ �

��

��
� Eq. 4.21 

��� =
��(1 − �)

2(1 − ��)
�
��

��
+
��

��
� Eq. 4.22 

The middle surface forces, which are defined above, appear as a result of buckling 

(secondary forces), and these are not the total middle surface forces. The terms of the forces, 

which are caused by the applied load until buckling (primary forces), should also be considered. 

To separate these forces, displacements in the middle surface are assumed to occur only due to 

buckling and the primary forces are added to the expressions. If the primary forces are stated 

as below, 

�� = �� Eq. 4.23 

�� = �� Eq. 4.24 

��� = ��� Eq. 4.25 

Total middle surface forces become as seen in Eq. 4.26, Eq. 4.27, and Eq. 4.28. 

�� =
��

1 − ��
�
��

��
+ �

��

��
− �

�

�
�+ �� Eq. 4.26 
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�� =
��

1 − ��
�
��

��
−
�

�
+ �

��

��
�+ �� Eq. 4.27 

��� =
��(1 − �)

2(1 − ��)
�
��

��
+
��

��
�+ ��� Eq. 4.28 

The equilibrium equations are defined concerning displacements. Substitution of the 

appropriate derivatives of  Eq. 4.10 through Eq. 4.12 and Eq. 4.26 through Eq. 4.28 into Eq. 

4.1, Eq. 4.2, Eq. 4.9gives, 

���

���
+
1 − �

2

���

���
+
1 + �

2

���

����
−
�

�

��

��
= 0 Eq. 4.29 

���

���
+
1 − �

2

���

���
+
1 + �

2

���

����
−
1

�

��

��
= 0 Eq. 4.30 

−� �
���

���
+ 2

���

������
+
���

���
� + ��

���

���
+ ��

���

���
+
��
�

+
1

�

��

1 − ��
�
��

��
−
�

�
+ �

��

��
�+ 2���

���

����
= 0 

Eq. 4.31 

To get the critical load of a cylindrical shell a set of three equations in three unknowns, 

which is constituted by Eq. 4.29 together with Eq. 4.30 and Eq. 4.31, is used. However, Donnel 

[11] has transformed this set of equations into a single one in terms of �  in Eq. 4.32. It is called 

as the Donnell equation. ∇� is the Laplace operator and it is equal to ∇�=
��

���
+

��

���
. 

�∇�� − ∇� ���
���

���
+ ��

���

���
+ 2���

���

����
� +

��

��
���

���
= 0 Eq. 4.32 

To calculate the critical load of a cylindrical shell under axial loading, the terms ��� 

and �� are assumed as zero. If the cylinder is operating against torsion, ��� is equal to the 

applied shear force. �� is equal to the hoop force caused by pressure, if it is under external 

pressure.  

If a cylinder has clamped ends, length �, and radius �, its critical load can be determined 

via Donnell equation which is outlined for axial loading by Batdorf [12], Eq. 4.32. For classical 

solution under axial loading Eq. 4.32 is reduced as Eq. 4.33. 

�∇�� +
��

��
���

���
+ ���∇

�
���

���
= 0 Eq. 4.33 

The boundary conditions are as below, 
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� =
���

���
= 0         ��     � = 0,� Eq. 4.34 

The radial displacement can be expressed as Eq. 4.35, 

� = �����
���

�
���

���

��
 Eq. 4.35 

� refers to the number of half waves in the longitudinal direction and � refers to the number of 

half waves in the circumferential direction.  

� =
��

��
 Eq. 4.36 

Eq. 4.35 can be rewritten as Eq. 4.37 using Eq. 4.36 for simplification. 

� = �����
���

�
���

���

�
 Eq. 4.37 

Substitution of Eq. 4.37 into Eq. 4.33. gives, 

� �
�

�
�
�

(�� + ��)� +
��

��
�� �

�

�
�
�

− ��� �
�

�
�
�

��(�� + ��)� = 0 Eq. 4.38 

By dividing Eq. 4.38 to �(� �⁄ )� and introducing two new parameters (� and ��), it can be 

written, 

(�� + ��)� +
12����

��
− ���

�(�� + ��)� = 0 Eq. 4.39 

where, 

� =
��

��
(1 − ��)�/� Eq. 4.40 

�� =
����

�

���
 Eq. 4.41 

As a nondimensional parameter, � is a shape factor which indicates the ratio of length 

to the radius. It is useful to classify as short or long cylinders. �� is a buckling stress coefficient. 

Solving Eq. 4.39, �� is obtained, 

�� =
(�� + ��)�

��
+

12����

��(�� + ��)�
 Eq. 4.42 

If the Eq. 4.42 is differentiated regarding (�� + ��)�/�� and the result is set equal 

to zero, �� has a minimum value when, 
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(�� + ��)�

��
= �

12��

��
�

�/�

 Eq. 4.43 

Substitution of Eq. 4.43 into Eq. 4.42 gives, 

�� =
4√3

��
� Eq. 4.44 

From Eq. 4.44, the critical stress is obtained, 

�� =
��

��3(1 − ��)
 Eq. 4.45 

In order to adopt this formulation to conical shells, equivalent cylinder approach has 

been introduced. In this model, the equivalent radius is substituted into the Eq. 4.45,  and the 

critical stress of a conical shell under axial loading is calculated with the Eq. 4.46.  

This equivalent cylinder approach grounds on the physical similarities of the 

bifurcation behavior and the imperfection sensitivity of cylindrical and conical shells. Both 

cylindrical shell and conical shell surfaces can be transformed a plane, in other words, they 

have developable surface [5]. Therefore, this approach can be used for conical shells. 

��,���� =
��

��� 3(1 − ��)
 Eq. 4.46 

�� is the equivalent radius of cylinder which is calculated by recommendation. It is 

stated in “Buckling of steel shells European design recommendations”.  

�� =
��

�����
 Eq. 4.47 

where �� is half-cone angle of conical shell in [Rad], 

�� =
�

2
− �� 

 

First, Seide [14] derived an expression based on Donnell type shell theory for the 

critical load for an axisymmetric mode in a conical shell under axial loading. Seide’s formula 

may be written as follows [42 and 43], 

��,��� =
2����������

�3(1 − ��)
= �������

��� Eq. 4.48 

Thus, the critical load of a conical shell is equal to cylinder’s critical load which is 

multiplied by the square of the cosine of the half cone angle. However, this analytical model is 



PROBLEM DESCRIPTION

 

 

LOSS OF STABILITY OF THIN WALLED CONICAL SHELLS WITH CIRCUMFERENTIAL RING LOADED BY AXIAL FORCE 44 

 

not adequate to estimate the limit load for nonstandard structures due to the tremendous 

assumptions.  

In the conical shells with the small base angle, the maximum meridional bending 

moment is displaced from the edge to the center of the structure under axial loading. The conical 

shell becomes a circular plate with the maximum bending moment in the center if ��→ 0°. 

Furthermore, it is obviously seen that it is not possible to use standard methods for calculating 

the load carrying capacity from Eq. 4.47 and Figure 4.5. The equivalent radius of the cylinder 

is dependent on 1/sin�� . It is calculated relatively high and approaches to the infinity value 

in this case. For these reasons, the critical stress is significantly distorted (Eq. 4.46). 

Under axial loading, the edge of the conical shell is in the tendency to shift in a radial 

direction (perpendicular to the axis of rotation). In the course of loading, the meridional force 

�� occurs in the wall (see Figure 4.7). Its magnitude increases as the base angle decreases, 

proportionally 1/sin�� . Theoretically, the force �� approaches infinity value for ��→ 0°. 

When the radial component of this force �� acts, a shifting on the shell edge in the radial 

direction may appear. It causes a decrement in the base angle �� and causes a significant 

increment in the meridional force. Gradually, this process may result in a snap-through at the 

structure. For this reason, conical shells which have small base angle behave nonlinearly. The 

forces acting in the conical shell wall are shown in Figure 4.7.  

The standard method is based on the cylinder approach and this method stipulates that 

the ends of the structure must be restrained against displacements in the radial direction. 

Therefore, the standard method is applicable to the conical shell which has clamped end or 

reinforced end with a very stiff circumferential ring. Besides, the conical shell must have a base 

angle higher than 25°. 

The conical shells with �� > 65° prone to loss of stability in the form of nonlinear 

collapse. This is not covered by equivalent cylinder approach as outlined above [5]. In this study 

conical shells which have base angle less than 25° (in other words 65°< ��) with flexible 

circumferential ring, are investigated. Hence, the analytical approach is inadaptable for 

determining the load carrying capacity of our model (Figure 4.5).  

4.2 Definition of the Model 

Upper radius �� and bottom radius �� are defined 50 and 250 mm  relatively for the 

simulations. The base angle is appointed as 10°≤∝�≤ 20°. According to these values, the 

equivalent radius of the conical shell is set between 730 and 1440 mm . The width of the 

circumferential ring ����� is chosen as a constant value which is 15 mm. Applying the load 

directly on the upper edge of the conical shell may cause convergence error in the numerical 

study. Stress gradients may occur on this line with the high amount of stress values. Therefore, 

a very stiff pipe is used on the upper edge to apply load. The load is distributed uniformly to 

the body of the structure by means of this stiff pipe (auxiliary surface). On the other hand, the 

conical shell, which is used as a connection component, is investigated in the study. In the 

present case, the stiff pipe also characterizes an adjacent part to simulate real condition more 
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precisely. The height of the relatively stiff pipe ℎ is assigned as 10 mm . Cross section area of 

the circumferential ring is evaluated between 6 ≤ ����� ≤ 300 mm �.  

 

Figure 4.5. Front and top view of the conical shell (a) Front view, (b) Top view. 

The thickness of the shell ������ is set 0.5 ≤ ������ ≤ 4 �� interval. ��/������  

dimensionless parameter is assigned depending on the equivalent radius and the thickness of 

the shell between 240 ≤ ��/������ ≤ 2880. Additionally, the model is performed without ring 

(no radial stiffness) and with infinite stiff ring (fixed supported) in order to find ring effect on 

the limit load. 

 
(a) 

 

(b) 

Figure 4.6. Influence of upper radius r1 for base angle 15°. (a) r2=250mm, tshell =1.5mm, (b) 

r2=650mm, tshell=1.5mm. 
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Upper radius r1 has a relatively small effect on the load carrying capacity of the conical 

shell structure under axial loading. It influences the capacity especially in the ��/�� ratio is near 

to 1. Effective range of the r1 take place a narrow area and it is seen in the Figure 4.6 for two 

different structures, for instance. One of the main aim of the study is to derivate nondimensional 

parameter for similarity. To achieve this goal, it is needed to be a simplification. Otherwise, the 

behavior characteristic of the structure under axial load can solely be expressed as a partial 

function and it makes the problem complicated. For this reason, the ��/�� ratio excluding 

between 0.1 and 0.8 is neglected and it is assumed that the upper radius does not affect the limit 

load. Thus, the problem is simplified with a constant upper radius value (r1=50 mm). On the 

other hand, the value of �� is selected 250 mm, initially. But, it is used in similarity parameters 

as a variable that can be seen in further chapters of the study. Equivalent radius of the conical 

shell is considered in the dissertation study as Eq. 4.47 [5]. 

