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Abstract

Monitoring of water quality parameters of inland water bodies and small inland water 

bodies specifically can be operationally expensive and involving. This work tries to explore 

how remote sensing  could be used as a tool in monitoring selected water quality parameters in 

small inland water bodies in the Czech Republic. Models were created based of Landsat 7 

ETM+ imagery based on acquisitions from autumn of 2011 until the Spring of 2015 to estimate 

water quality parameters. The images used were scenes of WRS-2, path and row 191/25 as 

well  as  190/25  respectively.  Samples  were  taken  from 13  water  bodies  (Bunkov, Melice, 

Jezero,  Oplatil,  Pohranovsky  rybnik,  Velka  Cerna,  Opatovicky  pisnik,  Ujezdsky  rybnik, 

Bohumilecsky  rybnik,  Spravcicky  pisnik,  pisnik  Hradek,  Bohdanecsky  rybnik,  Placicky 

rybnik), with water body area between 8-90 ha, around Pardubice and Hradec Kralove in the 

Czech Republic. The samples were analysed for chlorophyl-a, Total Carbon, Total Nitrogen, 

Total Organic Carbon, Temperature and Secchi Disk Depth. The 3×3 average window was used 

to limit the effect of noise on the images and water only mask was used in order to limit the 

process to open water areas specifically. 

Models were developed based on best fit charts of water quality parameter vs. satellite band 

combination using linear function in the regression analysis. Models created for the water 

quality parameters had their performance tested based on r2, RMSE and NRMSE. Band 

combination L3/L1 or the vice versa had best fit for most the models created. The exception 

was temperature which was based on surface radiance (brightness temperature in [K]).

Where  L1-L3  are  visible  bands  of  atmospherically  corrected  Landsat  7  SR  product.  The 

models created are intended to help institutions that are mandated in monitoring water bodies.
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Abstrakt

Monitorování parametrů kvality vody u vnitrozemských vodních těles může být

provozně nákladné a náročné. Tato práce se snaží prozkoumat, jak by bylo možné použít

dálkového průzkumu země jakožto nástroje kmonitorování vybraných parametrů kvality vody

v malých vodních tělesech v České Republice. Kodhadu parametrů kvality vody byly

vytvořeny modely na základě snímků Landsat 7 ETM+ pořízených od podzimu 2011 do jara

2015. Byly použity tyto snímky: scény WRS-2, path a row 191/25 a také 190/25. Vzorky byly

odebrány z 13 vnitrozemských vodních těles (Buňkov, Mělice, Jezero, Oplatil, Pohranovský

rybník, Velká Černá, Opatovický písník, Újezdský rybník, Bohumilečský rybník, Spravčický

písník, písník Hrádek, Bohdanečský rybník, Placicky rybnik) o ploše mezi 8-90 ha, vokolí

Pardubic a Hradce Králové v České Republice. U vzorků byl analyzován chlorofyl-a, celkový

uhlík, celkový dusík, celkový organický uhlík, teplota a průhlednost. Komezení obrazového

šumu byl použit obrazový filtr 3x3 a komezení procesu čistě na otevřené vodní plochy byla

použita maska vodních ploch.

Byly vyvinuty modely založené na grafech závislosti parametru kvality vody na

kombinaci spektrálních kanálů satelitního senzoru za použití lineární regrese. Modely

vytvořené pro parametry kvality vody byly hodnoceny na základě r2, RMSE a NRMSE.

Uvětšiny vytvořených modelů nejlépe korelovala kombinace pásem L1 a L3. Výjimkou byla

teplota, která byla založena na termálním kanálu přepočteném na jasovou teplotu [K].

L1-L3 jsou viditelná pásma atmosféricky korigovaného produktu Landsat 7 SR.

Vytvořené modely mají pomoci institucím, které jsou pověřeny monitorováním vodních ploch.

Klíčová slova

Landsat ETM+; Dálkové snímání; Model; Kvalita vnitrozemských vod; Monitorování vody; 
In-situ; Parametry; Monitorování; Limnologie
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INTRODUCTION

Background

Water bodies kept as reservoirs, ponds and lakes need to be carefully managed as their

quality has a lot of effects on those using it. The state of water bodies could be attributed to

both human activities as well as natural phenomenon. These activities physically, chemically

and biologically affect water quality [1]. The human activities that affect the quality of inland

water bodies might emanate from diversion of water courses, building of dams, draining of

wetlands, intentional and accidental channelling of waste in these water bodies, as well as

other factors [1]. Natural phenomenon that affect the quality of inland water bodies could be

from excessive erosion, torrential rainfalls, mud flow, land slides and others [2]. Globally, the

origin of penury is attributed in part to the deterioration of water quality caused by the

development of Harmful Algal Blooms (HABs), such as cyanobacteria blooms. The increasing

development of such HABs reflects the advanced state of aquatic ecosystem eutrophication

caused by urban, agricultural, and industrial developments. Once established in lakes,

cyanobacteria populations are extremely difficult to control except through the long-term

reduction of nutrient inputs from the watershed and from internal sources. The users could be

humans or aquatic life and making sure these water bodies have a standard quality is a tedious

and sometime time consuming and laborious as well as costly work to do. In addition, standard

in situ sampling and sample analyses are very expensive. Example, more than $650,000 CAN

was spent to collect and analyse in situ samples from 150 water bodies in the province of

Quebec alone during 2009 [3]. Measuring of quality parameters are done in-situ and ex situ. If

you have a number of water bodies to deal with, one can imagine the work involved.

Chlorophyll can be one of such parameters to measure with respect to water quality and there

are other water quality parameters such as Total Carbon, Total Organic Carbon, Total Nitrogen,

Temperature, Secchi Disk Depth, Coloured Dissolved Organic Matter.  Remote sensing, with

its synoptic viewing, consistent recurrence and capacity to provide information over a range of

wavelengths represents an attractive alternative method to monitor algal blooms. Satellite

sensors that provide data in visible and near infrared (NIR) wavelengths can be used to

estimate water quality parameters based on its high absorption of the blue and red part of the

electromagnetic spectrum, and its high reflectance of the green and NIR wavebands. Thus, bio-
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optical models that relate the apparent optical properties of water bodies to their inherent

optical properties can be used to estimate water quality parameters [4]. Case 1 Some years past,

it could be said that, the use of satellite data had been limited to open ocean waters classified as

Case-1 waters, in which phytoplankton and co-varying material of biological origin are the

principal constituents responsible for variations in ocean inherent optical properties  [5] and

algal pigments are often the only component optically active in the water [6]. Case1 water

bodies are those waters whose properties are optically obtained basically by the use of

phytoplankton, as well as related coloured dissolved organic matter and waste degradation

products  [7].In some lake waters, the use of airborne and satellite remote sensing has

demonstrated to provide more reliable temporal-spatial information about water quality and the

extent of cyanobacterial blooms than does conventional monitoring [8]. Most of these water

bodies that are mostly monitored are the big lakes, ponds as well as reservoirs. The reliance on

Landsat data will help in creating models that cover the various water bodies that are to be

monitored for the various water quality parameters (TC, TOC, TN, Chl-a, SDD, T). Landsat

ETM+ data was chosen due to its availability at no cost for research [9]. There exists a huge

potential in the use of remote sensing as a tool in the monitoring of inland water quality.

Context

 The monitoring of inland water bodies is generally a tedious and continuous process. There is 

therefore the need for methods that are most appropriate as well as less expensive to use. To 

monitor every inland water body is nearly impossible relying on traditional methods of inland 

water quality monitoring. Most of the lakes, ponds, reservoirs that are monitored are the bigger

ones. There is a problem as the smaller ones are either not frequently monitored or not 

monitored at all. Only a few of the water bodies used in this research work are actually 

monitored (especially the fish ponds). But suffice to say that most of these inland water bodies 

were being used for various purposes (recreational, fishing, animal habitat) during the time of 

this research. Therefore the quality of these various water bodies despite their size should be of

concern to everyone. Using a remote sensing based method for monitoring the water quality is 

an option that should be inculcated in dealing with this problem.

Purpose of Research

The general purpose of this research is the use of remote sensing as a tool in monitoring

in-land water bodies. The main objective of this research is to help formulate a model with use
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of remote sensing as a tool to monitor water quality parameters in in-land water bodies using

Landsat 7. Mostly such monitoring is normally done by way of in-situ or on site measurements

to know the actual levels of monitored parameters. This research work seeks to investigate and

to examine to potential of using remote sensing in this monitoring rather than the use of in-situ

measurements. This is also to investigate the effect of smoothing on satellite imagery. This is

because of the sizes of the water bodies being monitored. We seek to find out the possible

correlation between Chl-a and other water parameters such as water temperature, nitrogen,

carbon, organic carbon and water depth using the Secchi disc.

Significance and Scope

Quite a number of the works in this area have mostly centred on larger lakes. This work seeks 

to bring out the possibility of using remote sensing as a tool in estimating the levels of water 

quality parameters in smaller inland water bodies. There is also the issue of noise and cloud 

effect on images. The smoothing of images over small water bodies can be problematic. The 

effectiveness of water only mask for purposes of smoothing will be investigated. The models 

are also intended to work independently regardless of the season and inland water body type as

at times not the case in this research area. This research is centred on inland water bodies 

specifically around the Pardubice and Hradec Kralove region.
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 1 THEORETICAL PART

 1.1 Remote Sensing

This chapter takes into consideration the various theories and principles that will be

employed in all aspects of this research work. First all the historical basis of remote sensing

and what actually constitutes remote sensing. The various fundamental processes involved in

the process of remote sensing is also enumerated in this chapter. This consists of resolution,

noise and its effect on remote sensing images. The techniques of image processing is also

discussed in chapter. This encompasses classification of remotely sensed data, smoothing

techniques and atmospheric correction methods. Some specific works on inland water quality

monitoring based on R.S are also reviewed. Some explication would be given on some water

quality parameters that can be remotely sensed and the importance of monitoring water quality

parameters is done at the end of this chapter.

 1.1.1 Historical Background

The American Society of Photogrammetry, defines remote sensing as the 'imagery

acquired with a sensor other than (or in addition to) a conventional camera through which a

scene is recorded, such as by an electronic scanning, using radiations outside the normal visual

range'.In general this technology started in the in the 18th century, where people took aerial

images using balloons with newly invented cameras. Some historians attribute this'

terminology to Evelyn L. Pruitt of the U.S office of Naval Research as the one who first used

this word in 1960' [10] [11].There were other further trials and improvements but this

processes really did become more useful and enhanced in the 1970s [11]. This was when

instruments were flown on Skylab and on the Landsat, which was one of the foremost satellites

dedicated to the monitoring of land and ocean surface globally [12].

To delve a bit further it must be noted that this technique emanated from aerial

photography. As earlier said balloons were used in the developmental stage of this technique,

specifically in 1858 a balloonist called Gaspard-Felix Tournachon (Nadar) was the first to

capture aerial photograph Bievre Valley [13]. He further did a lot more of such 'aerial

photography that in the year 1859, the French army asked him for aerial photograph for their
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campaign in Italy. Other notable people also contributed to the development of this technique.

James W. Black and Professor S. King worked on this technique in Boston in the 1860s. They

also took photographs from a balloon at an altitude of 1200 feet by holding a cable to the

camera from the balloon [11]. It was not only balloons that was used in taking aerial pictures,

kites were also employed for the same purposes someone worth mentioning in this regard is

Arthur Batut who did so in the 1880s by attaching a camera to a kite to take aerial photographs

[13]. Though there were initial problems in the images that were taken further processing was

able to correct these defects. Another pioneer of the use of kite in taking aerial photographs

was George R. Lawson, who use a kite to take aerial photographs of an earthquake and wild

fires in San Francisco in 1906. He developed the use of kites with cameras attached to them

unmanned which was called Captive Airship [11] [13] [14].