4.3 Derivation of the Rigidity Parameter Г 

The rigidity parameter of the circumferential ring is derived to see apparently the 

influence of the circumferential ring on the load carrying capacity of the structure. Γ depends 

on the bottom edge radius of the conical shell ��, the thickness of the shell ������ and the cross-

section area of the ring  �����. The study “Stabilitní Prolomení Kuželových Skořepin S Malým 

Vzepětím”, D. Středová [7] is taken as a reference for derivation of the Γ. 

The radial stiffness of the ring 

The rigidity parameter, which is required to be derived for the conical shells in this 

study, should be a sign to the radial stiffness of the lower end. The conical shells which have 

the identical Γ parameter also should have the same radial stiffness value. 

 

Figure 4.7. Conical shell with a circumferential ring under axial load. 

However, the conical shells must be characterized with the same ��/� parameter and 

the base angle ∝�. Elongation of the perimeter of the ring is implied; 

� =
2�(�� + ∆��)− 2���

2���
=
∆��
��

 Eq. 4.49 
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Figure 4.8. Changing the inner radius of the circumferential ring [7]. 

Radial force acting on the ring is expressed as, 

�� =
����

��� ∝�
 Eq. 4.50 

An infinite small element of the ring is exhibited in Figure 4.9. 

 

Figure 4.9. Equilibrium state of the forces on the element of the circumferential ring [7]. 

��� equalizes vector sum of the two inner circumferential forces �� in equilibrium. It can write 

as follows, 

��� = ����  Eq. 4.51 

and   

��� =
����

��� ∝�

��

2�
 Eq. 4.52 

Value of the internal forces �� is obtained by utilizing expressions Eq. 4.51 and Eq. 4.52, 

�� =
����

2���� ∝�
 Eq. 4.53 

This force causes tensile stress at the inner ring,  

�� =
��

����������
=

��
�����

=
����

�����2���� ∝�
 Eq. 4.54 

The strain of the ring is expressed if Eq. 4.54 substitutes into Eq. 4.49, 
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� =
2�(�� + ∆�)− 2���

2���
=
∆�

��
=
��
�
=

����
2���������� ∝�

= �������� Eq. 4.55 

If the rings have the identical strain values, they have the same effect on the load carrying 

capacity. Therefore, 

�� = �� = �� = �������� 

and  

����������� =
����

2����������
 

normalized (nondimensional) axial load previously derived in the literature [44 and 45] is 

substituted for ����, and Eq. 4.55 becomes, 

2�����.���,�������,��

2������,����� ∝�
=
2�����.���,� ������,��

2������,����� ∝�
=
2�����.���,�������,��

2������,����� ∝�

= �������� 

Eq. 4.56 

It is expected to obtain same load carrying capacity for the conical shells having the 

identical base angle, modulus of elasticity, and rigidity parameter. Therefore, Eq. 4.56 can 

simplify as seen in Eq. 4.57. 

��,�������,�
��,�

=
��,� ������,�

��,�
=
��,�������,�

��,�
= ��������= Γ Eq. 4.57 

Dimensionless Γ parameter depends on the radius of the lower edge of the conical 

shell, the thickness of the shell and the cross-sectional area of the ring. This parameter expresses 

the influence of the circumferential ring on load carrying capacity of the conical shells 

corresponding to the same base angle ∝�. 

Γ =
��������
�����

 Eq. 4.58 

4.4 Numerical Study 

Numerical models and simulations are performed using FEM program COSMOS/M 

[9]. For the numerical analysis, large displacement module and Quadrilateral thick Shell 

element (SHELL4T) are assigned [41]. The nodal input pattern of the SHELL4T element is 

illustrated in Figure 4.11. Models are generated for three base angles �� (10°, 15°, and 20°). 

Basic sketch of the structure is illustrated in Figure 4.5 with dimension parameters.  

Considering complexity and size of the described problem, using the only 

experimental method in order to examine the stability of the thin wall structure is very 

expensive and has various difficulties. Performing numerical analysis gives an opportunity for 

the investigation of the conical shell structures in a wide range of geometric parameters without 

consuming cost and time.  
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In this study, geometrically nonlinear analysis (GNA) is performed, and the elastic 

limit load is carried out. At the first step of the study, the two limit conditions, which are fixed 

and simple supported conical shells, are evaluated (Figure 4.10). It is important to see the 

extremities of the load carrying capacity. 

  

Figure 4.10. Schematic representation and numeric model of extremities. 

In further studies, the limit load of the conical shell for various radial stiffnesses, which 

is represented by a circumferential ring, is investigated. The influence of the radial stiffness on 

the load carrying capacity is one of the central parts of this study. Schematic representation of 

the conical shell with the dimensions is illustrated in Figure 4.15 for this case. Models are 

axially loaded with 320 N  at the initiation of the analysis. Because the upper edge is divided 

into 320 nodes and the load is assigned as 1 N for each node to make post-processing easy. The 

arc-length algorithm controls the loading increment step by step during the solution process.  

 

Figure 4.11. The nodal input pattern for a SHELL4T element [41]. 

4.4.1 Mesh Study 

 A number of analyses are performed to evaluate dependency of the results to mesh 

structure. Thus, a conical shell which has current dimensions (Table 4.1) is modeled with 

different element sizes. 



PROBLEM DESCRIPTION

 

 

LOSS OF STABILITY OF THIN WALLED CONICAL SHELLS WITH CIRCUMFERENTIAL RING LOADED BY AXIAL FORCE 50 

 

Table 4.1. Geometric dimensions and number of elements of the models. 

Notation 
∝� 

[°] 

��  

[�� ]

��   

[�� ]

������  

[�� ]

�����  

[�� ]

�����  

[�� ] 
� 

Number of 

element 

����  

[�� ] 

�  

[�� ] 

M_1 

15 50 250 0.5 15 0.4 20.8 

11002 6.778 3.72 

M_2 20720 7.131 4.81 

M_3 33308 7.101 4.18 

M_4 49020 7.087 4.21 

The load carrying capacity and the displacements in the vertical direction at the limit 

point can be seen in Figure 4.12 and Table 4.1. Displacement values are taken from same data 

point at which the top of the conical shell for all analysis.  

 

Figure 4.12. The results of the mesh study. 

The results do not change over 1% between the models created with 2.6 mm (M_3) 

and 2.1 mm (M_4) element sizes. Therefore, the element size is chosen 2.6 mm for the 

numerical study considering computer supplement and time-consuming. 

4.4.2 Boundary Condition 

In this study, the conical shells which are used as a connection component for the 

structure are investigated. Simple cone–cylinder connections are the most common form of 

connections. They are found in steel silos and tanks with a conical roof, elevated conical water 

tanks with cylindrical shell support, large tubular members, pipes with a conical transition 

between two cylinders of different diameters and pressure vessels with a conical end closure.  

When the structure has a structural weakness (e.g. connection), a ring is often provided 

to strengthen it. This ring may be in the form of an annular plate, a T-section or an angle section. 
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It should be pointed out that if a ring is provided, the radial stiffness of this ring often dominates 

the load carrying capacity of the structure under axial loading. In this study, the effect of the 

circumferential ring on load carrying capacity is also investigated as a consequence of the 

importance of the connection. Therefore, typical practical usage of a conical shell structure 

which have a circumferential ring with a cylindrical shell is modeled (Figure 4.13).  

 

 

Figure 4.13. Full scaled numerical model. 

Assignment of the boundary conditions is a critical step in the numerical study. 

Concerning the solution time and mesh structure, the full scaled numerical model is simplified 

in the numeric analysis (Figure 4.14). This simplification provides decreasing the solution time 

and getting better mesh structure quality with lower computational system requirement. 

 

Figure 4.14. Simplified numerical model. 
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Figure 4.15. Schematic representation of the conical shell with the circumferential ring. 

For this purpose, a simplified numerical model is performed for base angle 15°(Figure 

4.14). This step is vital to ensure whether the simplified model is simulated the full scaled one 

accurately or not.  

Table 4.2. Geometric parameters and the limit load of the numerical models. 

Notation ��/������ � 

C_1 1931.8 49.7 

C_2 965.9 39.7 

C_3 603.7 31.8 

C_4 321.9 14.9 

 

 ����[�] 

 C_1 C_2 C_3 C_4 

Simplified. Model 7431.84 28498.88 72620.8 272617.6 

Full Scaled Model 7494.72 29658.56 74268.8 272595.2 

The results show that the simplified models can simulate the full scaled model for 

various dimensionless parameters (��/������ and Γ. see Table 4.2). Four different models are 

generated, and they are illustrated with “C_” notation.  

Limit loads of the conical shell structures are substantially same for different 

parameters. Thus, the simplified model is used instead of a full scaled model in the study 

hereinafter. This numerical model can be seen in Figure 4.14. The schematic representation of 

the conical shell with geometric parameters and boundary conditions are illustrated in Figure 

4.15. 

4.4.3 Г Parameter Validation 

The rigidity parameter, Γ assumes identical relative extension of the circumferential 

ring if the conical shells have the same base angle of �� and dimensionless ��/������ parameter. 
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Proposed function of the Γ is tested via numerical analysis for five different the conical shell 

geometries in this chapter (Table 4.3).  

According to results, a similarity between load carrying capacities of the conical shells 

regarding geometrical parameters is tried to derive. Since distributed line load is applied to the 

structures, it is hard to express similarity in terms of limit load for different conical shell 

geometries. To achieve this purpose, the load is normalized by a constitutive relation with 

respect to the cross-section area of the lower edge. Therefore, normalized axial load (Eq. 4.59) 

is adapted to the results as exhibited in the literature before [44 and 45]. This definition also 

used for derivation of the rigidity parameter of the circumferential ring (see section 4.3). It is a 

function of limit load and geometrical parameters of the structure; besides, it represents the 

limit load in nondimensional form. The limit load of the structure can be calculated easily from 

this nondimensional form.  In the other words, if the structures have the same rigidity parameter 

of the ring Γ, the ratio of ��/������ and, base angle ��, they should have a same normalized load.  

����������� =
����

2����������
 Eq. 4.59 

Table 4.3. Dimensions of the compared conical shells. 

Notation 
∝� 

[°] 

��  

[�� ] 

��   

[�� ] 

������  

[�� ] 
��/������  

����� 

[�� ]

�����  

[�� ] 

�����  

 [� � �] 
� =

��������
�����

 

A 15 50 250 1.5 643.9 15 6.0 90 4.167 

B 15 50 400 2.4 643.9 40 5.76 230.4 4.167 

C 15 50 500 3.0 643.9 50 7.2 360 4.167 

D 15 50 700 4.2 643.9 75 9.4 705 4.167 

E 15 50 1000 6.0 643.9 50 28.8 1440 4.167 

 The numerical results for five configurations are given in Table 4.4. Normalized axial 

loads of the conical shell structures are almost identical. The results show that the rigidity 

parameter works within this relation. The values of the load carrying capacity vary maximally 

around %3.  
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Table 4.4. Results of the numerical analyses. 

Notation  
�����������*��� [-] 

(Nondimensional) 

A 142.1 

B 145.8 

C 146.4 

D 145.6 

E 144.9 

Diverse types of circumferential ring (square, cylinder, T profile, etc.) implementation 

is seen in practical applications. Circumferential rings which have different shapes, but equal 

cross-sectional areas have only different moment of inertia values.  

According to the results of the analysis (for full-scale model), it is observed that the 

circumferential ring, which is located on the connection of the cylinder and the conical shell, 

does not have any rotation (Figure 4.16). That means the shape of the ring does not influence 

the strength of the structure under these conditions. Thus, the cross-section area of the ring 

����� can be included in the relationship of the rigidity parameter for various kind of ring 

profiles.  

Figure 4.16. Deformed shape of the full scaled model. 

4.5 Influence of Material 

In the European Recommendation [5], the design procedure for buckling stress 

involves the following steps for the cylindrical shell which under axial load; 

 Estimation of the linear elastic stress field caused by the applied load which leads to 

membrane stress field ����. 

 Determination of the elastic critical buckling stress �����  for the perfect shell at any 

possible buckling location on the structure. 

Section D 

Section D 
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 Specification of the relative slenderness parameter of the shell ��. This parameter relates 

the yield stress to the elastic critical buckling stress. 

 Calculation of the elastic imperfection reduction coefficient for membrane stress 

component �� and elastic buckling stress for the imperfect shell ������� . 

 Obtaining the buckling strength reduction factor �� as a function of its relative slenderness 

parameter �� in order to take account into plasticity effects. Therefore, the elastic buckling 

stress for the imperfect shell is simplified to calculate the characteristic buckling stress 

���� . 

 Application the partial safety factor ��� on resistance in order to find design value of the 

buckling stress ���� . 

The following relationships are used to check the design of the shell under axial 

loading. These relationships are taken from the European recommendations ECCS [5] and 

represent the results of many experiments by several researchers. They consider the effect of a 

plastic material behavior and the effect of initial imperfections. Design resistance in the axial 

direction must comply with the condition, 

���� ≤ ����  

wherein ���� is a design value of the buckling membrane stress in the axial direction, and ����  

is the meridional design buckling stress. This value depends on the material characteristics and 

the geometry of the shell according to the relation, 

���� = ���� ���⁄  Eq. 4.60 

Expression of ����  is the characteristic buckling stress in the axial direction, ��� is the 

partial safety factor. It is recommended that the value of the ��� should not be taken as smaller 

than ��� = 1.1.  

The characteristic buckling stress is given by multiplying the yield strength and the 

buckling reduction factor, 

���� = ����,� Eq. 4.61 

where ��,� is the yield strength of the material, and �� is the buckling reduction factor which 

represents the effect of plasticity on the load carrying capacity of the shells under axial loading. 

Relationships for buckling reduction factor are presented in Table 4.5. Buckling 

reduction factor � is a function of the relative slenderness of the shell �. � is the elastic 

imperfection reduction coefficient, � is the plastic range factor, � is the interaction exponent, 

and �� is the squash limit relative slenderness. 
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Table 4.5. Buckling reduction factor [5]. 

Region of the loss of 

stability 
Buckling reduction factor �  Relative slenderness of the shell 

Plastic  � = 1  � ≤ �� 

Elastic-Plastic  � = 1 − � �
� − ��
�� − ��

�

�

 �� ≤ � ≤ �� 

Elastic  � =
�

��
 �� ≤ � 

Note: � value is recommended for the shell structures � = 1.0 

Figure 4.17 shows the form of the capacity curve. This form depends on the values of 

the parameters �, �, � and �� for every geometry and load conditions. These parameters vary 

according to shell geometry, loading type, amplitude of the imperfection and boundary 

conditions. 

 

Figure 4.17. Capacity curve and the parameters, α, β, λ0 and η [5]. 

The relative shell slenderness �� is defined depending on the yield strength of the 

material ��,� and the meridional elastic critical stress ����� . 

�� = ���,� �����⁄  Eq. 4.62 

The value of the plastic limit relative slenderness ��, 

�� = �
��

1 − �
 Eq. 4.63 
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The values of the parameters �� and � are achieved from the results of many 

experiments cylindrical shells under axial loading, 

�� = 0.20, � = 0.60 

In the plastic region where �� ≤ ��, the effect of initial imperfections is not taken into 

account. Plastic limit state occurs and the characteristic buckling stress in the axial direction is 

equal to the yield strength of the material. 

���� = ����,� = 1 ��,� 

In region �� ≤ �� ≤ ��, plastic behavior and initial imperfection influence the 

characteristic buckling stress.  Characteristic buckling stress in the axial direction is given by, 

���� = ����,� = 1 − � �
�� − ��
�� − ��

�

�

 ��,� 

where the influence of initial imperfections is reflected in the parameter ��.  

When the parameters correspond �� ≥ �� (in the elastic region), nonlinear behavior 

of the material does not affect the characteristic buckling stress in the axial direction. 

Characteristic buckling stress is written as stated below in this case, 

���� = ����,� =
�

��
�
 ��,� = �������  

Influence of initial imperfections on the load carrying capacity of the shell under axial 

loading is expressed by reducing with a coefficient. The coefficient of elastic imperfections 

reduction coefficient is denoted as �� in the axial direction. Its value depends on the quality of 

production ���.  

�� =
0.62

1 + 1.91( Δ��/�)
�.��

 Eq. 4.64 

where Δ�� is characteristic imperfection amplitude, 

Δ�� =
1

���
�

��
������

������ Eq. 4.65 

The characteristic buckling stress, which is obtained from ECSS, for the conical shell 

with the given parameters in Table 4.6 is visually presented in Figure 4.18.  

Table 4.6. Geometrical parameters and mechanical properties of the conical shell. 

��[°] ��[mm] ��,�[MPa] E [MPa] ���[-] ��[-] � [-] � [-] �� [-] 

20 340 355 20E5 40 1000 1 0.6 0.2 
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Figure 4.18. Influence of plasticity for selected conical shell in Table 4.6. 

Figure 4.18 shows a curve that describes the characteristic critical stress as a function 

of the ��/������ parameter. The curve is calculated for a conical shell with a yield stress of 355 

MPa and modulus of elasticity of 20E5 MPa.  

In case of ��/������ ≤ 14.92, the conical shell reaches the limit state of plasticity. In 

this interval, the influence of geometric initial imperfections is not considered.  

In the interval 14.92 ≤ ��/������ ≤ 333.3  the loss of stability occurs in the elastic - 

plastic region. The load carrying capacity of the structure is determined by the limit state of loss 

of stability and the non-linear material behavior (plasticity) is taken into account. On the other 

hand, if the conical shell structure is in the area of  333.3 ≤ ��/������, the loss of stability occurs 

in the elastic region. Therefore, the effect of nonlinear material behavior is negligible in this 

case. 

Table 4.7. Values of fabrication quality parameter Qpr [5]. 

Fabrication tolerance quality class Description � �� 

Class A Excellent 40 

Class B High 25 

Class C Normal 16 

The value of the elastic critical stress under axial loading, �����  (Eq. 4.66) is based on 

the linear shell theory in the European recommendations. Its value is already adjusted 

depending on boundary conditions and geometry. The effect of geometry and boundary 

conditions on the critical stress value are considered by means of �� (Table 4.8). 
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Table 4.8 Dimensionless parameters ω and Cx [5]. 

Type of the 

cylindrical shell 
Dimensionless parameter �  Dimensionless parameter �� 

Short � < 1.7 �� = 1.36 −
1.83

�
+
2.07

� �
 

Medium 1.7 < � < 0.5
��
�

 �� = 1 

Long � > 0.5
��
�

 �� = ��� �1 +
0.2

���
�1 − 2 �

�

��
�;0.6� 

Note: Dimensionless parameter ��� and boundary conditions should be evaluated based on 

Table 4.9 and Table 4.10. 

����� = 0.605���
������
��

 Eq. 4.66 

where �� is a function of dimensionless parameter �  which depends on the geometry of the 

shell structure according to the following relationship, 

� =
��

� ��������
 Eq. 4.67 

moreover, the value of the �� parameter is seen in the Table 4.8. 

The effect of plasticity on the critical stress can be taken into account as a coefficient 

which depends on the structure as mentioned above. Thereby, in the numerical part of the study, 

it is assumed that material behavior is linear and elastic.  

Table 4.9. Dimensionless parameter Cxb [5]. 

Case Cylinder end Boundary condition ��� 

1 
end 1 BC1 

6 
end 2 BC1 

2 
end 1 BC1 

3 
end 2 BC2 

3 
end 1 BC2 

1 
end 2 BC2 
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Table 4.10. Boundary conditions for shells [5]. 

Boundary Condition 

Code 

Normal 

displacement 

Meridional 

displacement 

BC1 � = 0 � = 0 

BC2 � = 0 � ≠ 0 

BC3 � ≠ 0 � ≠ 0 
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5 RESULTS AND DISCUSSION 

The primary purpose of this chapter is to determine the load carrying capacity of the 

conical shells under axial loading within two limit boundary conditions. In addition to this, the 

influence of the circumferential ring on the load carrying capacity of the conical shell is 

investigated. These limit conditions simulate the ring which allows unlimited radial 

displacement or entirely prevents against the radial displacement of the lower edge (Figure 5.1). 

5.1 Numerical Solution 

The main part of this chapter contains a series of numerical analyses of the thin-walled 

conical shell structures with the base angle ∝�= 10°,15°,20°. Moreover, different shell 

thicknesses corresponding to dimensionless ��/������ parameter are assigned. Rigidity 

parameter of the circumferential ring is considered with respect to the cross-sectional area of 

the ring �����, shell thickness ������ and lower radius �� of the conical shell. The range of the 

area of the ring, shell thickness and equivalent radius of the conical shell are kept between 6 −

300 mm �, 0.5 − 4 mm  and 240− 2880 mm , respectively, in the numerical analyses. On the 

other hand, the upper radius and the lower radius of the conical shell are assigned �� = 50 mm  

and �� = 250 mm . 