Another pioneer of Remote Sensing is Julius Neubranner, in 1903 he designed a breast

mounted camera and placed it on pigeons who flew around with it taking images from the

skies with the cameras taking shots within 30 second intervals [13].

What Is Remote Sensing

With all the above historical background given one would ask what is Remote sensing?

Many academicians and writers alike have given quite a number of definitions, some of which

has been defined in this work. Remote sensing is not the same as Earth Observation, which is a

term that is used for remote sensing measurements made using aircrafts and satellites,

observations are often collected in two-dimensional arrays of pixels recorded at different

wavelengths or bands comprising of digital images, to this extent Earth observation image may

contain both spatial and spectral information of the earth surface [15]. Early researchers in

Remote sensing came up with different views with respect to its definition. In Colwell [16] the

term Remote Sensing is described in its broadest sense merely means reconnaissance from a

distance. Landgrebe [17] defines RS as 'the science of deriving information about an object

from measurement from a distance from the object, that is without the actually coming in

contact with it'. The quantity measured in present- day remote sensing systems is the

electromagnetic energy emanating from objects of interest and although there are possibilities

such as seismic waves, sonic waves and gravitational force, attention is mostly focused on

systems which, measure electromagnetic energy. Remote Sensing includes all methods of

obtaining images or other forms of electromagnetic records of the earth surface from a distance
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and the treatment and processing of the image data. In a wider sense is concerned with

detecting and recording electromagnetic radiation from the target areas in the field of view of

the sensor instrument. This radiation may have originated directly from separate components

of the target area; it may be solar energy reflected from them; or it may be reflections of energy

transmitted to the target area from the sensor itself  [18].  It can also be said to be the art and

science of reading, measuring, and analysing information about a phenomenon from a distance

[19]. Remote Sensing is defined by Jensen [20]'as the technique of obtaining information about

objects through the analysis of data collected by special instruments that are not in physical

contact with the objects of investigation'. It can also be said to be the measurement of object

properties on the earth surface using data acquired from an aircraft or a satellite [21]. We can

say is the practice of deriving information about the earth land and water surfaces using images

acquired from an overhead perspective, using electromagnetic radiation in one or more regions

of electromagnetic spectrum, reflected or emitted from the earth surface [22]. Its therefore

something at a distance rather than on the spot. As such, remote sensing can be regarded as

reconnaissance from a distance,"tele detection" or a form of the common adage "look but don't

touch". Remote sensing thus differs from in situ sensing, where the instruments are immersed

in, or physically touch, the objects of measurement. Furthermore this technique involves the

measurement of objects on the earth surface using data acquired from aircraft and satellites

with the reason being its attempt to measure objects of interest from afar rather coming in

contact with the objects as illustrated in [23]. Liew [24] described remote sensing as 'activities

of recording/perceiving/observing objects or events at faraway places and the sensors are not in

direct contact with the objects or events being observed'. A common example of an in situ

instrument is the soil thermometer. Liu and Mason [25] furthermore puts RS as 'the science and

art obtaining information about an object, area, or phenomenon through the analysis of data

acquired by a device that is not in contact with the area, object, or phenomenon under

investigation'.

Traditionally, the energy collected and measured in remote sensing has been

electromagnetic radiation, including visible light and invisible thermal infrared (heat) energy,

which is reflected or emitted in varying degrees by all natural and synthetic objects. The scope

of remote sensing has been broadened to include acoustical or sound energy, which is

propagated under water. With the inclusion of these two different forms of energy, the human

eye and ear are examples of remote sensing data collection devices. The instruments used for
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this special technology are known as remote sensors and include photographic cameras,

mechanical scanners, and imaging radar systems. Most of these sensors pick up information by

measuring the transmission of energy from the surface of the earth in different portions of

electromagnetic spectrum regardless of type of sensor, they are designed to both collect and

record specific types of energy that impinges upon them and detect variations in energy in both

the visible and non-visible areas of the spectrum [11]. In relation to monitoring water quality

remote sensing could be defined as by Campbell [26] to be the practice of deriving information

about the earth's land and water surfaces using images acquired from an overhead perspective,

using electromagnetic radiation in one or more regions of the electromagnetic spectrum,

reflected or emitted from the earth's surface.

Remote sensing devices can be differentiated in terms of whether they are active or

passive. Active systems, such as radar and sonar, beam artificially produced energy to a target

and record the reflected component. Passive systems, including the photographic camera,

detect only energy emanating naturally from an object, such as reflected sunlight or thermal

infrared emissions. Today, remote sensors, excluding sonar devices, are typically carried on

aircraft and earth-orbiting spacecraft, which has led to the familiar phrase "eye in the sky”.

Sonar systems propagate acoustical energy through water for the reconnaissance of subaqueous

features. In remote sensing the atmosphere does play a major role in the capturing of data. The

atmosphere separates the earth and the sensors especially on satellites, in this direction it’s

essential for us to understand the impact of electromagnetic radiation moving from the earth to

the sensor through the atmosphere. The effect of this radiation passing through the atmosphere

i s a b s o r p t i o n a n d s c a t t e r i n g o f r a d i a t i o n i n t h e a t m o s p h e r e[24].

To complete the remote sensing process, the data captured and recorded by remote sensing

systems must be analysed by interpretive and measurement techniques in order to provide

useful information about the subjects of investigation (Figure 1). These techniques are diverse,

ranging from traditional methods of visual interpretation to methods using sophisticated

computer processing. It cannot be emphasised too strongly that data is not information.

Accordingly, the two major components of remote sensing are data capture and data analysis

[27]. 
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 1.1.2 Resolution

Remote sensing uses sensors as a tool in its measure of the various parameters being

researched on. Sensors of satellites are used to gather information about the object that is of

attention. This information about these objects are normally stored as a grid. This grid form of

the covered area and this individual image points called pixels. Resolution is very key in

understanding exactly how these parameters are remotely sensed. Sensing different aspects of

the environment requires different type of resolution. Resolution could be said to be the

dimensions and the information content that the pixels of an image contain [28]. The ability of

an imaging system (sensor) to record in fine detail a distinguishable manner [29]. Its the

maximum separating or discriminating power of measurement and could be high or low [30].

Maini and Agrawal defined resolution as the ability of an entire remote sensing system to be

able to render a sharply define image [31]. Generally an image could be of high, medium or

low resolution. Image resolution applies to raster digital images, film images, as well as other

types of images and its units could be tied physical sizes such lines per mm, lines per inch or to

the overall size of the image [32]. In a more inclusive sense resolution would the ability of a

remote sensing system (sensor) to record and display fine spatial, temporal, spectral and

radiometric detail [22]. Resolution is divided into four types, which are Spatial, Temporal,

Spectral and Radiometric resolutions [26]. 
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Figure 1: Principle of remote sensing. [23]



 1.1.2.1 Spatial Resolution

Generally the sizes of pixels are dependent on the sensors being used (Table 2). This

determines the resolution of the image. Pixel could be said as defined by Gatrell [33] to be the

'fundamental spatial entity in a GIS based raster'. The size of a pixel is the resolution at which

the pixel is displayed. From the NASA handbook for Landsat 7, spatial resolution is defined as

the power that revolves an instrument needed for the discrimination of features, based on

detector size, focal length, and sensor altitude is referred to as spatial resolution [28].

In other words could be said to be the measure of how closely resolved lines are in an image

[32]. The ability to distinguish between two closely placed objects and to an extent the

minimum distance between two objects at which the images of the two objects appear distinct

and separate [34]. Table 1 summaries the quantitative categories of resolution types and their

pixel measurements. Figure 2 Gives example how different spatial resolutions influence shape

of an object as seen in remote sensing image. Table 2 shows various satellite sensors and their

spatial resolutions.
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Table 1: Resolution types and their pixel
sizes.

Resolution Type Pixel Size (m)
Low Larger than 30

Medium 2-30
High Less than 2

Figure 2: Spatial resolution- pixel size.
[134]



Mather and Koch [35] defines spatial resolution as the measure of the smallest angular or

linear separation between two objects that can be resolved by a sensor and is expressed by the

size of the specific pixel on the ground in meters. Spatial Resolution also can be said to be the

ability to distinguish between two closely spaced objects on an image, taking into

consideration the minimum distance between two objects at which the images of the objects

appear distinct and separate [36]. It corresponds to the area covered on the earth's surface to

compute one measurement (or one picture element 'pixel') of the sensor [37]. Spatial resolution

can also be the fineness of detail visible in an image and this corresponds to the ground pixel

size  [38]. Figure 3 shows how images with various types spatial resolution is seen [39]. For

example as stated by Townsend  [40], there are four separate criteria on which one can base on.

One of such measures which is commonly used is the geometric properties of the imaging
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Table 2: Satellite sensors and their spatial resolution
[243].

Figure 3: Low and high spatial resolution. [39]

Satellite Orbital Height Spatial Resolution

Landsat 700 30m MS, 15m pan

SPOT 2.4 832 20m MS, 10m pan

SPOT 5 832 10m MS, 20m SWIR, 25m pan

IRS P5 618 25m pan

CBERS 778 80m MS, 160m thermal

IKONOS 681 MS 4m, pan 1m

Orb View 3 470 MS 4m, pan 1m

Quick Bird 2 450 MS 244m, 0.61m pan



system, based on the instantaneous field of view (IFOV), its the area on the ground, view by an

instrument in a given altitude at any given instant of time [35]. An alternative to this measure is

the angular field of view of a sensor which is independent of height. It is a relative measure as

it an angle and not length [20]. To measure IFOV is normally done in two ways as described by

[35], one this can be done as an angle α or the equivalent of the distance XY on the ground as

seen in Figure 4. To calculate the actual and distinct from a nominal IFOV depends on a

number of factors. With regards to satellite, there is none with a stable orbit therefore its height

from the earth will vary. Example Landsat 1 to 3 had a nominal altitude of 913 km and the

actual varied between 880 and 940 km [35]. The lower the altitude of the sensor the smaller the

IFOV and the higher the altitude, the bigger the IFOV.

The alternative method or measure of IFOV is on point spread function (PSF) as described in

[41] [35], [42]. For instance the presence of relatively bright dark objects within an IFOV of a

sensor will increase or diminish the PSF to make the observed radiance either high or low with

respect to the surrounding areas. 
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Figure 4: Instantaneous field
of view. [35]



This is described in Figure 5 example thats why, objects with features that has high-constrast 

such narrow rivers and canals are mostly visible on Landsat ETM+. This is the case even 

though they have a width that is less than the sensor's 30m resolution.

Spatial Resolving Power

The use of these word is sometimes done interchangeably with spatial resolution but

these two are not the same. Spatial resolving power is the imaging system or a component of

the system [36]. Wassai and Kalyankar defines spatial resolving power as the ability of a

particular sensor to render sharply defined image [43]. Some researchers and writers a such

based their definition of resolving power on IFOV. Basing our definition solely on the IFOV is

more of geometric and we must take into account the radiance that is generated as per the

definition of remote sensing, it detects and records the radiance of spectral properties being

measure of a specific target. Its worth taking into account effective resolution element (ERE),

[35]

 1.1.2.2 Temporal Resolution

It could be said to be either the theoretical or operational capabilities for a remote

sensing system to repetitively acquire imagery over a time interval [44]. Temporal resolution
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Figure 5: The point spread
function as a way of measuring

IFOV [35]



refers to repeatedly observe a scene at a regular interval, taking into consideration the temporal

frequency with which a given scene can be imaged which could expressed in days [45].

Mather defines temporal resolution as the time that elapses between successive dates a sensor

acquires images of a given point on the ground and this revisit time may be measured in

minutes [46]. The amount of time it takes for a sensor to return to a previous image location,

which is known as the repeat cycle or the time interval thats between acquisitions of two

images [47]. This is further elaborated in Table 3. Other researchers and writers alike have

defined TR in similar fashion. This can be seen in Jensen [48], Bhatti [49], Yuan [50], Webster

and Eren [37]. In respect to the sensor being used, temporal resolution may vary in terms of the

time. The platform as earlier mentioned has effect on it as well, specifically whether it's

geostationary or not. The location of the sun and its illumination has an impact on temporal

resolution of a sensor, that is, sun illumination directs the a sun-synchronous orbit and dictates

the time and period of the day that images should be taken at a particular location [50]. The

imaging revisit time in general increases at higher latitudes due to significant side lap between

consecutive satellite passes [38]. This is relevant as it helps the sensors within the visible to

infrared region from taking images especially in the dark or night. This makes most of the

images taken usable and thereby maximising the temporal resolution of the sensor being used

[38]. 
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Table 3: some satellite sensors and their revisit time or temporal resolution [245]

Name of Sensor Revisit or Temporal Resolution (days/years)

NOAA AVHRR 1 day

MODIS 1 to 2 days

BuickBird 1 to 3.5 days

IKNOS 16 days

Landsat ETM+ 16 days

RADARSAT 1 24 days

SPOT 5 26 days

NAPP 5 years



Actual resolution depends on a variety of factors some being, the sensor or satellite

capabilities, the swath overlap as well as the latitude, signal to noise ratio, swath with of the

sensor [51]. Its possible to have a shorter revisit time for an area that has overlap in the

imaging swaths of adjacent orbits [52]. Figure 6 depicts this phenomena. A typical example is

the polar regions as it has more side laps and this is displayed in Figure 7.

 1.1.2.3 Spectral Resolution

The sensitivity of a sensor to respond to specific frequency range, which often covers not

only visible light but also non-visible light as well as electromagnetic radiation. The spectral

resolution in R.S denotes the ability of a sensor to define the fine wavelength intervals [22].

Bandwidth at which an electromagnetic radiation is used by a sensor [31]. It reflection of the

bands that a sensor is able to acquire within a given electromagnetic spectrum [53]. In other

words, its the point of sensitivity of a remote sensing system (sensor) within an

electromagnetic spectrum with respect to its width and intervals. The wavelength at which

band to which a sensor is sensitive [54]. It could also be said to be the bandwidth utilized in an

electromagnetic spectrum [37]. Figure 8 displays electromagnetic spectrum and the respective

wavelength. Spectral resolution can be either high or low depending on the bandwidth's width.

Furthermore this could be referred to as the width across the electromagnetic spectrum that an
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Figure 7: overlap in adjacent swaths. [52]Figure 6: Overlap in adjacent swaths: revisit
time. [44]



R.S instrument is detecting [38] [55]. The narrower the bandwidth, the higher the spectral

resolution and vice versa.

The number of bands of a sensor its an important aspect of spectral resolution of every sensor 

and its electromagnetic spectrum as stated earlier. Sensors could be be grouped into three 

categories based on their bands as seen in Table 4. Also other factors to be consider in 

determination of spectral resolution of a sensor are, the spectral response of the function (SRF)

of each band and the full-width at half-maximum (FWHM). 

Signal to noise ration (SNR), has to do with the ratio between the intensity of received

signal containing wanted physical information and the background noise [56]. Furthermore,

SNR has to do with the minimum power level required by a sensor to be able to identify an

object in the presence of noise [31]. A measure of the purity of a signal [35]. Example Smith
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Figure 8: Spectral resolution: electromagnetic spectrum. [55]

Table 4: Spectral Resolution types and the number
of bands they contain.

Spectral Resolution Number of Bands
High 220

Medium 3 to 15
Low 3



and Curan [57], [58] estimates the SNR for these sensors AVHRR, Landsat TM and SPOT

HRV as 38:1, 341:1, 410:1 respectively.

(1)

where S is the signal which is the actual energy reaching the detector of the sensor and N is the 

background Noise (random error in the measurement). N can be derived by equation,

(2)

Where mDN is the mean value of the DNs in the sample. N is the number of DN values in the 

sample. Figure 9 displays the spectral response for Landsat 7 ETM+ and landsat 8 OLI.

It is important to bring a balance between SNR and higher spectral resolutions. As there

no perfect image with good resolution as well as a perfect SNR. In other word to deal with this

better to adapt multi variate measures so both SNR and spectral resolution are appreciably

dealt with. As stated by Mather, it is better to adopt a multivariate approach that significant

differences (or similarities) that may remain hidden variables, are considered one at a time and

not simultaneously [59].
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Figure 9: Spectral response for Landsat7 ETM+ and Landsat8 OLI. [247]



 1.1.2.4 Radiometric Resolution

Radiometric resolution is the number of digital quantization levels thats used to express

data collected by a specific sensor [35]. The smallest change in intensity level that a remote

sensing system can detect [24]. The specification of differences in brightness of an image that

can be perceived [60]. In other words its the level of sensitivity of sensor or detector to be able

to differentiate in signal strength as it records the radiant flux reflected or emitted from the

coverage area [54]. Radiometric type of resolution is the ability of a remote sensing system to

be able to record many levels of values for example, Landsat MSS recorded data in grid cells

ranging from 0-63 where as the ETM and ETM+ does record from range of 0-255 [38].

Navulur [61], explains this type of resolution as the number of grey levels that can be recorded

for a given pixel. Its measured in bits. The total number of quantization levels used in a sensor

[62]. Radiometric resolution, takes into consideration the wavelength as expressed by Webster

and Eren [37], it is the number of bits that are used in the recording of a given energy

corresponding to a given wavelength. In most cases the higher the radiometric resolution, the

better it is for small differences in the reflected or emitted radiation and also the larger its

volume the measured data would be. Radiometric resolution mostly depends on the

wavelengths and the type of spectrometer of the sensor being used. In monitoring the

environment using remote sensing, the reflected signal are captured as analog and then

converted to digital numbers  (DN) or grey level values. The conversion from analog to DN is

referred to as analog to digital conversion (A/D). To find the range of pixel values, one can use

the below equation

(3)

where N is the range and R is the radiometric depth.
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As earlier stated that the finer the radiometric resolution, the higher the number of grey levels 

as shown in Figure 10 and 11. This also increases the degree of details, precision that the image

will have is as well increased.
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Figure 10: Radiometric range of a sensor. [51]



The SNR has to be taken into consideration in having a higher radiometric resolution. Its

important because the step up to the next level can not be less than the noise level if not it

would be impossible to say if the change in level is real change in radiance of the target or

rather change in the level of noise [35]. Therefore, a low quality remote sensing system with a

high noise level will have a lower radiometric resolution compared with a high quality as well

as a high SNR instrument [22].

 1.1.3 Noise

Remotely sensed systems has an implicit assumption that information can be conveyed to

the sensor via electromagnetic energy that has been emitted or reflected from the Earth. This

information theoretically dictates whether this assumption is correct or valid. Furthermore the

information-bearing attributes of this radiance must be in its variation, be it over time, space,

spectrum, or the combination of these [63].

Noise is a considerable problem in R.S sometimes as sensors take images. To this effect

noise is an undesirable element which limits the use of an image. When a satellite takes an

image the noise content leads to a distorted pixel values and there is the need to limit or reduce

the effect of noise on the image. Reflected light which satellite sensors detected coming from

the earth's surface can be changed or altered as well as blocked a variety of phenomenon. The
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Figure 11: Radiometric resolution of a remotely sensed
image. [52]



image taken by the satellite which contains noisy signals leads to a distorted pixel values which

in turn affects the data captured [64]. This noise effect has to be reduced and this can be done

using certain techniques to filter out the noise [65] [66]. 

 1.1.3.1 Types Of Noise

There are a number of noise types that affect images some of which are considered below

based on what is espoused in Bhosale and Manza [67], Al-amri et al [64], Corner et al  [68],

Rani and Kamboj [69],  Afrose [70], Chan et al [71]. In general image noise is 'the random

variation of brightness or colour information in images produced by the sensor and circuitry'

[70].

Random Variation Impulsive Noise (RVIN) / Gaussian

This particular of noise can also be termed as Gaussian noise or normal noise and

defined as the noise with a Gaussian amplitude distribution [67], [69] [71]. This type of noise

is visualised in Figure 12. It normally occurs randomly as white intensity.

        Salt and Pepper Noise (SPN)
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Figure 12: Effect of gaussian noise on an image remotely
sensed [67]. 



Its a type of noise that contains random occurrences of both black and white intensity

values [67] [71]. This type of noise tends to increase the mean grey level of a local area.

Speckle noise is caused by signals from elementary scatterers, the gravity capillary ripples, and

manifests as a pedestal image [70]. It is demonstrated in Figure 13. These are often caused by

the threshold of noise image. Gaussian and salt and pepper are called impulsive noise.

Speckle Noise (SPKN)

If the multiplicative noise is added in the image, speckle noise is a ubiquitous artefact that 

limits the interpretation of optical coherence of remote sensing image. The scattered waves 

constructively or destructively do interfere with each other causing a speckle appearance on the

image [68] and is visualised in Figure 14. This can be expressed as

J=I+n⋅I (4)

Where: J is distribution speckle noise image, I is the input image and n is the uniform noise 

image by mean o and variance v. This particular type of noise is dependent on the reflected 

signal magnitude [68].
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.

Figure 13: Impact of salt and pepper noise on a
remotely sensed image. [239]



 1.1.3.2 Other Forms Of Noise

Thermal Noise

This type of noise is also referred to as the Johnson noise. It's due to a consequence of random 

motion of electrons in conducting materials because of thermal activity as stated by Landgrebe 

and Malaret [63] and visualised in.

Quantization Noise
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Figure 15: The impact of thermal noise on remotely sensed images. [248]

Figure 14: Effects of speckle noise on remotely
sensed images. [242]



As expounded by Landgrebe [63], when the suitable preamplification is done, firstly the 

processing signals from a sensory system is usually A/D conversion. It requires the sampling of

the signal at usually uniformed space intervals of time. After this converting of each analog 

magnitude X to Xq, the nearest of q=2n levels, where n is the number of bits available. The 

difference is

(5)

Referred to as quantization noise. In a case where a uniform quantizer is used, the signal to be 

quantized is assumed to be uniformly distributed over the dynamic range of the quantizer. The 

noise will have a uniformed distribution over the range Δ, where Δ is the size of a quantization 

interval 1/q and equal to times the dynamic range established for the signal. In most signal 

distribution and values of q used in practice, the noise mean square value is quite insensitive to

the signal distribution, thus the uniform assumption in one commonly used.