 

Figure 5.1. Illustration of the supports on the numerical model. (a) Simple supported, (b) 

Fixed supported. 

Figure 5.2 exhibits the displacement curve of the selected node number 21, which 

located at the top of the conical shell, depending on the axial load. During the axial load 

increase, the structure reaches the limit state and loses its stability gradually. The load carrying 

capacity of the structure in parallel with geometrical stiffness decreases after this point.  

a. b. 
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Figure 5.2. Load-displacement characteristic for nodal point 21. 

 

a. Resultant displacement – step number 17 b. Resultant displacement – step number 27 

 

c. Resultant displacement – step number 38 d. Resultant displacement – step number 62 

Figure 5.3. Resultant displacement of the simple supported conical shell for αc=10°, tshell=1.2 

mm. 

The shape of the deformed structure is plotted in Figure 5.3. At step 17, axially 

symmetric deformation and nonlinear collapse occur, in this case, the top of the conical shell 

has 5.45 mm vertical displacement under an axial load of 6.58 kN. At step 27, possible 

bifurcation point that is mentioned before (nonlinear buckling) occurs and it leads to the 

formation of four axially symmetric waves. During the subsequent process such as step 38, the 

load carrying capacity of the conical shell still decreases in the post-buckling process. The 

structure has axially symmetric deformation. Finally, at step 62, deformation propagation needs 

nearly zero load value. The structure gets invert shape when it is compared to initial shape at 

this point. 
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5.2 Influence of Boundary Conditions 

The results of the numerical analysis for the conical shells show the limit load of the 

structure. The limit load is substantially dependent on selected boundary conditions (Figure 

5.4). Possible displacement at radial direction causes a reduction in load carrying capacity of 

the structure.  

The significance of the boundary condition against the load carrying capacity of the 

conical shell increases, especially at the lower ��/������ values. The results of the fixed 

supported conical shell (wholly restricted radial displacement) suggest that the circumferential 

ring stiffness is quite efficacious on the limit load of the structure. The relation between the 

limit load and ��/������ parameter of the fixed supported conical shell is illustrated in Figure 

5.4.
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(c) 

Figure 5.4. Influence of the boundary conditions on the load carrying capacity of the conical 

shell for different base angles, (a) Base angle 10°, (b) Base angle 15°, (c) Base angle 20°. 

It is possible to derive regression curves as a power function of ��/������ parameter 

using the data points (Eq. 5.1). The curve is relatively dependent on ��/������. The limit load of 

the conical shell regarding the ��/������ parameter is in good agreement with regression curve 

without considering elastic-plastic behavior. For this purpose, Eq. 4.66 can be used to get a 

function draft, 

� = 2���������0.605���
������
��

 

In this equation, if we say the expression  (2���������0.605���) is equal to � � then 

limit load can be rewritten as; 

���� = � �(������ ��⁄ )�
�
  �� ���� = �′(�� ������⁄ )��

�
 Eq. 5.1 

where the coefficient � � depends on the modulus of elasticity, shell geometry, and the 

dimensionless factor �� (Table 4.8). 

The Eq. 5.1 uses to create the regression curves as a power function and data from 

GNA analyses are taken into consideration. Coefficients �′ and �� are shown in Table 5.1 

considering the linear elastic behavior of the fixed supported conical shell.  
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Table 5.1. The coefficients of the regression curves for the fixed supported conical shell. 

Base angle ∝�  [°] 
Range of dimensionless 

��/������ parameter 

Coefficients 

� � [kN] �� 

10 480 - 2880 3�10� 1.995 

15 320 - 1930 3�10� 1.999 

20 240 - 1460 3�10� 1.992 

The load carrying capacity of the simple supported conical shell (utterly allowable 

radial displacement) is relatively low when compared to the fixed one at the same ��/������ 

value. These differences are caused by the radial stiffness of the structures. This means, the 

carrying capacity of the structure is relatively dependent on the radial stiffness. 

Table 5.2. The coefficients of the regression curves for the simple supported conical shell. 

Base angle ∝�  [°] 
Range of dimensionless 

��/������ parameter 

Coefficients 

� �[kN] �� 

10 480 - 2880 1�10� 2.000 

15 320 - 1930 9�10� 1.996 

20 240 - 1460 1�10� 1.996 

Relations between the limit load and ��/������ parameter of the simple supported 

conical shells for various base angles are illustrated in Figure 5.4. It is possible to derive 

regression curves using the data points as mentioned above for the fixed supported conical 

shells. The limit load of the conical shells and regression curves are well matched. Coefficients 

�′ and �� are shown in Table 5.2 considering the linear elastic material behavior for the simple 

supported conical shells. 

5.3 Influence of Base Angle 

In order to compare the influence of the base angle at the same shell thickness on load 

carrying capacity, Figure 5.5 is illustrated. The figure shows the dependence of limit load on 

the thickness of the shell with different base angle ∝�. From the curves, it is obviously seen that 

the conical shell with a higher base angle for the same shell thickness has a relatively larger 

amount of load carrying capacity. 
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(a) 

 
(b) 

Figure 5.5. Effect of the base angle of the conical shell on the load carrying capacity. (a) 

Simple supported, (b) Fixed supported. 

The strength of the structure against axial loading increases with both the shell 

thickness and the base angle. The limit load of the structure is nearly related to the square of 

the shell thickness. Data are well matched with a second order power function of the shell 

thickness. On the other hand, the increment of the base angle, even just one degree, gives a 

serious contribution to the limit load, positively. Since the increment of the base angle provides 

reducing the bending state effect which is caused by the nature of the structure. The proportion 

of the radial component of the force at the lower edge also decreases as base angle increasing. 
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(a) 

 
(b) 

Figure 5.6. Limit loads of the conical shells with the different base angle. (a) Simple 

supported, (b) Fixed supported. 

Figure 5.6 gives the limit load ���� for a different base angle with respect to ��/������.  

It is interesting that the conical shells with a different base angle on the same ��/������ ratio 

have the approximately same load carrying capacity value. The equivalent radius is derived via 

Eq. 4.47 for the conical shells. The conical shell which has a smaller base angle than the other 

one takes greater dimensionless ��/������ parameter value, although they have the same shell 

thickness. If two conical shells have same parameter of ��/������, the conical shell which has 

smaller base angle must have thicker shell wall. Hence, using the ��/������ parameter instead of 

the shell thickness in the graphs results in a reduction of differences between curves for a 

various base angle in terms of limit load. Therefore, this dimensionless parameter can be used 

as a similarity tool. 
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5.4 Conical Shell with Circumferential Ring 

In the previous chapter, relationships and coefficients are mentioned to calculate the 

load carrying capacity of the simple supported and fixed supported conical shells. These 

boundary conditions at the lower edge are the representations of the extremities. However, in 

the practical applications, the conical shell is used with the boundary conditions which are 

located between two extremities (with a circumferential ring). This part of the study aims to 

derive simple relationships corresponding to geometrical parameters again. The conical shell is 

evaluated for the base angle ∝�= 10,15,20°. Cross-sectional area of the circumferential ring 

����� is kept between 6 ÷ 300 m m �.  

The following figures are exhibited the limit load depending on ��/������ for different 

circumferential ring stiffnesses. As expected, the curves which belong to various ring cross-

sectional areas (different radial stiffness) are positioned between two extremities. It is 

interesting that the ring area even ����� = 6 m m � contributes significantly positive effect to 

the load carrying capacity of the conical shell. On the other hand, ����� = 300 m m � provides 

nearly same contribution with the infinite stiff case. Graphs for three different base angles are 

seen below (Figure 5.7). In addition to these, the limit load values can be seen in the section of 

appendices which is found at the end of the study. 
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(b) 

 

(c) 

Figure 5.7. Limit loads of the conical shell for different radial stiffness. (a) Base angle 10°, 

(b) Base angle 15°, (c) Base angle 20°. 
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It is apparently seen that the importance of the radial stiffness on the conical shell 

structures which have a base angle less than 25°, in Figure 5.8. The capability of load carrying 

can reach three times higher in the comparison between the structures which have a cross-

sectional area of the circumferential ring of ����� = 300 m m � and ����� = 6 m m � in the lower 

��/������ ratios. However, this difference decreases in higher ��/������ ratios. This situation is 

related to the slenderness of the structure. In higher ��/������ ratios, the expected limit load is 

relatively low. Therefore, the circumferential ring with ����� = 6 m m � also behaves stiff 

enough against the radial displacement until the nonlinear collapse occurs. Hence, the limit 

loads of the structures with ����� = 6 m m � and ����� = 300 m m � become nearly same in case 

of quite high amount of ��/������ values. 

Additionally, the values, which are obtained from analytical formulation based on the 

linear theory, are illustrated in Figure 5.8. They are notated with “Linear Theory.” It is clear 

that these calculations are quite higher than the limit load values for two different radial stiffness 

values. This representation shows that the influence of the bending state must be taken into 

account in nonstandard structure evaluation. Together with this, the change in the geometric 

stiffness must be considered. It should be pointed out the linear theory assumes there is no radial 

displacement at the lower edge of the conical shell. The bars show the differences between the 

critical loads which are calculated analytically and limit loads which are obtained numerically 

of the conical shell structures. Analytical results give carrying capacity 80% higher than the 

model which has a circumferential ring with a cross-sectional area of 300 mm2. Also, they get 

results up to 400% deviation from the limit load for the model which has a circumferential ring 

with a cross-sectional area of 6 mm2. The deviation decreases with higher ��/������ ratios. These 

bars evince that the linear theory approach cannot use for the conical shell structures which 

have either base angle less than 25° or flexible circumferential ring.  

Examined coefficients of regression curves for all the cases are shown in the following 

table (Table 5.3). Limit load of the conical shells with base angles of 10°, 15°, and 20° can be 

calculated for different values of the cross-sectional area of the circumferential ring using Eq. 

5.1. The parameters � � and �� are derivated via the Least Square method with a feasible regression 

coefficient. 
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(a) 

 
(b) 

 
(c) 

Figure 5.8. Comparison of the theoretical calculation with the limit loads of Aring=6 mm2 and 

Aring=300 mm2 cases. (a) Base angle 10°, (b) Base angle 15°, (c) Base angle 20°. 
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Table 5.3. Coefficients of the regression curves for the conical shell with circumferential ring. 