Photon Noise 

This happens as explained in Young et al [72] when the physical signal observation is based 

upon light whereby the quantum nature of light plays a significant role. This noise emanates 

from the fundamental statistical nature of a photon production. Photon production is based on 

or guided by quantum physics laws and this limits us from inculcating the average number of 

photons in a given observation window [72]. Therefore the probability with respect to the 

distribution of photon p in an observation window of length T seconds is referred to as Poisson 

[72]. This type of noise is illustrated in visualised form as Figure 16
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On-Chip Electronic Noise (READOUT NOISE)

A type of noise originating from the process of reading a signal from a sensor and in a

specific case the field effect transistor (FET) of a CCD chip [72]. It's impact on images is

visualised in Figure 17.
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Figure 17: Effects of on-chip electronic noise vis a
vis remotely sensed images. [252]

Figure 16: Photon noise and its effect on
remotely sensed images. [251]



Amplifier Noise

As discussed by Young et al [72] the standard model for this type of noise is additive,

Gaussian and independent of the signal. In most modern sensors especially cameras, this is

limited but an exception to this is in colour cameras where more amplification is used in the

blue colour channel than the green or red channel which leads to noise in the blue channel.

 1.2 Image Processing Techniques

 1.2.1 Classification

This is where remotely sensed data is used to assign corresponding levels with respect to

groups with homogenous characteristics, with the aim of specifically identifying multiple

objects from each other within an image. When RS system records an image, radiation

reflected from a scene in a number of spectral bands which generates spectral classes which in

essence can be thought of as clouds of data points, concentrated around cluster centres in an n-

dimensional, Cartesian spectral space  [65]  [66]. Classification is done to make sense of the

specific objects we are considering in our environment by basically grouping them or

categorizing them. Pixels in remotely sensed images can either be categorised by their multi

variable statistical properties or by the segmentation which based on both statistical and spatial

relationship [25]. The process of categorizing all pixels in a digital image into different land

themes and this is mostly done by using multi-spectral images based on the spectral pattern

present within the data for each of the pixel used as the numerical basis for categorization [73].

Where the overall objective is to automatically categorize all pixels in an image into specific

classes based on their spectral patterns, nature of surface materials which have similarities [74].

Classification follows two stages. The first stage has to do with the categorization of real-world

object. These real objects could be for example water bodies, wood lands, grasslands as well as

other land cover types [35]. The second stage of classification, is the labelling of the

categorized land cover types. These classification of categories are mostly numerically (priori)

done [35]. These afore mentioned steps or stages are sometimes referred to classification and

identification [75], [35], [25]. Classification which deals with the categorization, is based on

predetermined numbers of classes as well as, those observed on ground at the chosen spatial

scale. Clustering which is part of the classification process, deals with classes that are more

spectrally distinct referred to as spectral classes [75]. Clustering which deals with data analysis
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determines the number of land cover categories that could be separated in the area the image

covers and allocating pixels to these categories [35]. This process is divided into two,

hierarchical and non-hierarchical clustering. Identification of categories in the nature of the

land cover type is the step that follows after clustering [76]. It is important to note that in all

this the properties of the pixel that is used in labelling a specific pixel as stated by [77]. Set of

grey scale values for a specific pixel which is measured in a number of spectral bands is called

a pattern. Therefore classification could be said to be part of or a form of pattern identification

as pattern identification is associated with each pixel of a specific image with respect to objects

or materials that corresponds to the specific point on the earth surface [35]. Thus it can be said

to be a set of measurements of the specific pixel(Object) that has to be classified. Spectral

bands for example the seven bands of Landsat 7 ETM+ and other derived properties of a

specific pixel such as its context and texture are known as features. Texture is the measure of

how homogenous neighbourhood of a pixel is whereas context is the relationship of an object

to other objects nearby [77], [78].

Generally classification can be categorized into two, unsupervised and supervised [35],

[25]. This is schematically described in Figure 18.
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Figure 18: The types of classification: unsupervised
and supervised. [79]



 1.2.1.1 Unsupervised and Supervised Classification 

In some situations we might not have sufficient or the necessary land cover types thats

present or available for a geographical area covered by a remotely sensed image. In such

situations estimating of classes mean becomes is very difficult. The only way is to fish for the

needed data and therefore, the need for unsupervised classification  [35].

It is a method of classification thats based on entirely the statistical data distribution of

the image and this is mostly referred to as clustering [25]. This method also examines a large

number unknown pixels by dividing them into class base depending on their natural groupings

present in an image's values. In that the values within a given cover type are mostly close

together in a measurement space Lillesand and Kiefer [30], Sabins [79].

Whereas Supervised classification is the process of using samples of known identity

(pixels already assigned to informational classes)to classify pixels of unknown identity(to

assign unclassified pixels to one of several informational classes), [22]. Kanellopoulos terms

classification as a technique which aims at allocating each pixel in an image to the class with

which it has the highest probability of membership [80]. This process is pictorially depicted in

Figure 19.
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Figure 19: Process of unsupervised classification.
[79]



 1.2.2 Smoothing Techniques (Algorithms)

Light waves that are reflected that are detected by satellite sensors emanating from the

earth's surface can be impeded by a variety of occurrences. This might be due to clouds in the

atmosphere or aerosols. Such occurrences, at times, introduces noise into the satellite data. In

limiting the effect of noise on remotely sensed images there are a number of techniques that

have been suggested by various researches. These techniques are normally to filter out and in

most cases estimate the standard deviation of noise [68]. 

Data Filtering Techniques

One of the methods of reducing the effect of noise on remotely sensed images is data

masking. Filtering the image spatially can be done by convolving the image with a small

moving window or mask as this implements a desired characteristic frequency [68]. In this

procedure, each pixel with the original image is replaced by a weighted average of the product

of the window and the neighbouring pixels [81]  [68]. It is important to note that from practise

most analyst estimate the standard deviation of imagery so as to come out with the most

suitable filter to remove or limit the effect of noise in an image [68]. The process of using

average window is referred to as discrete convolution filtering or data masking [81]. As stated

in [81] if a 3×3 window or mask given by 

Z1 Z 2 Z3

Z4 Z5 Z6

Z7 Z8 Z9

(6)

where the new pixel values of the image are

(7)

where the DN represents the brightness values of the pixels. The specific data mask is

moved one pixel at a time normally with the pixel being filtered directly in the centre of the

mask as well as the neighbouring pixels having the equation (7) applied subsequently until

every pixel has been filtered.
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Linear Filters

There are number of linear filters for image smoothing of which some are elaborated on

in this section based on Young et al [72]. It is further elaborated in Tamim [82], Pratt[83]

[84]Kuan et al[85], Rani and Kamboj [69].

 Uniform Filter

This type of filter, the input image is usually based on the local average of the input filter.

All the values within the filter support have the same weight [72]. In respect of the continuous

spatial domain (x, y) the point spread function and transfer function are used. Example for a

discrete spatial domain (m, n) values for filtering are the samples of the continuous domain

case [72]. In a case of a rectangular case, (J=K=5) and a circular case (R=2.5) are expressed

below based on Young et al [72] as formulas (8) and (9), respectively:

hrect[ j , k ]= 1
25 [1 1 1 1 1

1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

] (8)

ho[ j , k ]= 1
21 [0 1 1 1 0

1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
0 1 1 1 0

] (9)

In each case the filter is normalised so that ∑h[j, k]=1. Furthermore this is done so that if

input is a constant then the output image will show the same value a=[m, n].

 Triangular Filter

 As espoused by Young et al, it is the output image is based on a local averaging of the

input filter where the values within the filter support differing weights. In this situation the

filter can be seen as the convolution of two uniform filters as in rectangular or circular. This

invariably has a direct consequence for computational complexity [72].
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 Gaussian Filter

This type of filter employs the Gaussian kernel for smoothing and employs certain properties

such as central limit theorem, minimum space-bandwith product of the Gaussian as well as

application of edge finding and scale space analysis [72]. 

Non-Linear Filters

There a number of smoothing filters that are non-linear, though these type filters can not

be analysed by Fourier analysis, they are still used extensively [72]. These non-linear filters

discussed below are based on Young et al [72], Tamim  [82] He et al  [86], Mancuso  [87], Rani

and Kamboj [69].

 Median Filter

This type of filter is based on moving a window over an image as in a convolution as

well as computing the output pixel as the median value of brightness within the input

window [72] [82] [88].  It also involves a simple and powerful non-linear filter which is

based on order statistics and reduces the amount of intensity between one pixel and the

other pixel[69] [89]. The filter works by moving through an image pixel by pixel and

replace each value with a median value of neighbouring pixels. This pattern of

neighbour is called the window and slides pixels by pixels over the entire image [90]. 

This expressed below as described in Sivasundari et al [88].

(10)

The above is an optimum which help limit the effect of noise on the image and it causes no

changes in the shift boundaries and no reduction in contrast and proved to be more robust in

the presence of noise [88].

 Wiener Filter

Its a filter that incorporates an optimal tradeoff between inverse filtering and noise

smoothing, this removes additive noise as well as deblurring concurrently [88] [91]

[92]  [93]. This form of filter involves two processes, one of the process is inverse

filtering and the other is noise smoothing [88]. 
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 Relax Median Filter

       As expounded by Afrose [70] Hamza et al [94] this type of filter is normally obtained by

relaxing the order of statistic for pixel substitution. Furthermore the 'noise attenuation as well

as the edge and line preservation are analysed statistically. The trade-off between noise

elimination and detail preservation is analysed'[70] [94]. 

 Centred Median Weighted Filter(CWM)

 Ko and Lee [95] expresses CWM as a type of filter which has a weighted median filter

giving more weight only to the central value of each window. In the use of CWM, its

always important to consider median and weighted median filters in arriving at your

centre weighted median filter. It is worth noting that a CWM with a larger CWM

performs better in detail preservation but worse in noise suppression than one with a

smaller CWM. 

 1.2.3 Atmospheric Correction

When remotely sensed images are taken, the prevailing atmospheric conditions have

enormous effect on the images. Mather and Koch states that a value recorded at a given pixel

location on a remotely sensed image is not a record of the true ground-leaving radiance at that

point, for the magnitude of the ground-leaving signal is attenuated due to atmospheric

absorption and its directional properties are altered due to scattering [35]. Large amounts of

imagery collected by satellites are largely contaminated by the effects of atmospheric particles

through absorption and scattering of radiation from the earth surface Jaja [96], Fallah-Adl et al

[97]. This process is described in Figure 20. 
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From Figure 20, some of the signal from water would have that of grass been scattered

into the signal path of water thereby giving a wrong representation to the satellite sensor that is

collecting the information. This phenomenon will make the signal seem to emanate from the

water surface but in fact that would not be the case. A signal may appear to be originating from

a specific point on the ground whereas, in fact, scattering from another point redirects some of

of the incoming electromagnetic energy within the atmosphere into field of view of the sensor

(atmospheric path radiance) and the scattered energy is referred to Environmental Radiance

[35]. Additional difficulties are caused by variations in the illumination geometry (the

geometrical relationship between the sun's elevation and azimuth angles, the slope of the

ground and the disposition of topographic features) [35]. Figures 21 and 22 show the effect of

atmosphere on a remotely sensed image before and after atmospheric correction.

Hadjimitsis et al describes atmospheric correction as radiation from the Earth’s surface

which undergoes significant interaction with the atmosphere before it reaches the satellite

sensor. This interaction with the atmosphere is stronger when the target surfaces consist of non-

bright objects, such as water bodies or vegetation [98]. 
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Figure 20 Components of signal received by an air-borne or satellite-mounted sensor.
[242]



Based of the above described causes for the need of atmospheric correction, the main

effects of atmospheric scattering on remotely sensed data are upwelling atmospheric radiance

or path radiance and atmospheric absorption with multiplicative characteristics  [99]  [100].  In

general infrared TM bands are affected by air molecule and aerosol particle scattering which

are additive and create haze [100]. Air molecules are mostly stable and obey Raleigh's

scattering rule, nonetheless the character of aerosol particles are often variables and their

influence are difficult to estimate [100].  In the visible bands, the absorption caused by water

vapour or other gases are very weak and can be disregarded, consequently the impact of short

wavelengths is predominantly from Rayleigh scattering [100]. Nevertheless, in near infrared

and middle infrared wavelengths, the effect of air molecules and aerosol particle scattering can

be insignificant, the main crash is from the atmospheric absorption which is caused by water

vapour, carbon dioxide, methane and other gases [100]. Usually,  the contents of carbon

dioxide, carbon oxide and methane are stable, however water vapour is variable and therefore a

good model should be able to simulate the above phenomena and to correct the influences

caused by scattering and absorption [100].