Base Angle 
∝�  [°] 

Range of ��/������ 
parameter 

Cross section area 
of the ring 
����� [��

�] 

Coefficients 

� � [kN] �� 

10 480 - 2880 

6 389340 1.473 

9 834171 1.555 

12 2�10� 1.661 

15 4�10� 1.740 

30 1�10� 1.892 

45 2�10� 1.944 

60 2�10� 1.970 

90 3�10� 2.004 

150 3�10� 2.013 

300 3�10� 2.013 

15 320 - 1930 

6 400795 1.444 

9 702258 1.499 

12 2�10� 1.605 

15 3�10� 1.707 

30 1�10� 1.868 

45 2�10� 1.922 

60 2�10� 1.951 

90 3�10� 1.984 

150 3�10� 1.998 

300 3�10� 1.996 

20 240 - 1460 

6 411277 1.421 

9 648337 1.460 

12 1�10� 1.565 

15 3�10� 1.655 

30 2�10� 1.909 

45 2�10� 1.909 

60 2�10� 1.944 

90 3�10� 1.983 

150 3�10� 1.989 

300 3�10� 1.996 
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5.5 Similarity Criteria 

The load carrying capacity of the conical shell which has ��=50 mm and ��=250 mm 

is investigated until this part in the present study. The influence of the geometrical parameters 

on the limit load of the structure is examined separately. But, this section mentions about the 

derived similarity parameter which is one of the main aim of the study. Thus, the load carrying 

capacity of many different configurations of the conical shells can be estimated. For instance, 

a large conical shell which is used under operation can be simulated with a simple model using 

similarity parameters. In addition to this, the load carrying capacity of the structure can be 

calculated via Eq. 5.2 and Table 5.7 non-dimensionally without any need of a numerical 

analysis.  

The recommended equation and coefficients in the table are obtained from the 

numerical analyses outputs. A number of power curves fitted to the FEM results using Least 

Square method. The normalized load (Eq. 4.59) is a representation of the limit load of the 

structure non-dimensionally.  

The function that is seen in Eq. 5.2 gives results in maximum 15% variation when it is 

compared to FEM. The normalized load can calculate with this equation using � and � from 

Table 5.7 corresponding to base angle and rigidity parameter Г. In addition to this, if the rigidity 

parameter of the structure is not found in the Table 5.7, linear interpolation is used to get 

coefficients. 

����������� = � �
��
������� �

��
 Eq. 5.2 

 The aforementioned non-dimensional similarity parameters are re /tshell and Г. They are 

calculated as seen below. If these parameters are identical for the same base angle, the 

normalized loads of these structures are expected to be equal (see Table 5.4, Table 5.5 and 

Table 5.6). 

�� =
��

�����
 

Γ =
��������
�����

 

 The numerical analyses results and obtained values from Eq. 5.2 for randomly selected 

conical shell structures are seen in Table 5.4, Table 5.5 and Table 5.6. The structures which are 

expected to operate in real applications have different upper and bottom radii.  
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Table 5.4. FEM and analytical results for the conical shells with base angle 10° 

 
∝� 

[°] 

��  

[�� ] 

��   

[�� ] 

������  

[�� ] 
��/������  � 

�����������*��� [-]

FEM 

�����������*��� [-] 

Analytical (Eq. 5.2) 

A_1 10 100 500 5 575.88 20 83.54 86.3 

A_2 10 250 500 5 575.88 20 82.80 86.3 

A_3 10 300 2000 20 575.88 20 86.81 86.3 

A_4 10 800 2000 20 575.88 20 87.53 86.3 

A_5 10 700 5000 50 575.88 20 86.95 86.3 

A_6 10 2000 5000 50 575.88 20 88.04 86.3 

Table 5.5. FEM and analytical results for the conical shells with base angle 15°. 

 
∝� 

[°] 

��  

[�� ] 

��   

[�� ] 

������  

[�� ] 
��/������  � 

�����������*��� [-] 

FEM 

�����������*��� [-] 

Analytical (Eq. 5.2) 

B_1 15 200 750 3 965.93 5 126.3 112.7 

B_2 15 350 750 3 965.93 5 125.5 112.7 

B_3 15 600 2500 10 965.93 5 127.1 112.7 

B_4 15 1100 2500 10 965.93 5 126.9 112.7 

B_5 15 450 4000 16 965.93 5 127.2 112.7 

B_6 15 2100 4000 16 965.93 5 128.1 112.7 

 

Table 5.6. FEM and analytical results for the conical shells with base angle 20°. 

 
∝� 

[°] 

��  

[�� ] 

��   

[�� ] 

������  

[�� ] 
��/������  � 

�����������*��� [-] 

FEM 

�����������*��� [-] 

Analytical (Eq. 5.2) 

C_1 20 175 600 1.5 1169.5 40 92.25 91.41 

C_2 20 330 600 1.5 1169.5 40 92.68 91.41 

C_3 20 470 1500 3.75 1169.5 40 93.63 91.41 

C_4 20 690 1500 3.75 1169.5 40 93.65 91.41 

C_5 20 320 3500 8.75 1169.5 40 94.82 91.41 

C_6 20 1450 3500 8.75 1169.5 40 95.18 91.41 

 It is seen that Eq. 5.2 meets with the FEM results, besides, the similarity parameters are 

well matched. The structures with various geometrical dimensions but same similarity 

parameters have a similar normalized load.  
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Table 5.7. Coefficients of the regression curves of the conical shell for different rigidity 

parameter. 

Base Angle 
∝�  [°] 

Range of ��/������ 
parameter 

Rigidity Parameter  

� =
��������
�����

 

Coefficients 

� � 

10 480 - 2880 

Fixed Supported 0.0696 0.995 

Simple Supported 0.0190 1.001 

1 0.1652 1.067 

5 0.1173 1.066 

10 0.0569 0.987 

20 0.0286 0.913 

40 0.0371 0.957 

60 0.0508 1.015 

80 0.0546 1.044 

100 0.0417 1.015 

15 320 - 1930 

Fixed Supported 0.1141 0.999 

Simple Supported 0.0289 0.998 

1 0.1697 1.032 

5 0.1320 1.028 

10 0.0814 0.979 

20 0.0424 0.899 

40 0.0515 0.948 

60 0.0700 1.008 

80 0.0730 1.032 

100 0.0614 1.025 

20 240 - 1460 

Fixed Supported 0.1526 0.991 

Simple Supported 0.0375 0.996 

1 0.2634 1.038 

5 0.2036 1.033 

10 0.1230 0.984 

20 0.0566 0.880 

40 0.0730 0.946 

60 0.0936 1.006 

80 0.0937 1.023 

100 0.0650 0.992 
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5.6 Influence of Initial Imperfection 

When researching thin-walled shell structures, the influence of initial imperfections on 

the loss of stability cannot be ignored. The membrane stiffness of the shells is much higher than 

the flexural stiffness. Initial imperfections may cause bringing the structure into bending state 

at the beginning of loading. The bending state may also arise due to the nature of the structure 

(e.g. conical shells with a base angle less than 25°). Therefore, the sensitivity of initial 

imperfection is less pronounced in nonstandard structures than the structures with membrane 

stress dominantly (e.g. a cylindrical shell). 

Initial imperfections may be seen in several types, for example, imperfections in shape, 

structural attachment, non-uniform loading on the structure, residual stresses, uneven 

distributions of mechanical properties of the material, etc. One of the most notable imperfection 

is called initial geometrical imperfection. Initial geometrical imperfections may be caused 

during manufacturing or transportation of equipment. In some cases, initial imperfections are 

entirely embedded in the design, intentionally. The purpose of inserting the imperfection is to 

control the deformation progress of the structure. Controlled deformation of the structure is 

advantageously used in the design of deformation zones in the transport means [37]. 

Only the influence of geometrical initial imperfections on the load carrying capacity 

is investigated in the present study. The recommendation ECCS evaluates the initial 

geometrical imperfections as follows. 

 Out of roundness 

 Eccentricities 

 Local dimples 

Size of the characteristic imperfection amplitude Δ�� is measured using the ruler for 

measuring of initial geometric imperfections. The rulers are devised to relate to the size of 

buckles that are expected to form under each of the different basic load cases. The length of the 

ruler is determined by �� = �4�������� in axial loading (Figure 5.9). It should be noted that, 

appropriate gauge length relationship should be used regarding to the shell geometry [5]. The 

influence of other geometrical imperfections (out of roundness and eccentricity) is less 

pronounced therefore, they are not investigated in this study.  

 

Figure 5.9. Characteristic imperfection amplitude (depth of dimple) and geometrical 

parameters symbolically. 
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The characteristic imperfection amplitude, Δ�� expresses the maximum permitted 

depth of the dimple. Its value depends on the quality of production and the geometrical 

dimensions of the conical shell.  

Δ�� =
1

���
�

��
������

������ Eq. 5.3 

where, ��� is the influence of fabrication quality parameter from Table 4.7. 

The maximum allowed characteristic imperfection amplitude is illustrated in Figure 

5.10 for each production quality class. It is obviously seen that the maximum allowable depth 

gets deeper as dimensionless ��/������ parameter decreases. 

 

Figure 5.10. The progress of the characteristic imperfection amplitude for each quality class. 

The influence of the initial geometric imperfection on the load carrying capacity of the 

shell structure is expressed by the reduction coefficient α. In order to calculate the reduction 

coefficient, the ECCS [5] states the relationship as follows, 

� =
0.62

1 + 1.91(Δ�� ������⁄ )�.��
 Eq. 5.4 

where 

Δ�� is the characteristic imperfection amplitude. 

Changing of the reduction coefficient α is shown in Figure 5.11 depending on ��/������. 

The figure apparently shows that the structure with higher ��/������ parameter is more sensitive 

to initial geometrical imperfection where the reduction coefficient � decreases. 
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Figure 5.11. The change of the reduction coefficient. 

The reduction coefficient is presented in the ECCS for a fixed supported conical shell 

(infinite radial stiffness) under axial loading. The bending effect is higher for simple supported 

conical shell than a fixed supported conical shell. Therefore, it can be assumed that the 

reduction coefficient specified in the ECCS is too conservative for the simple supported 

structure. For this reason, it is important to determine the dependence of the reduction 

coefficient on the radial stiffness of the conical shell. 

5.6.1 Assessment of the location of the initial geometrical imperfection on the loss of 

stability 

This chapter aims to determine imperfection location effect on the loss of stability of 

the conical shell. It is expected to see the most sensitive location is middle of the lateral face 

for an ideal conical shell under axial loading (i.e. without any imperfections). Therefore, it is 

possible to assume the imperfection that is in this area will have the greatest influence on the 

load carrying capacity. Despite this assumption, the influence of the imperfection location on 

the load carrying capacity of the conical shell should be investigated.  

Three various locations of the initial geometrical imperfection are compared. The 

imperfections are located in the middle, upper, and bottom sides of the lateral surface of the 

structure (Figure 5.9). Influence of imperfections is evaluated using numerical analyzes of the 

GNIA and GNA types. Material model is considered as linear and elastic. Randomly selected 

two conical shells with radius r� = 250 mm  are considered (see Table 5.8 and Table 5.9). The 

influence of the initial imperfection on the load carrying capacity of the conical shell is 

expressed by the α. 

� =
�����
����

 Eq. 5.5 
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where 

����� is limit load of a conical shell structure which contains initial imperfection. 

����  is limit load of an ideal conical shell structure. 

Table 5.8. Reduction coefficients of the conical shell with imperfection, tshell=0.6 mm. 

tshell 

[mm] 
Г αc [°] 

Δw 

[mm] 
Δw/ tshell lg 

Imperfection 

Position 
α (FGNIA/FGNA) 

0.6 5 15 1.629 2.715 49 

Middle 0.944 

Upper 0.976 

Bottom 0.983 

 

Table 5.9. Reduction coefficients of the conical shell with imperfection, tshell=3.0 mm. 

tshell 

[mm] 
Г αc [°] 

Δw 

[mm] 
Δw/ tshell lg 

Imperfection 

Position 

α 

(FGNIA/FGNA) 

3 10 15 1.629 0.543 109.5 

Middle 0.793 

Upper 0.824 

Bottom 0.834 

Table 5.8 and Table 5.9 suggest that the conical shells with a circumferential ring are 

more sensitive to imperfections that are in the middle of the wall. Hence, the dimples are 

positioned to the middle region of the wall surface to simulate initial geometric imperfection 

hereinafter in the study. 

5.6.2 Numerical modeling of the conical shell with a local dimple 

An initial imperfection is formed as a dimple on the central region of the conical shell’s 

wall in the numerical model. The dimple is created by a static analysis. The whole area of the 

structure except the dimple is fixed and an external pressure value is applied to only the area of 

the dimple. The appropriate pressure value is chosen to create predetermined imperfection 

depth Δ� . The numerical model with an initial geometrical imperfection as a result of this static 

analysis is shown in Figure 5.12. 
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Figure 5.12. A numerical model with initial imperfection. 

The deformed geometry is stored and the following numerical analysis of the GNIA 

type takes place on the modified model. The model consists of a base angle �� = 20°, shell 

thickness ������ = 0.6 mm , cross-sectional area of the circumferential ring ����� = 150 mm �, 

and depth of the dimple Δ� = 1 mm . The circumferential ring is constrained against only to 

vertical direction and an axial load is applied to the numerical model. To control iterative 

process, arc-length computational procedure is used. Figure 5.13 shows a deformed numerical 

model after loss of stability for conical shell which includes initial geometric imperfection. Six 

pieces of buckles occurs and the largest one is observed around the imperfection. 

 

Figure 5.13. Result of GNIA analysis - resultant displacement. 

Table 5.10 shows the results of numerical analyzes of the conical shells with a base 

angle of �� = 15°, shell thickness ������ = 1.4 mm , and several radial stiffnesses. 
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Table 5.10. Reduction coefficients of conical shells with base angle αc = 15°, radius of lower 

edge r2=250 mm, shell thickness tshell=1.4 mm, and various types of boundary conditions (zero 

to infinite radial stiffness). 

 Δw [mm] 0.153 0.307 0.537 0.767 1.073 1.380 1.840 2.300 

Г  

5 0.984 0.977 0.934 0.912 0.913 0.915 0.902 0.927 

10 0.998 0.999 0.810 0.797 0.790 0.790 0.791 0.788 

25 0.884 0.883 0.879 0.826 0.778 0.796 0.823 0.820 

60 0.947 0.992 0.991 0.929 0.941 0.993 0.816 0.817 

100 0.987 0.987 0.987 0.988 0.998 0.998 0.999 0.990 

Simple Supported 0.975 0.976 0.976 0.977 0.977 0.977 0.978 0.978 

Fixed Supported 0.988 0.983 0.969 0.960 0.958 0.964 0.975 0.983 

It is necessary to evaluate how the value of the reduction coefficient varies regarding 

the depth of imperfection. When creating numerical models with different depths of the 

imperfection, the pressure applied to the surface of the dimple is changed. Table 5.10 shows 

one of the calculated cases. The depth of imperfection varies with Δ� = 0.153− 2.3 mm . 

The maximum reference length and depth of imperfection are dependent on shell 

thickness, radius, and production quality according to ECCS. Therefore, the values of the 

reduction coefficient given in the table above are only indicative. However, there is one critical 

point to be drawn from the results. The reduction coefficient does not drop below � = 0.70 for 

different combinations of shell thickness and radial stiffness (see Figure 5.15).  

 
(a) 

 
(b) 
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(c) 

Figure 5.14. Schematic illustrations of the conical shells with a base angle 15° and shell 

thicknesses. (a) 0.6 mm, (b) 1.4 mm, and (c) 3 mm. 

Figure 5.15 shows the dependence of reduction coefficient on the depth of 

imperfection Δ�  for three different wall thicknesses. Schematic illustrations can be seen in the 

Figure 5.14 for these three conical shells that are performed in the numerical analyzes.  
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(b) 

(c) 

Figure 5.15. Reduction coefficient for different configuration of conical shells with a base 

angle 15°. (a) tshell = 0.6 mm, (b) tshell = 1.4 mm, and (c) tshell = 3 mm. 
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The production quality classes (Table 4.7) and their respective reduction coefficients 

according to recommendation [5] are illustrated in the graphs (vertical lines nominated with 

Qpr). Those lines also show the maximum permissible depth of the imperfection. The reduction 

coefficient values that obtained from ECCS are too conservative for conical shells even for the 

quality class A. Hence, this value could be replaced by � = 0.70. 

It is also interesting to see from the curves in Figure 5.15 that the increment in the 

depth of imperfection can result in a reduction of its effect on the load carrying capacity. The 

reduction coefficient may tend to increase after a point in some cases. In those cases, the dimple 

starts to act as a stiffener.  

According to the European Recommendation, the value of the reduction coefficient 

for conical shells under axial loading is calculated using Eq. 4.64. The proposed calculation 

methodology by ECCS to estimate load carrying capacity of the conical shells is originated 

from the cylindrical shells. In contrast to the cylindrical shells, the conical shells have a 

significant bending stress. Therefore, the influence of initial imperfections, which represents an 

additional bending effect, is less significant in conical shells with base angle is lower than 25°. 

From this point of view, it can be assumed that the reduction coefficient that is determined 

based on the cylindrical shell is considerably conservative for conical shells. The reduction 

coefficient does not drop below � = 0.70 for different combinations of shell thickness and 

radial stiffness. Thus, the new value of the reduction coefficient is determined in this chapter 

as a constant value of � = 0.70.  
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6 COMPARISON OF CALCULATION METHODS 

The load carrying capacity estimations for the conical shells are compared in this 

chapter. Obtained results from the ECCS recommendations, the proposed method in the present 

study and the numerical analyzes are examined. The load carrying capacity values of the conical 

shells with diverse types of boundary conditions are considered. Influence of the initial 

imperfections is taken into account using the reduction coefficient that is proposed as �=0.70 

in Section 5.6. 

6.1 Fixed supported conical shells 

The dimensions of the conical shell are shown in Table 6.1. The geometry of the 

cylinder, which originates from the geometry of the conical shell, falls within the area of 

medium length cylindrical shells (Table 4.8). For this reason, the influence of boundary 

conditions, which is expressed by the �� factor, assigned to 1. According to the relationships in 

Section 4.5, it is assumed that the loss of stability occurs in the elastic region for the randomly 

selected conical shells. Therefore, the effect of the elastic-plastic behavior of the material is not 

applied for the solutions. The reduction coefficient is determined according to the ECCS 

recommendation by �� (Eq. 4.64). In this study, a new value of the reduction coefficient is 

proposed as � = 0.70. (for reasons of clarity, the reduction coefficients are indicated with the 

corresponding indices as  ��� and ����� in the following sections). 

Table 6.1. Fixed supported conical shell dimensions. 

��[°] ��[mm] ��[mm] ������[mm] ��[mm] ��/������[-] ��[-] 

[mm] 

�����[-] ���[-] 

10 200 600 2 3455 1728 1 0.21 0.7 

Calculation according to ECCS 

 The solution procedure is described in Section 4.5. Critical elastic stress for the conical 

shell is expressed by the relation, 

����� = 0.605���
������
��

= 0.605�2�5�1�
2

3455
= 70[���] 

 Characteristic imperfection depth for production quality class A and the reduction 

coefficient are determined as follows, 

Δ�� =
1

���
�

��
������

������ =
1

40
�
3455

2
2 = 2.08 [��] 

����� =
0.62

1 + 1.91(Δ�� ������⁄ )�.��
=

0.62

1 + 1.91(2.08 2⁄ )�.��
= 0.21 

The factor �� is determined using Table 4.8 from the relationship for a medium length 

cylindrical shell regarding to the dimensionless length parameter ω. 
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ω =
��

� ��������
 

It is assumed that the loss of stability will occur for this conical shell structure in the 

elastic area (see Table 4.5, i.e. �� ≥ ��). The characteristic buckling stress is given by the 

relation, 

���� = ����,� =
�

��
�
 ��,� = ���������� = 0.21�70 = 14.7 [���] 

Limit load is calculated with Eq. 4.48 for the conical shell, 

����,���� = 2����������������
��� = 2���3455�2�14.7�����(80)= 19245[�] 

then if the limit load is normalized using geometrical parameters and modulus of elasticity, 

�����������,���� =
����,����

2����������
=

19245

2���600�2�2�5
= 12.76�10�� [−] 

GNA type numerical analysis 

Load carrying capacity of the conical shell with dimensions of Table 6.1 obtained 

using GNA type numerical analysis. The numerical result is seen below. The influence of initial 

imperfections is taken into account by means of the proposed reduction coefficient value  

���=0.70. 

����,��� = 68171.5 [�] 

when the effect of initial imperfections is considered the limit load decreases to ����,���,�, 

����,���,� = �������,��� = 0.70�68171.5 = 47720 [�] 

and it is normalized, 

�����������,���,� =
����,���,�

2����������
=

47720

2���600�2�2�5
= 31.64�10�� [−] 

Proposed method 

 The proposed method calculates the load carrying capacity by means of  Eq. 5.2 as given 

below, 

����������� = � �
��
������� �

��
 

 The coefficients of the regression curve of the fixed supported conical shell are shown 

in Table 5.7. 

Table 6.2. Regression curve coefficients 

� � 

0.0696 0.995 
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����������� = � �
��
������� �

��
= 0.0696�3455 2� �

��.���
= 41.82�10�� [−] 

and the effect of initial imperfections reduces the calculated value using reduction coefficient 

���, 

�����������,� = �������������� = 0.70�41.82�10�� = 29.28�10�� [−] 

Comparison of the results 

A summary of the previous results is shown in Table 6.3. 

Table 6.3. Comparison of results for the fixed supported conical shell. 