Atmospheric correction may be necessarily in three situations. The first is where there is

the need to compute a ratio of the values in two bands of a multi-spectral image. The scattering

increases inversely with the wavelength and therefore the shorter wavelengths experience more
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Figure 21: Image corrected limiting the
effect on atmospheric effect on the image.

[250]

Figure 22: Image affected by
atmospheric conditions. [250]



scattering then the longer wavelength data. Secondly, where there is the need to relate

upwelling radiance from a surface to some property of that surface in terms of a physically

based model. This situation requires that the atmospheric component present in the signal

recorded by the sensor must be estimated and removed. Third case is when the ground

measurements made at one time are to be compared with a results of a later date. In this case

prevailing atmospheric conditions will not be the same  [35].

There are a number of techniques adopted in dealing with atmospheric effects on

remotely sensed images. The main objective of atmospheric correction is to retrieve the surface

reflectance (Characterises the surface properties) from remotely sensed imagery by removing

the atmospheric effects  [97] [96].  Many works has proven that atmospheric correction greatly

helps and can significantly improve image classification Fallah-Adl [97], Fraser and Kaufman

[101], Fraser et al  [102].

 1.2.3.1 Image Based Techniques

There many methods used in atmospheric correction and the first to be considered is the

image based methods. These methods are discussed based on Mather and Koch [35].

The Histogram Minimum Method (Dark Pixel Method )

The histogram minimum method, histogram of pixels values in all bands are computed

for the full image and this generally contains some areas of low reflectance (clear water, deep

shadows, exposures of dark coloured rocks). These pixels will have values very close to zero in

near-infrared bands (Examples Landsat TM band 4, SPOT HRV band 3) also other bands may

have near-zero values in their spectral region  [35]. This is further expounded by Hadjimitsis et

al [98] [103], this approach states that most of signal reaching a satellite sensor from a dark

object was contributed by the atmosphere at visible wavelengths. The pixels from dark targets

indicates the amount of upwelling path radiance in the band. The atmospheric path radiance

adds to the surface radiance of the dark target and thus gives the target radiance at the sensor.

expresses the DP algorithm below  [104].

(11)

Where 

Lts is the target radiance at the sensor's
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Ltg is the target radiance at the ground level

Lp is the atmospheric path radiance

By selecting a dark object, such as a water body, and by assuming the radiance from the 

dark target at ground level (Ldg) to be zero, the path radiance is equal with at-satellite (at the 

sensor) radiance of the dark object.

(12)

Where

Lds is the dark object radiance at the sensor

Ldg is the dark object radiance at the ground level

Assuming the Ldg=0

(13)

Otherwise, where a known spectral radiance or reflectance value is known (or assumed)

in advance for specific dark target Ldg has a value. In the case, the recorded at– satellite

radiance for the dark target is assumed to be the sum of radiance of the dark target at the

ground level and the atmospheric path radiance. It is worth noting that the path radiance is

much reduced in mid-infrared bands such as Landsat-TM bands 5 and 7 [35]. This method of

atmospheric correction is further expounded in detail by Chavez [105].

Regression Method

Mather and Koch [35] expressed the regression method as applicable to the areas that

were described in the DP method. With respect to Landsat ETM+ sensor, pixel values in the

near infra-red band are plotted against the values in the other bands in turn and a best-fit

straight line is computed for each using standard regression methods. 

Empirical Line Method (EL)

In general remotely sensed image DN are difficult to interpret as buttressed by Baugh

and Groeneveld, remotely sensed DN of image cannot be assumed to represent the actual
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surface conditions because of a variety of atmospheric reasons [106] [107].The empirical line

method therefore one of the commonly used methods of correcting multispectral and hyper

spectral data from raw DNs as well as radiance and reflectance [106]. This method assumes a

linear relationship between DNs and ground measured reflectances surface with a range of

differing albedo [108] [35]. This is described visually in Figure 23. Different researchers have

tried to use this method with different sensors to limit the effect of atmospheric conditions on

remotely sensed images such as Karpouzli and Malthus [107] used the empirical line method

of atmospheric correction on IKONOS data, Smith and Milton [108] used empirical line

method on CASI data, Moran et al [109] used the empirical method on both Landsat TM and

ETM+ data, whilst Vaudour et al  [110] used this method on SPOT data.

 1.2.3.2 Physically Based Models

These are methods that involve complex models that are also very accurate in converting

digital numbers to into surface reflectances [100]. These particular methods convert remotely
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Figure 23: Example of empirical line method using two targets of
contrasting albedo. [106]



sensed digital numbers to surface reflectance or radiance by removing the effects that are

caused by atmospheric attenuation, topographic conditions and other parameters Lu et al [100].

Also, these methods depend on information from the image itself to in order to estimate the

path radiance for each spectral band [35]. Furthermore it is imperative to focus on the

extraction of subtle differences in reflectance to be able to estimate biological properties such

as biomass and forest volume, which needed when creating relationships between ground truth

data and those that are remotely sensed (measured) [100]. Based of this principle a number of

models have being created by researchers and some these models commonly used are [35]

[100], 5S (Simulation of Satellite Signal in Solar Spectrum) 6S (Second Simulation of Satellite

Signal in Solar Spectrum), MODTRAN (Moderate Resolution Atmospheric Subtraction),

LOWTRAN, ATREM, DOS (Dark Object Subtraction) [111] [112] [113] [114] [115] [116]

[100]. Some of these models have been fused into GIS and RS softwares such as 6S is used in

GRASS GIS for the purposes of atmospheric correction.. The model 6 S for instance, predicts

reflectances of objects at the top of atmosphere by using information vis a vis the surface

reflectance and the atmospheric conditions [116]. Masek et al [117] developed the 6S

physically based model for atmospheric correction used in the LEDAPS project by NASA for

processing images into atmospherically corrected images into atmospherically corrected

images. The 6S algorithm is explained further based of the following expression described

below.

ρTOA=Τg(Ο3Ο2CΟ2NΟ2CΗ4)×[ρR+Α+ΤR+Α Τ g(H 2Ο)
ρs

1−ss+Αρs

] (14)

where ρs is the surface reflectance

T g is the gaseous transmission due the gases O3,O2,CO2,NO2,CH4

T R+A is the Rayleigh and aerosol transmission

ρR+ A is the Raleigh and aerosols atmospheric intrinsic reflectance

SR+ A is the Raleigh and aerosols spherical albedo

The computation of the transmission, intrinsic reflectance and spherical albedo was done

based on 6S radiative transfer code [117]. 
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 1.3 Works on Inland Water Monitoring Based of Remote Sensing

Quite a number of researchers in one way or the other have tried to use remote sensing as

a tool in the analysis and water monitoring. Ritchie et al [118] came out with an approach that

estimates suspended sediments in water 

Y =A+B.X (15)

or

Y =A.B x (16)

In the equations, Y is the remote sensed measurement example radiance and X is the

water quality parameter being measured example chlorophyll. In this approach A and B are

empirically derived factors. In empirical approaches, statistical relationships are determined by

measuring the spectral or thermal properties and water quality parameters. The limitation of

this approach is that such empirical models could only be used to estimate water quality

parameters for water bodies with similar conditions. 

Another approach that can be used in estimating water quality parameters is the

analytical approach, Schiebe et al. [119] based this approach on optical properties of water and

water quality parameters to develop a physical based model. He based this model on

reflectance and statically determined coefficients which were used in estimating suspended

sediment concentrations. Their model had the form 

Ri=Bi[1−exp (c / S i)] (17)

where Ri is the reflectance i, c is the suspended sediment concentrations, Bi represents the

reflectance saturation level at suspended sediment concentrations in wave band i and Si is the

concentration parameter equal to the concentration.

Harding et al [120] using measurements from aircrafts created an algorithm in

determining the seasonal patterns of chlorophyll content in the Chesapeake Bay: 

log10 [chlorophyll ]=a+b (−log10(G)) (18)

where a and b are empirical constant derived from in situ measurements and

G=(R2)2/(R1∗R3) (19)

where R1 is radiance at 460 nm, R2 is radiance at 490 nm, and R3 is radiance at 520 nm. 
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Lesht et al developed a model of using satellite measurements to estimate the level of

chlorophyll in the Great Lakes Region. They used MODIS to develop an algorithm for

estimating chlorophyll concentration in the Great Lakes [121]. 

Rundquist et al [122], estimated Chl-a by using, remote measurement of algal

chlorophyll in surface waters looked at hyper spectral signatures, in the visible and near-

infrared, associated with two experiments conducted outdoors in large water tanks; one

involving relatively low amounts of chlorophyll over a narrow range and a second involving

relatively high amounts over a wide range. The principal finding was that the commonly used

near-infra red ratio is best for estimating pigment amounts when the concentration of

chlorophyll is relatively low, and the first derivative of reflectance around 690 nm is best when

the concentration is relatively high. 

S.Novoa et al [123] estimated chlorophyll-a concentration in waters by developing a

regional algorithm to retrieve Chl-a in surface water using in situ, for a subsequent application

to Medium Resolution Imaging Spectrometer (MERIS) satellite images.

Yu et al [124] used a NIR-red based algorithm based on the SAMO-LUT (Semi-

Analytical Model Optimisation and Look-Up Tables). They used this method on five Asian

lakes in Japan and China. With this model of chlorophyll estimation, rather than relying on in

situ data, a comprehensive synthetic data set is used for model calibration. This model involves

the use of imagery of case II water body where only one of the constituents changes and the

other two remaining are controlled as constants.

He et al [125] used water quality retrieval models to analyse water variables in

Guangting reservoir based on Landsat data. Other researchers have also used Landsat data in

the monitoring of water quality parameters, Hellweger et al [126], Sudheer et al [127],

Papoutsa et al [128], Liu et al [129], Wang et al [130], Brezonik et al [131], Braga et al [132]. 

 1.4 Water Quality Monitoring

Water quality monitoring is a systematic collection of samples as well as in situ analysis

with the aim of providing information and knowledge about a water body [15]. It is a term

used to express the suitability of water to sustain various uses or processes [133]. Bukata et al

[134] described water quality monitoring as a descriptive term that refers to the state or

condition of a water body in relation to a set of criteria established for its designated use'.
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The term water quality is defined by U.S. EPA [135] as the sampling and analysis of

water constituents and conditions for the purpose of identifying whether waters are meeting

designated uses, identify specific pollutants, determine trends and screen impairment. It can

also be termed as the making of observations and taking measurement that are analysed and

reported to provide information and knowledge about the catchments of the particular water

body [136]. The European Commission [137] terms water quality monitoring as the studies

conducted to estimate the quantity and quality of pollutants, nutrients and suspended solids

contained in water bodies and to assess sources and factors associated with agricultural

practices, industrial activities or other human activities. It could also be defined as the

sampling and analysis of water constituents and conditions which may include introduced

pollutants such as pesticides, metals and oils as well as constituents found naturally in water

which can be affected by human sources. Examples are oxygen, bacteria and nutrients [138].