Fixed Supported Conical Shell ECCS GNA Analysis Proposed Method 

�����������*��� [-] 12.76 31.64 29.28 

The value of the reduction coefficient ����� is relatively low in the calculation of 

ECCS. Thus, the calculation with respect to ECCS is quite conservative in the case of the fixed 

supported conical shell.  

6.2 Simple supported conical shell 

The results of the load carrying capacity of a simple supported conical shell with the 

dimensions given in Table 6.4 are compared in this section.  

Table 6.4. Simple supported conical shell dimensions. 

��[°] ��[mm] ��[mm] ������[mm] ��[mm] ��/������[-] ��[-] 

[mm] 

�����[-] ���[-] 

15 150 400 4 1545 386.4 1 0.264 0.7 

Calculation according to ECCS 

����� = 0.605���
������
��

= 0.605�2�5�1�
4

1545
= 313[���] 

Characteristic imperfection depth for production quality class B and the elastic imperfection 

reduction coefficient are determined as follows, 

Δ�� =
1

���
�

��
������

������ =
1

25
�
1545

4
4 = 3.145 [��] 

����� =
0.62

1 + 1.91(Δ�� ������⁄ )�.��
=

0.62

1 + 1.91(3.145 4⁄ )�.��
= 0.264 

The factor �� is determined regarding to dimensionless length parameter ω from Table 

4.8. Since, the assumption is the loss of stability occurs in the elastic area for this example (see 

Table 4.5, i.e. �� ≥ ��), the characteristic buckling stress can be written as seen below, 

���� = ����,� =
�

��
�
 ��,� = ���������� = 0.264�313 = 82.6 [���] 
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Limit load is calculated using Eq. 4.48 for the conical shell, 

����,���� = 2����������������
��� = 2���1545�2�82.6�����(75)= 107426[�] 

when it is normalized, 

�����������,���� =
����,����

2����������
=

107426

2���400�4�2�5
= 106.8�10�� [−] 

GNA type numerical analysis 

 The limit load is computed via GNA type numerical analysis for the conical shell with 

the dimensions stated in Table 6.4. The result is given below,  

����,��� = 160323 [�] 

when initial imperfection is considered, the limit load reduces to, 

����,���,� = �������,��� = 0.70�160323= 112226 [�] 

and it is normalized, 

�����������,���,� =
����,���,�

2����������
=

112226

2���400�4�2�5
= 55.82�10�� [−] 

Proposed method 

 The proposed method calculates the load carrying capacity by means of the Eq. 5.2 as 

given below, 

����������� = � �
��
������� �

��
 

 The coefficients of the regression curve of the simple supported conical shells are shown 

in Table 5.7. 

Table 6.5. Regression curve coefficients. 

� � 

0.0289 0.998 

 

�����������,� = � �
��
������� �

��
= 0.0289�1545 4� �

��.���
= 75.71�10�� [−] 

and the effect of initial geometrical imperfections leads to a reduction in the calculated value 

using the reduction coefficient of ���, 

�����������,� = �������������� = 0.70�75.71�10�� = 52.99�10�� [−] 

Comparison of the results 

A summary of the previous results is shown in Table 6.6. 
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Table 6.6. Comparison of results for the simple supported conical shell.  

Simple Supported Conical Shell ECCS GNA Analysis Proposed Method 

�����������*��� [-] 106.8 55.82 52.99 

The ECCS estimates the load carrying capacity of this structure relatively higher than 

the numerical analysis and proposed method. The reason of this case can be explained with the 

calculation methodology of the ECCS. The methodology assumes the structure has infinite 

radial stiffness. Since a simple supported conical shell structure is considered, the assumption 

of the ECCS is not suitable in this case. Nevertheless, the proposed method in the present study 

is well matched with the result of GNA type numerical analysis. 

6.3 Conical shells with a circumferential ring 

The results of a conical shell which has a circumferential ring with the dimensions 

given in Table 6.7 are compared in this section.  

Table 6.7. Dimensions of the conical shell with a circumferential ring. 

��[°] ��[mm] ��[mm] ������[mm] ��[mm] ��/������[-] ��[-] 

[mm] 
�����[-] ���[-] Γ [-] 

20 100 800 2.8 2339 835.4 1 0.1132 0.7 5 

Calculation according to ECCS 

The factor �� is determined regarding to dimensionless length parameter ω from Table 

4.8. 

����� = 0.605���
������
��

= 0.605�2�5�1�
2.8

2339
= 144.8[���] 

Characteristic imperfection depth for production quality class C and the reduction 

coefficient are calculated as follows, 

Δ�� =
1

���
�

��
������

������ =
1

16
�
2339

2.8
2.8 = 5.06 [��] 

����� =
0.62

1 + 1.91(Δ�� ������⁄ )�.��
=

0.62

1 + 1.91(5.06 2.8⁄ )�.��
= 0.1132 

For the case of �� ≥ ��, the characteristic buckling stress is calculated as follows, 

���� = ����,� =
�

��
�
 ��,� = ���������� = 0.1132�144.8 = 16.4 [���] 

Limit load is calculated for the conical shell, 

����,���� = 2����������������
��� = 2���2339�2.8�16.4�����(70)= 78943[�] 

Then this load is normalized, 
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�����������,���� =
����,����

2����������
=

78943

2���800�2.8�2�5
= 28.05�10�� [−] 

GNA type numerical analysis 

The result that is obtained from GNA type numerical analysis is, 

����,��� = 515433 [�] 

����,���,� = �������,��� = 0.70�515433= 360803 [�] 

and 

�����������,���,� =
����,���,�

2����������
=

360803

2���800�2.8�2�5
= 128.2�10�� [−] 

Proposed method 

 The proposed method calculates the load carrying capacity by means of the Eq. 5.2 as 

given below, 

����������� = � �
��
������� �

��
 

The coefficients of the regression curve of the fixed conical shells are shown in Table 

5.7. Linear interpolation is used to get coefficients if the certain value of Г is not found in Table 

5.7. 

Table 6.8. Regression curve coefficients. 

� � 

0.2036 1.033 

�����������,� = � �
��
������� �

��
= 0.2036�2339 2.8� �

��.���
= 195.2�10�� [−] 

To consider initial imperfections, the reduction coefficient ��� is used, 

�����������,� = �������������� = 0.70�195.2�10�� = 136.6�10�� [−] 

Comparison of the results 

A summary of the previous results is shown in Table 6.9. 

Table 6.9. Comparison of the results for the conical shell with a circumferential ring. 

Conical Shell with Circumferential 

Ring 
ECCS GNA Analysis Proposed Method 

�����������*��� [-] 28.05 128.2 136.6 

The calculation of ECCS is quite conservative in the case of the conical shell with the 

circumferential ring. It is due to the value of the elastic imperfection reduction coefficient 

�����. On the other hand, the result of the proposed method is well matched with the results of 

the numerical analysis. 



COMPARISON OF CALCULATION METHODS

 

 

LOSS OF STABILITY OF THIN WALLED CONICAL SHELLS WITH CIRCUMFERENTIAL RING LOADED BY AXIAL FORCE 91 

 

According to ECCS, if the conical shell stays in the elastic region regarding its 

geometry, the material nonlinearity does not affect to load carrying capacity. In the elastic 

region, the value of load carrying capacity is multiplied by the elastic imperfection reduction 

coefficient, �. The effect of nonlinear material behavior is not considered. Nevertheless, the 

influence of the material nonlinearity could arise especially in the relatively low dimensionless 

parameter of ��/������ (see Figure 4.18). In this case, the proposed method may overestimate 

the load carrying capacity. The influence of the material nonlinearity is described in the ECCS 

for cylindrical shells in terms of �,�,�, and � (see Table 4.5). It is suggested that the 

determination of the boundaries of the plastic and elastic-plastic region for the conical shells 

under axial loading should be investigated in further studies. It is out the scope of this study.  
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7 CONCLUSION 

In this study, the load carrying capacity of the conical shell structures which have 

different radial stiffnesses is examined. The base angle of the conical shell structures is kept 

less than 25° to contribute to filling the deficiency in the literature. A new method is proposed 

to estimate the load carrying capacity for mentioned conical shell structures. Results which are 

obtained from the nonlinear FEM analyses are stated below.  

In order to predict load carrying capacity of the conical shell structures under the axial 

load with lower base angles (i.e. 10, 15 and 20⁰), normalized design parameters (Γ and ��/������) 

are derived. Based on these parameters, a similarity approach is proposed which estimates load 

carrying capacity of the shells of different shell geometry configurations at the same base angle. 

This similarity approach tells that the two different shell configurations having the same Γ, 

��/������  and base angle have the same normalized loads. Practically, this provides an enormous 

advantage of estimating load carrying capacity of the conical shells from small to large 

structures. Therefore, there is no need to perform some series of the experiments to determine 

the load carrying capacity of the structures.  

A simple expression is proposed to calculate the normalized load of the conical shell 

structure as a function of the dimensionless geometrical shell parameters and two constant 

coefficients of “a” and “b” which are selected considering the base angle, rigidity parameter, 

and range of the ��/������ values of the given intervals from Table 5.7. In this way, it enables an 

appropriate prediction of the load carrying capacity of the conical shell structures under the 

axial load for a variety of the shell configurations without performing some complex non-linear 

FEM analysis or numerical solutions. Furthermore, the discrepancy of the proposed new 

method and FEM results of the normalized load is found out to be the maximum 15% which 

can be considered in the acceptable limits for a highly nonlinear shell behavior of the lower 

base angles (10, 15 and 20⁰).  

Implementation of the linear theory in the load carrying capacity calculations 

concludes with the high amount of deviations due to the presence of the circumferential ring 

and highly nonlinear shell response of the shell structures which is encountered at low base 

angles such as 10, 15 and 20⁰. The proposed expression for the normalized load minimizes this 

aforementioned deviation and keeps the results within the acceptable limits. Since particular 

equation coefficients of “a” and “b” are selected for a specific shell geometrical parameter range 

from the Table 5.7 in order to characterize the non-linear response of the corresponded shell 

geometry. 

In the scope of the thesis, the value of r1 is kept constant to be 50mm. Because the 

influence of the upper shell radius r1 on the load carrying capacity can be neglected for a wide 

range of upper-to-bottom shell radius ratios “r1/r2” as a result of performed FEM simulations. 

However, the influence of the upper shell radius on the load carrying capacity of the shell 

structure is observed to be more apparent as the upper-to-lower shell radius ratio “r1/r2” 

approaches its extremities which are r1/r2=0 and 1. 
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The influence of initial imperfections, which represents an additional bending effect, 

is less significant in conical shells with base angle is less than 25°. From this point of view, it 

can be assumed that the reduction coefficient that is determined based on the cylindrical shell 

is considerably conservative for conical shells. The reduction coefficient does not drop below 

� = 0.70 for different combinations of shell thickness and radial stiffness. Thus, the new value 

of the reduction coefficient is proposed as a constant value of � = 0.70.  