The actual collection of information at set locations and at regular intervals in order to

provide the data which may be used to define conditions, establish trends etc [139]. Water

quality monitoring can be used for many purposes some of which are as follows: To identify if

the various inland water bodies are meeting the designated uses as each water body has a

specific use. Examples, reservoir, lakes, fish ponds, recreational purposes. Identifying specific

pollutants and their sources, this helps to link sources of water body pollution to the specific

pollutants. To determine trends, these are some of the many factors why water quality

monitoring is important. Its also of importance to understand what monitoring really entails. As

per the definition in [140] and [135], monitoring is the programmed process of sampling,

measurement and subsequent recording or signalling, or both of water characteristics, often the

aim of assessing conformity to specified objectives. In water quality monitoring it is important

to take into consideration, monitoring, surveys and surveillance [1].

 1.4.1 General Water Quality Methods

General methods for water quality monitoring can be classified into three groups. These

are biological, chemical, physical [141] [134].

Biological method of water quality monitoring involves sample collection, processing

and counting, identification of aquatic organisms [142]. It's also the evaluations of the

condition of water bodies using surveys and other direct measurements of resident biological

organisms [139]. Most of the biological methods are used depending on the specific need and

this are normally divided into five categories; Ecological methods, Physiological and
 56



biochemical methods, Controlled bio tests, Contaminants in biological tissues and, Historical

and morphological methods  [139].

Chemical methods of water quality monitoring, has to with the measurement of various 

elements and molecules dissolved or suspended in water. Example water pH levels, nitrogen 

levels.

Physical methods of water quality monitoring, involves methods used to determine

physical characteristics of inland water. Example temperature, water transparency, velocity etc

[139].

 1.4.2 Importance of Water Quality Monitoring

Water quality is very relevant as water resource is in scarce supply [143]. Water quality

monitoring becomes a necessity due to:

•  Identify possible human impact on waterbodies

•  Identifying possible pollutant and their sources [144].

•  Eutrophication process in inland waterbodies are caused by increase in nutrient inputs

and sometimes introduced toxins and odour to these inland waters. Its important to

monitor their levels [144]. 

•  Some of these waterbodies serve as a source for drinking water and costs for

purification is higher if these water bodies are polluted [145].

• Inland waterbodies also serve as an economic source (fishing) and recreational source

(swimming) as well. The condition of these waterbodies are very crucial [145] [134].

 1.4.3 Problems Affecting Inland Water Quality Monitoring

There are a number of issues affecting inland water quality monitoring, water quality

issues or problem could be defined as an impairment or problem that adversely affect the

quality of the water body preventing the use of the water for the specific purposes that they are

meant for [139]. For example if a lake located in an industrialised region like Great Lakes in

North America has faced a lot of water quality problems due to urban and social development

issues [146].
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 1.4.4 Advantages and Disadvantages of Remote Sensing in Inland Water Quality 
Monitoring

Relying on remote sensing methods rather than in situ method for inland water quality

monitoring has a number of advantages which makes it worthwhile pursuing. Remote sensing

provides both temporal and spatial information for inland waterbodies whereas the traditional

methods of water monitoring do not [147]. A variety of inland water quality parameters can be

observed or monitored concurrently within a specific period of time based on remote sensing

whereas its not the case with traditional methods of monitoring [148]. It is relatively less costly

to use remote sensing methods in inland water quality monitoring which allows one to

adequately manage various inland water bodies [9] [149]. In situ measurements are restricted

to the specific sampling points but that of remote sensing gives rather a synoptic view of a

water body [141] [150] [151] [152] [153]. There is also the reason to minimizing human error

as these are some streamlined and automated processes [154]. In as much as there are merits in

the use of remote sensing in inland water quality monitoring, it comes with some demerits. Its

not all water quality parameters that can be remotely sensed and therefore can not fully replace

traditional way of field surveying as well as sampling [154].  Heavy cloud cover and hazy

conditions makes the use of images taken for remote sensing of inland water quality

monitoring impossible [155]. Shallow inland water bodies sometimes have the potential to

interfere with sensoring of these water bodies. Additionally spatial and temporal resolution of

inland water bodies can be insufficient as well as controllable [126].

 1.4.5 Some Water Quality Parameters that can be Remotely Sensed

There are various variables that are used in determining inland water quality,  due to the

fact that some water quality parameters are monitored by the use of in situ methods. These

parameters could be determined based on remote sensing methods [156] [157] [158]. The

substance usually found on the surfaces of water bodies do change the backscattering of the

surface of the water body [159] [160]. Based on remote sensing techniques one is able to

measure these changes within the spectral signature that emanates (backscattered) from the

surface of the water body. These techniques measuring the changes could be linked empirical

or analytical depending on the water quality being measured[160]. These water quality

parameter could be chlorophyll, turbidity, secchi disk depth, total phosphorus, temperature,
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Coloured dissolved organic matter, total nitrogen and many others. Table 5 summarises a

number of remotely sensed water quality parameters and the sensors that were used.

Chlorophyll 

Normally pigments of phytoplankton consist of chlorophyll a, b, c and d with

chlorophyll-a being the most commonly remotely sensed and used as an indicator of

phytoplankton [161]. The pronounced scattering/absorption features of chlorophyll-a are:

strong absorption between 400–500 nm (blue) and at 680 nm (red), and reflectance maximums

at 550 nm (green) and 700 nm (near-infrared (NIR)) [162].

In inland water bodies the greater the chlorophyll concentration the lower their

reflectance in the short wavelengths (blue) and the higher in the middle wavelengths (green) of

visible light [163]. Weissel [126] used the ratio between the green band and the red band to

estimate the levels of chlorophyll-a. Han and Jordan, also did use the ratio between the green

band and the blue band to measure the levels of chlorophyll-a [164].
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Table 5: Some water quality parameters remotely sensed using different sensors
References Locations Sensors Water Quality Parameters
Wang et al, 2006 Reelfoot Lake, Tennessee, USA Landsat TM Chlorophyll-a, Turbidity, Secchi Depth, Total Suspended Sediments
Cox et al, 1998 Catawba River, North Carolina,USA Landsat TM Turbidity, Secchi Depth, Chlorophyll, Temperature
Koponen et al, 2002 Finland Lakes AISA, MERIS Secchi Depth, Turbidity, Chlorophyll-a
Mancino et al, 2009 Monticchio Lakes, Italy Landsat TM Secchi Depth, Chlorophyll concentration
Ostlund et al, 2001 Lake Erken, Sweden CASI, Landsat TM Chlorophyll and Turbidity
Aparslan et al, 2007 Omerli Dam, Istanbul City, Turkey Landsat ETM Chlorophyll-a, Suspended Solid Matter, Secchi Depth, Total Phosphate
Vignolo et al, 2006 Medano Creek, Argentina Landsat ETM Water Quality Index
Lillesand et al, 1998 Lakes in Minnesota, USA Landsat TM, MSS Secchi Depth, Chlorophyll, Turbidity
Verdin, 1985 Flamin Gorge Reservoir,Wyoming, USA Landsat MSS Secchi Depth, Chlorophyll
Baruah et al, 2002 Kasumigura, Japan Landsat TM Total Suspended Solids, Chlorophyll
Schiebe et al, 1992 Lake Chicot, Arkansas, USA Landsat MSS Total Suspended Solids
Giardino et al, 2001 Lake Isco, Lombardy, Italy Landsat TM Total Suspended Solids and Chlorophyll
Fraser, 1998 Lakes in Nebraska, USA Landsat TM Turbidity
Dekker et al, 2001 Frisian Lakes, Netherlands Landsat TM, HRV Total Suspended Solids
Brivio et al, 2001 Lake Garda, Italy Landsat TM Chlorophyll
Mayo et al, 1995 Lake Kinneret, Israel Landsat TM Chlorophyll
Barale et al, 2002 Black Sea CZCS, MOS Chlorophyll
Lathrop, 1992 Lakes:Green, Bay, Michigan, USA Landsat TM Secchi Depth, Chlorophyll, Turbidity, Total Suspended Solids



Secchi Disk Depth 

Clarity of water is essential for water quality evaluations, as it helps to identify how

polluted a water body is or the possibility of algae growth. It is also said to be the optical

property of water and is often associated with constituents present in these water bodies [164].

Secchi depth can be defined as the measure of light penetration into a water body and is a

function of the absorption and scattering of light in water [165]. Therefore it is depth at which

a white disc is distinguishable from the surrounding water, or black and white quadrants of a

black and white disc are distinguishable from each other when lowered in a water body [165].

Secchi disk depth can be remotely sensed based on the visual spectral bands as shown in Wang

et al [156] where individual bands (red) and ratio between bands (green and red) were used in

quantifying Secchi disk depth.

Total Phosphorus 

Total phosphorus (TP) is defined as the sum of all phosphorus compounds that occur in

various forms [166], the sum of all phosphorus components in a water body [167], it is the

measure of both organic and inorganic forms of phosphorus [168]. Griesbach  [167] defined TP

'as the basis on how much phosphorus in its various forms will be oxidized into orthophosphate

by a specific oxidant'. Inorganic phosphorus is the form which most readily available for

uptake during photosynthesis and this aids algal blooms [168]. This can be indirectly related to

water clarity as well due to biomass of phytoplankton [169]. TP is normally analysed in the

laboratory spectrophotometrically, It is important to have an appropriately defined phosphorus

detection limit. Limiting TP & TN has been suggested to reduce or help in controlling

eutrophication  [170] [171] [172].

  Through the use of MODIS Total Phosphorus can be remotely sensed at its levels

known  [150]. Integrating the green and red bands showed visible relationship with total

phosphorus. TP is known to be the most analysed as a fraction of phosphorus for its in a variety

of empirical models with respect to phosphorus in a wide variety of limnological variables

[173]. TP has been remotely sensed based on a number of methods one of such is the integral

colour index [174] derived from resolutions ranges of 415-445nm, 655-685nm and 405-605

nm.
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Turbidity

Turbidity is the measure of relative clarity of a liquid [175]. It can also be said to the

amount of cloudiness in water [139]. Its one of the physical inland water parameters, which

tries to measure the penetration capacity of light to the depth of the water body [176]. Turbidity

is defined by US EPA [135] as the measure of clarity of how much the material suspended in

water decreases the light through the water. These suspended materials could be sand or clay

and these materials do affect the colour of the water [177]. Moderately low turbid waters may

show a well functioning water body but a water body with high levels of turbidity poses a lot

of problems within the water. This can lead to low levels of dissolved oxygen as well as

sediment bearing run off or nutrient inputs that causes plankton blooms [178]. The knowledge

of turbidity levels of a water body gives a quantitative information with respect to the state of

that particular water [179]. Wang et al, Khoram et al and Forsythe et al [156] [180] [181] have

all shown that it is possible to quantify turbidity based on visual spectral bands such as red,

green and blue.

Temperature 

Water temperature could be defined as the measure of average energy of water molecules

and is a very critical parameter in water quality monitoring and assessment. It exerts a major

influence on biological activities in the water. Water temperature also affects or influences

water chemistry. The more the chemical reaction the more the temperature in the water rises.

The warmer the water the less oxygen content the water has and more oxygen when its cool

which directly affect aquatic life in the water [182]. It also influences other activities in water

bodies such as, rate of photosynthesis by algae and sensitivity of organisms to toxic waste,

parasites and aestivation of aquatic organisms. With the current change in the temperature, it is

very important that temperature in inland waters are monitored [183]. Studies have shown that

the world's surface air temperature has increased 0.7 °C ±2,  globally during the 20th century

this definitely has an effect on inland water bodies [184].

The infra red thermal band measures the amount of infrared radiant flux which is emitted

from the surface of water bodies [9]. This is supported in literature as stated in [181], [185].
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Coloured Dissolved Organic Matter 

Coloured Dissolved Organic Matter can be said to be a major part of dissolved natural

organic matter which is found in natural water bodies. It has bearing on the aquatic ecology as

well as the chemistry and suitability of water use for human beings. It can be divided into two

sources: allochthonous which is normally derived from decomposition of woody plants in

terrestrial environment and autochthonous which is from decomposing algae and aquatic

vegetation within a water body [186].

This refers to the organic matter in water that absorbs strongly in ultraviolet spectrum

which is also known as chromophoric dissolved organic matter and also as gelbstoff or yellow

substances [187]. It contains the largest store of organic carbon and contributes to light

absorption in water [188]. Furthermore CDOM is comprised of a number of molecules with

different sizes which are strongly not only in the ultraviolet region but the blue region as well

and their exact chemical composition are difficult to ascertain [189]. It should be noted that at

first CDOM was seen as a disturbance in the formulations of algorithms for Chl-a. Its a bio-

optical parameter representing part of the whole amount of dissolved organic carbon in water

bodies [190]. It is the optically measurable part of dissolved organic matter in water bodies.

This (CDOM) affects productivity as it modifies availability of nutrients as well as light in the

water body [191], [192]. Coloured Dissolved Organic Matter originates naturally in water

environment basically from tannins that are released from decaying Detritus. It strongly

absorbs short wavelength light that comes from blue to ultraviolet as stated earlier but pure

water (with less CDOM) normally absorbs longer wavelength red light [193].

Total Carbon 

Total carbon includes both inorganic and organic sample constituents [194]. In other

words could be said to be the organic and inorganic carbon in water which includes elemental

carbon. This also shows the level of carbon in an organic compound and plays a role in water

purity [195].
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Total Organic Carbon 

This is the sum of the concentration of all carbon atom covalently bonded in the organic

molecules of a given sample of water body or water. The sum of this does not really identify all

the specific organic contaminants but at the same time it helps detect the presence of organic

molecules in water. Total Organic Carbon when high in water bodies can affect the level of

oxygen in these water bodies and can be very harmful to the aquatic life in them. Low levels or

concentrations can also have some adverse effect on the water body, as they positively affect

the growth of anaerobic bacteria [196].

Total Nitrogen 

Nitrogen is one of the main nutrient for plant growth. Some plants, example blue-green

algae have the ability to directly access nitrogen from the atmosphere [197]. Excess of nitrogen

in inland water bodies will cause eutrophication and limit the amount of oxygen in these water

bodies [198], [199]. In order to control eutrophication it is essential for total nitrogen being one

of the major causes to be controlled [200], [201]. But it has also been recently suggested that

reducing nitrogen in inland water bodies does not necessarily control eutrophication [202].

Total Suspended Matter 

Not all materials are able to dissolve or mix up completely in water bodies.  Some of

these materials have bigger molecules which makes it difficult to mix with that of water which

are smaller thus forming whats referred as particulate matter. Suspended matter with its total,

represents the living organic matter as well the inorganic suspended solids which are referred

to as phytoplankton and tripton respectively [203]. Tripton as a section of total suspended

matter mostly contribute to light scattering with low absorption. Suspended matter serves as a

medium for the transportation of certain elements of pollutants such as heavy metals [204]

[205]. High concentrations of TSM creates a degradation problem for inland water quality

[206], [207].
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Trophic State 

When water is over rich in nutrients or have nutrients (nitrogen, phosphorus) in excess,

which leads to excessive growth of plants and algae, this called eutrophication [208] as seen in

Figure 25. This causes the water quality to deteriorate and has significant side effect over the

over all usage of the water. 

Eutrophication may be caused by a number factors, algal bloom can be caused by natural

occurrences [209]. But there are also the human caused factors: land clearing, discharge of

sewage into water bodies etc. It is worth noting that higher levels of nitrogen and phosphorus

have been ending in inland waters [208]. From the algae blooms the blue-green blooms are

most dangerous to inland water bodies as (certain species) they produce a toxins that are very

harmful. These toxins can cause irritation of the skin, gastrointestinal disorder and its know

that in some extreme cases they can cause permanent human organ damage or death [210].

Eutrophication can as well be caused by human activities such as the increase in the amount of

nitrogen and phosphorus in the biosphere [211], [212], [213], [214] [215] [216]. To control

eutrophication in itself is quite expensive [215]. As suggested by some writers that it is best

when nutrients such as nitrogen and phosphorus are controlled would help reduce

eutrophication [170] [171] [172] [217].

There are different trophic states of lakes. These oligotrophic, mesotrophic, eutrophic,

hypereutrophic [9] [218], as can be seen in Figure 24. Water bodies in the Czech Republic are

classified as follows, class1:unpolluted, class 2: slightly polluted, class 3: polluted, class 4:

heavily polluted, class 5: very heavily polluted [219].
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Figure 24: Trophic states of lake as some of the water bodies
samples fell within this range [238]



Summary of Chapter One

In summary, this chapter discussed the historical antecedents of remote sensing. That is how

remote sensing started, some of the various definitions given by various researchers and

authors alike. Furthermore the current trends in remote sensing. Resolution which is the

dimensions and the information content of pixels of an image [28] as well as the types of

resolution (Spatial, Temporal, Spectral and Radiometric) was also expounded on. Some of the

noise types that impact remotely sensed images were looked at. A couple of these noise types

are gaussian, salt and pepper, speckle, thermal and quantization noise. Image processing

techniques in remote sensing was discussed. These techniques included classification,

smoothing techniques (data filtering techniques) used in remote sensing. Atmospheric

correction which is needed in remote sensing due to the effect of atmospheric conditions on

remotely sensed data. Some of the techniques discussed are image based technique and
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Figure 25: Eutrophication, [240] 



physical technique. reviewed some works that particularly used remote sensing for monitoring

inland water quality parameters. Some of the works that used remote sensing to monitor inland

water quality parameters reviewed were, Ritchie et al [118], Schiebe et al [119], Harding et al

[120], Bisun Datt [220], Rundquist et al [122], Novoa et al [123], Yu et al [124], He et al  [125]

as well as others. The final part of this chapter dealt with various inland water quality

parameters that can be remotely sensed and how important it is to monitor these parameters. 
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 2 EXPERIMENTAL PART

In trying to achieve the set objectives for this research work, various tasks will be

undertaken based on the theories and principles propounded in chapter two. This chapter

describes the exact steps that was taken in arriving at the set out goals for this research. This

includes in situ measurements for water quality parameters under study, laboratory analysis of

these sampled parameters and processing remotely sensed data from Landsat ETM+.

 2.1  Study Area

This work concentrates on water bodies near town Pardubice 50°02′19″N 15°46′45″E

and Hradec Kralove 50°12′34″N 15°50′00″E. Water bodies in this area are mainly fishponds
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Figure 26: Water bodies that were sampled and their location.



and lakes created by sand mining. The water bodies in the area of study are shown in Figure

26. All the water bodies are relatively small, those sampled in this work range from 8 to 90

hectares, approximately. The fish ponds were established in middle ages and have inlets and

outlets [221]. Water bodies originating from sand wining are relatively new, the wining on

some of the water bodies stopped few years ago, and do not have surface inlet or outlet. They

are located in quite flat landscaped areas and the depth of the water bodies were taken into

consideration. Most of water bodies of both types are used for fishing and swimming. The

lakes that were monitored are at different states within these categories mostly specifically

between oligotrophic and eutrophic [214]. The water bodies sampled for this research work are

Bunkov, Melice, Jezero, Oplatil, Pohranovsky rybnik, Velka Cerna, Opatovicky pisnik,

Ujezdsky rybnik, Bohumilecky rybnik, Spravcicky pisnik, pisnik Hradek, Bohdanecsky

rybnik.

 2.2  In Situ Sampling and Laboratory Analysis

 2.2.1 In Situ Measurement

In situ measurement was started in autumn of 2011 until spring of 2015. Sampling took

place on 12 water bodies in all as earlier stated. The measurements were made on the day of

Landsat 7 (ETM+) overpasses. Some times they were taken a day before or a day after when

overpass was a weekend coupled with other activities such teaching. An inflatable boat as seen

i n Figure 27 was used for all our sample taking. A Trimble Juno SB GPS was used to

geographically locate all the points at which samples were specifically taken as seen in Figure

28. We used a Testo 110 digital thermometer to take or record the temperature of water at each

sampling point as seen in Figure 29.
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The water samples were taken using plastic bottles and were lowered around about 5 to

15 cm to collect the samples. The boat was made static as much as possible is order to make

sure the GPS location and point of sampling are the same. Up to 1.5 litres of water sample was

taken at each sampling point.  Samples taken were immediately placed into an ice chest in

order to keep the original properties and prevailing sample conditions intact. Visibility was

checked at all times that sampling took place. This was done by setting up a thread to

meteorological facilities near to the areas of sampling to record visibility conditions at the time

of taking the samples.
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Figure 28: Trimble Juno SB GPS.Figure 27: Inflatable boat with
equipment to take samples and

measurements in situ.



They were then placed in a laboratory fridge before they are analysed. Table 6 shows the 

summary of the measurements made. The blank cells show where the said water quality 

parameter was not measured.

Table 6: Measured parameters and water bodies

Date
Sample

No. Water Body
Chl

[ug/l] TC [mg/l] TOC [mg/l] TN [mg/l] T [°C] Secchi [cm]
2011.09.15 1 Melice 2.2 20.2
2011.09.15 2 Melice 2.2 20.3
2011.09.15 3 Melice 1.5 20.6
2011.09.15 4 Bunkov 71 19.7
2011.09.15 5 Bunkov 65 19.5
2011.09.15 6 Melice 3.7 20.9
2011.09.15 7 Pohranovsky 6.7 20
2011.09.15 8 Pohranovsky 6.7 20
2011.09.15 9 Pohranovsky 5.2 20
2011.09.26 1 Melice 4.4
2011.09.26 2 Melice 0.2
2011.09.26 3 Melice 2.2
2011.09.26 4 Bunkov 17.4
2011.09.26 5 Oplatil 2.2
2011.09.26 6 Hradek 29
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Figure 29: Testo 110 digital thermometer.
[241]



2011.09.26 7 Hradek 29
2011.09.26 8 Oplatil 2.2
2011.09.26 9 Oplatil 0.2
2012.05.29 1 Pohranovsky 17.4 58.2 18.07 0.18 22.6 110
2012.05.29 2 Pohranovsky 11.6 58.9 17.7 0.16 22.3 185
2012.05.29 3 Oplatil 3.6 21.5 480
2012.05.29 4 Oplatil 3.6 21 480
2012.05.29 5 Oplatil 2.2 21 400
2012.05.29 7 Oplatil 2.2 21 480
2012.05.29 8 Bunkov 31.9 53.31 16.03 0.16 23.4 21.5
2012.05.29 9 Bunkov 20.3 53.9 15.27 0.16 23 21.3
2012.06.22 1 Pohranovsky 36.3 65.96 20.23 0.16 26.3 62
2012.06.22 2 Pohranovsky 24.7 71.5 21.31 0.14 26.1 74
2012.06.22 3 Oplatil 18.9 34.2 8.75 0.11 24.6 179
2012.06.22 4 Oplatil 2.9 35.52 8.48 0.1 24.2 186