Circumferential ring implementation and its radial stiffness make a contribution to the 

load carrying capacity of the structure under the axial loading. The influence of the radial 

stiffness increases as ��/������ parameter decreases. The results show that application of 

circumferential ring in lower ��/������ dimensionless parameter value becomes more 

advantageously.  

7.1 Scientific Contribution of the Doctoral Dissertation  

The influence of the circumferential ring on the load carrying capacity of a conical 

shell under axial loading has not been involved fully in the European Recommendation ECCS 

[5]. Also, relationships in the recommendation are not applicable to the conical shells structures 

that have a base angle less than 25°. 

Evaluation of the load carrying capacity of the fixed supported shell structures is 

outlined in the ECCS [5]. Nevertheless, this calculation may give higher values for the real 

application because of the flexible radial restrains. The results are presented in the study in 

order to complement the current state of knowledge of science and technology. 

Determination of the limit load for the nonstandard conical shell structures with a 

circumferential ring has not been resolved yet. Validating the numerical results of the 

experimental study is necessary. After validation process, the study will be put on authorities 

display. 

7.2 Implementation of the Results in Practice  

This study proposes a new method to predict load carrying capacity of a conical shell 

structure and it suggests similarity parameters. By means of these parameters, experiments can 

be performed with small-scaled structures for simulation the real one.  Additionally, the method 

allows estimation the load carrying capacity without any need of numerical analysis and avoids 

time-consuming. Thus, efforts have been made to contribute to the design process in fields such 

as transport, machinery and civil engineering where thin-walled shells are widely used. For this 

purpose, further studies should be accomplished primarily. 

7.3 Future Works 

For the further parts of the current study, the following evaluations and statements are 

to be completed, respectively which are; 
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 A validation methodology will be conducted in order to ensure that how the numerical 

study approaches the experimental results. Hereby, a specimen will be manufactured, and 

it will be loaded by a hydraulic press. A load history concerning vertical deformation will 

be extracted to make a comparison of proximity. 

 The influence of the material nonlinearity is described in the ECCS for cylindrical shells 

in terms of �,�,�, and � (see Table 4.5). It is suggested that the determination of the 

boundaries of the plastic and elastic-plastic region for the conical shells under axial loading 

should be investigated in further studies. 
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10 APPENDICES 

Table 10.1. Results of the numerical analyses and theoretical calculations for base angle 10°. 

 re/tshell 

 360 480 576 720 800 900 1028 1200 1440 1600 1800 2057 2399 2879 

Aring 

[mm] 
Limit Load Flim [kN] 

6 77.5 46.2 33.7 23.4 19.9 16.7 13.9 11.2 8.79 7.58 6.38 5.21 4.10 3.09 

9 84.8 53.8 41.0 29.9 25.7 21.7 17.9 14.1 10.6 8.99 7.42 5.96 4.56 3.18 

12 95.7 63.64 49.2 35.3 30.0 24.9 20.2 15.5 11.5 9.69 7.97 6.20 4.57 3.19 

15 108 72.70 55.5 38.8 32.5 26.6 21.5 16.3 12.1 10.21 7.93 6.20 4.58 3.20 

30 146 92.42 67.5 45.3 37.5 30.5 24.2 17.9 12.5 10.18 8.02 6.12 4.46 3.21 

45 157 99.00 72.3 48.7 40.4 31.9 24.3 17.9 12.5 10.17 8.04 6.15 4.49 3.18 

60 163 103.7 76.2 51.3 40.6 31.8 24.3 17.9 12.5 10.19 8.05 6.19 4.50 3.20 

90 173 112.3 83.5 50.9 40.7 31.9 24.4 17.9 12.5 10.16 8.05 6.19 4.58 3.21 

150 190 117.4 82.9 50.8 40.7 32.0 24.4 17.9 12.5 10.17 8.06 6.20 4.58 3.21 

300 209 119.3 81.1 50.7 40.8 32.0 24.5 18.0 12.5 10.12 8.05 6.20 4.58 3.22 

*Fcr 365 205.6 142 91.3 74.0 58.4 44.78 32.90 22.85 18.51 14.62 11.20 8.23 5.71 

*Fcr values are calculated via theoretically and represent critical load. 

 re/tshell 

 360 480 576 720 900 1200 1440 1800 2399 2879 

Г Limit Load Flim [kN] 

1 207.4 128.8 85.15 51.5 32.28 17.98 12.44 7.93 4.46 3.11 

5 203.9 128.8 85.14 51.46 32.01 17.91 12.44 7.93 4.46 3.11 

10 176.2 107.8 76.78 49.7 31.69 17.82 12.44 7.95 4.46 3.11 

20 160.1 96.47 68.39 44.25 28.59 16.55 11.77 7.73 4.46 3.11 

40 144.4 85.83 60.6 39.09 25.15 14.34 10.07 6.5 3.7 2.58 

60 128.5 75.16 52.62 33.67 21.44 12.02 8.34 5.3 2.96 2.04 

80 112.8 64.88 44.98 28.65 18.05 10.02 6.9 4.38 2.43 1.67 

100 100.9 52.08 39.49 24.95 15.79 8.76 6.05 3.83 2.14 1.48 

 

 

 

 



APPENDICES

 

 

LOSS OF STABILITY OF THIN WALLED CONICAL SHELLS WITH CIRCUMFERENTIAL RING LOADED BY AXIAL FORCE 100 

 

 

Table 10.2. Results of the numerical analyses and theoretical calculations for base angle 15°. 

 re/tshell 

 241 322 386 483 537 604 690 805 966 1073 1207 1380 1610 1932 

Aring 

[mm] 
Limit Load Flim [kN] 

6 174 102 74.7 51.8 44.1 37.0 30.5 25.0 19.6 17.05 14.49 11.99 9.53 7.13 

9 189 118 89.7 65.7 57.0 48.5 40.2 32.2 24.3 20.79 17.17 13.95 10.85 7.66 

12 212 138 107 78.6 68.1 56.3 45.9 36.1 26.9 22.66 18.78 14.68 10.88 7.65 

15 240 159 122 88.4 75.3 61.5 49.5 38.5 28.5 24.04 18.99 14.68 10.82 7.26 

30 341 210 153 107 90.1 72.6 58.5 42.8 29.6 24.03 19.04 14.63 10.89 7.67 

45 377 227 165 113 95.8 76.1 58.3 42.6 29.6 23.97 19.07 14.61 10.89 7.62 

60 397 239 174 118 96.1 76.1 58.3 42.7 29.6 23.97 19.05 14.69 10.86 7.61 

90 426 259 185 118 96.3 76.2 58.2 42.7 29.6 24.04 19.03 14.61 10.80 7.63 

150 475 272 185 119 95.9 76.2 58.2 42.7 29.6 24.0 19.02 14.62 10.84 7.57 

300 507 272 186 118 96.2 76.2 58.2 42.6 29.6 24.0 19.07 14.66 10.85 7.64 

*Fcr 816 459 318 204 165 130 100 73.4 51.0 41.3 32.66 25.00 18.37 12.76 

*Fcr values are calculated via theoretically and represent critical load. 

 

 re/tshell 

 241 322 386 483 604 805 966 1207 1610 1932 

Г Limit Load Flim [kN] 

1 513 277.5 190.6 120.7 76.45 42.39 29.22 18.6 10.5 7.31 

5 512.6 277.8 188.2 119.6 76.45 42.45 29.22 18.6 10.5 7.31 

10 434 249.8 175.9 116 76.43 42.51 29.22 18.6 10.5 7.31 

20 385.6 224.4 155.5 101.7 66.96 38.94 27.54 18.1 10.5 7.31 

40 335.9 193 135.4 88 57.22 32.71 22.9 14.8 8.4 5.88 

60 290.2 165.4 115.3 74.1 47.49 26.64 18.45 11.7 6.6 4.53 

80 250.6 141.3 97.8 62.3 39.57 22.04 15.17 9.6 5.4 3.71 

100 222.6 124.5 86 54.6 34.73 19.34 13.37 8.5 4.8 3.3 
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Table 10.3. Results of the numerical analyses and theoretical calculations for base angle 20°. 

 re/tshell 

 183 244 292 365 406 457 522 609 731 812 914 1044 1218 1462 

Aring 

[mm] 
Limit Load Flim [kN] 

6 309 181 132 91.6 77.4 64.9 53.7 43.95 34.59 30.20 25.72 21.44 17.79 13.10 

9 333 207 156 115 102 85.2 71.0 57.42 44.04 37.69 31.53 25.24 20.20 14.32 

12 371 242 189 138 120 101 82.7 65.26 49.16 41.57 34.09 27.23 20.24 14.32 

15 417 279 218 156 133 113 89.7 73.28 52.47 44.33 35.28 27.48 20.25 14.32 

30 604 381 284 193 162 133 107 78.63 54.73 44.41 35.28 27.50 20.22 14.32 

45 675 411 304 212 178 140 106 78.59 54.55 44.45 35.27 27.41 20.25 14.32 

60 713 435 322 222 179 140 107 78.67 54.67 44.45 35.29 27.20 20.23 14.32 

90 769 483 345 221 178 140 106 78.63 54.73 43.95 35.08 27.21 20.24 14.31 

150 855 495 346 221 178 140 106 78.43 54.73 44.22 35.03 27.19 20.22 14.29 

300 888 499 347 221 178 140 107 78.70 54.71 44.32 35.08 27.22 20.14 14.03 

*Fcr 1425 801 556 356 288 228 174 128 89.1 72.1 57.0 43.6 32.1 22.27 

*Fcr values are calculated via theoretically and represent critical load. 

 re/tshell 

 183 244 292 365 457 609 731 914 1218 1462 

Г Limit Load Flim [kN] 

1 920.3 511.9 352.9 223.1 140.6 77.8 53.6 34.1 19.2 13.4 

5 909.5 503.6 351.3 223.7 140.8 77.7 53.6 34.1 19.2 13.4 

10 783.8 455.4 325.9 216.9 141.1 77.7 53.6 34.1 19.2 13.4 

20 691 398.9 283.2 186.4 122.3 71 50.3 33.1 19.2 13.4 

40 593.1 342 241.6 157.5 102.3 58.4 40.94 26.4 15 10.5 

60 504.9 288.9 202.2 130.2 83.3 46.7 32.4 20.6 11.5 8 

80 434.2 245.4 170.4 108.7 69.1 38.5 26.6 16.9 9.46 6.6 

100 386.5 199.7 150.2 95.58 60.9 34 23.5 15 8.43 5.9 

 

Whole results in the appendices were obtained for the conical shell having r1=50mm and 

r2=250mm. 
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