2012.07.31 to 01.08 1 Spravcicky 2.9
2012.07.31 to 01.08 2  Spravcicky 3.6
2012.07.31 to 01.08 3 Spravcicky 3.6
2012.07.31 to 01.08 4 Pohranovsky 4.8 29.5 42.5
2012.07.31 to 01.08 5 Pohranovsky 9.7 28.4 44.5
2012.07.31 to 01.08 6 Oplatil 0.7 26.3 201
2012.07.31 to 01.08 7 Oplatil 1.5 26.3 194
2012.07.31 to 01.08 8 Oplatil 1.5 26.7 228

2012.09.11 1 Pohranovsky 28 89.52 32.92 0.19 21.6 15
2012.09.11 2 Pohranovsky 3 22.2 25
2012.09.11 3 Oplatil 4.3 31.2 6.15 0.1 22.9 220
2012.09.18 1 Pohranovsky 26 84.11 30.63 0.13 19.5 24
2012.09.18 2 Pohranovsky 24.5 20.3 25.5
2012.09.18 3 Oplatil 11.6 32.92 6.97 0.13 21.7 223
2012.09.18 4 Oplatil 14.6 21.6 210
2012.09.18 5 Bunkov 68.9 37.35 14.65 0.15 21.3 29
2012.09.18 6 Bunkov 7.3 21.7 33
2012.11.14 1 Oplatil 8 6.86 9.2 240
2012.11.14 2 Oplatil 6.5 5.45 9.1 268
2012.11.14 3 Oplatil 7.3 6.09 8.3 269
2012.11.14 4 Jezero 7.3 4.16 8.4 514
2012.11.14 5 Jezero 3.6 4.4 8.5 635
2012.11.14 6 Jezero 2.2 4.79 8.5 614

Date
Sample

No. Water Body
Chl

[ug/l] TC [mg/l] TOC [mg/l] TN [mg/l] T [°C] Secchi [cm]
2013.04.23 1 Spravcicky 4.1 43.16 9.53 0.11 11.9 125
2013.04.23 2 Spravcicky 7.3 38.45 4.55 0.11 11.5 123
2013.04.23 3 Placicky 4.9 41.09 7.73 0.15 13.4 184
2013.04.23 4 Placicky 3.9 38.16 5.21 0.15 13.8 176
2013.05.09 1 Jezero 0.4 35.01 7.06 0.33 18.9 530
2013.05.09 2 Jezero 0.4 33.68 6 0.31 18.7 620
2013.05.09 3 Bunkov 4.6 39.76 8.77 0.94 22.7 140
2013.05.09 4 Bunkov 6.1 38.96 7.96 0.81 22.1 170
2013.05.09 5 Melice 0.2 32.46 8.16 0.45 21 334
2013.05.09 6 Melice 0.7 31.36 7.41 0.43 20.6 324
2013.05.09 7 Pohranovsky 17.3 59.57 18.39 1.52 21.5 57
2013.05.09 8 Pohranovsky 20.9 59.29 18.59 1.3 20.5 54
2013.05.09 9 Pohranovsky 15.3 60.81 19.09 1.68 20.8 52
2013.05.09 10 Pohranovsky 17.4 60.81 19.09 1.68 20.8 52
2013.06.19 1 Placicky 3.4 44.3 15.75 1.02 25.8 190
2013.06.19 2 Placicky 2.8 39.56 11.51 1 25.7 218

 71



Date
Sample

No. Water Body
Chl

[ug/l] TC [mg/l] TOC [mg/l] TN [mg/l] T [°C] Secchi [cm]
2013.06.19 3 Opatovicky 0.2 39.66 7.7 0.38 25.1 363
2013.06.19 4 Opatovicky 1.8 39.19 8.91 0.36 28.3 364
2013.06.19 5 Ujezdsky 29.6 68.19 31.66 2.02 28.4 26
2013.06.19 6 Ujezdsky 47.2 70.65 32.2 2.16 28.4 29
2013.06.19 7 Bohumilecsky 65.7 70.65 34.2 3.19 29.7 19
2013.06.19 8 Bohumilecsky 58.6 71.44 34.72 2.65 29.4 23
2013.06.19 9 Bohumilecsky 59 72.23 34.85 2.69 29.9 21
2013.07.29 1 Placicky 4.736 29.18 10.16 0.64 27.5 166
2013.07.29 2 Placicky 2.4 28.53 9.49 0.64 27.5 164
2013.07.29 3 Opatovicky 1 36.2 5.41 0.55 26.8 448
2013.07.29 4 Opatovicky 0.5 36.46 5.69 0.36 26.6 479
2013.07.29 5 Oplatil 1.5 29.95 6.45 0.46 27.2 485
2013.07.29 6 Oplatil 2.5 26.8 6.49 0.49 27.1 325
2013.07.29 7 Pohranovsky 49.5 95.83 39.96 2.86 29.4 22
2013.07.29 8 Pohranovsky 39.7 99.55 43.86 3.52 29.3 30
2013.08.12 1 Placicky 3.8 32.76 10.56 0.64 24.7 135
2013.08.12 2 Placicky 2.1 30.5 8.64 0.6 24.8 148
2013.08.12 3 Opatovicky 1.2 35.59 4.97 0.35 25 467
2013.08.12 4 Opatovicky 2.5 35.58 4.63 0.5 25 499
2013.08.12 5 Oplatil 4.7 26.47 6.31 0.36 25.2 226
2013.08.12 6 Oplatil 4 26.8 6.75 0.47 52.2 233
2013.08.12 7 Velka Cerna 0.4 45.48 12.2 1.23 25.7 65
2013.08.12 8 Velka Cerna 0.4 44.57 12.16 0.91 25.7 72
2014.05.21 1 Melice 3 31.57 8.68 0.64 18.8 240
2014.05.21 2 Melice 2.2 31 8.87 0.62 18.9 220
2014.05.21 3 Melice 1.5 31.59 9.2 0.66 19 275
2014.05.21 4 Bunkov 0.7 43.88 8.16 1.4 20.9 125
2014.05.21 5 Bunkov 1.5 43.48 8.18 1.39 19.8 200
2014.05.21 6 Pohranovsky 8.1 52.81 14.96 1.27 21.6 140
2014.05.21 7 Pohranovsky 4.4 52.29 14.04 1.15 21 170
2014.07.23 1 Pohranovsky 22.9 83.35 29.73 2.4 25.1 26
2014.07.23 2 Pohranovsky 34.9 95.58 42.17 3.35 24.9 23
2014.07.23 3 Pohranovsky 25.7 82.72 29.15 2.3 25.8 23
2014.07.23 4 Oplatil 0.2 35.7 6.49 0.59 24.6 325
2014.07.23 5 Oplatil 0.8 35.84 6.55 0.59 24.6 305
2014.07.23 6 Oplatil 2.4 36.04 6.4 0.59 24.7 325

Date
Sample

No. Water Body
Chl

[ug/l] TC [mg/l] TOC [mg/l] TN [mg/l] T [°C] Secchi [cm]
2014.09.16 1 Pohranovsky 34.3 85.22 30.92 2.54 20.8 24
2014.09.16 2 Pohranovsky 39.1 82.3 27.39 2.01 20.3 26
2014.09.16 3 Pohranovsky 33.5 80.55 27.34 1.97 20.3 28
2014.09.16 4 Oplatil 5.8 37.34 5.8 0.6 20.8 486
2014.09.16 5 Oplatil 2.4 37.2 6.09 0.59 20.4 490
2014.09.16 6 Oplatil 4.4 37.91 6.24 0.63 20.4 465
2014.09.16 7 Melice 1.9 33.96 9.21 0.64 21 310
2014.09.16 8 Melice 3.4 34.98 10.04 0.66 20.9 368
2015.04.21 1 Pohranovsky 12.9 43.75 13.04 1.21 14.3 80
2015.04.21 2 Pohranovsky 9.6 46.24 15.51 1.39 14.2 66
2015.04.21 3 Oplatil 8.9 38.42 7.91 0.8 11.9 117
2015.04.21 4 Oplatil 9.2 38 7.41 0.78 12.3 114
2015.04.21 5 Oplatil 11.1 37.58 7.08 0.84 12.4 127
2015.04.21 6 Bunkov 35.6 44.36 15.45 1.57 15.1 227
2015.04.21 7 Melice 7 34.63 9.36 0.66 13.4 255
2015.04.21 8 Melice 5.1 34.49 8.96 0.64 12.6 255
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 2.2.2 Laboratory Analysis

Chlorophyll-a

Chlorophyll-a (Figure 30) is an indicator of the abundance of phytoplankton in the water.

The pronounced scattering/absorption features of chlorophyll-a are: strong absorption between

400–500 nm (blue) and at 680 nm (red), and reflectance maximums at 550 nm (green) and 700

nm (near-infrared (NIR)) [223] as visualised in Figure 31. Chlorophyll-a is one of the

parameters recommended for water quality analysis as suggested by Jones and Lee [224]. 

Chlorophyll-a determination was carried according to ISO-10260 standard

[225].Samples collected were kept in cool dark container and refrigerated. None of the samples

were frozen though some researchers have suggested it's possible to freeze samples. The

analysis of chlorophyll-a were done within 24 hours of collection. A glass fibre filter (Fisher

F263) was used in filtering the samples collected.
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Figure 30: Structure of chlorophyll-a [244]



The filter used in filtering water samples taken had the following specifications, a low

hygroscopicity with a retention efficiency of fine particles (<3µm in size). It also had a

maximum temperature of 500 °C, a fast flow rate and with a chemical and biological inert

which has no organic binders. In most cases 250 to 1000 ml of the samples were filtered

depending on the thickness of the impurities (algae) within the water. The bottles containing

the collected water samples were well shaken to ensure that the contents were thoroughly

mixed before filtration. The filter was then carefully dropped into 25 millilitres of 90% ethanol

[225].

The filter was mashed in the ethanol and then hot water bathed the extract for 5 minutes

at a constant temperature of 75 °C (Figure 32). A glass container meant for this purpose was

used. It had a tight cap to check evaporation.
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Figure 31: Chlorophyll absorption spectrum
of visible light [246]



This was then left to cool for 15 minutes after which it was put into a refrigerator for 30

minutes. It was then filtered again using the same type of micro fibre filter. The filtrate was

then put in a refrigerator before spectrophotometric determination (Figure 33) using a range of

400 to 760 nm. A glass cuvette with optical path of 1 cm was used.

 75

Figure 33: Biochrom Libra 22 spectrophotometer [249]

Figure 32: Memmert hot water bath 



Total Organic Carbon (TOC) and Total Carbon (TC)

TC is all the carbon in a sample which includes organic, inorganic and volatile. It is 

represented as the total mass of carbon per amount of sample.

TC=TOC+IC (20)

Where TC is the total amount of carbon, TOC total organic carbon and IC inorganic

carbon. Samples were analysed using FormacsHT TOC/TN analyser (Figure 34) which is

based on ISO 8245, EU 2.2.44, USP<643> [226]. To determine the level of TC, the sample

was injected by means of an automated septum-less rotary port into the high-temperature

reactor. In the reactor, at a temperature of 950 °C all organic and inorganic carbon were

oxidized into gaseous carbon dioxide (CO2).

TOC is the organic carbon that is converted into carbon dioxide after oxidation [227]

[228]. In directly measuring TOC, the measurement was done after acidification of the sample.

In water samples it should preferably include carbon in volatile materials. Though most a times

they are removed before analysis were done [227].

TOC=TC−IC (21)
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Figure 34: FormacsTH TOC/TN analyser [227]



Total Nitrogen (TN)

This is all the nitrogen in a given sample and this includes organic and inorganic

nitrogen. This is normally represented as the total mass of nitrogen per amount of sample

[227]

TN=(TKN+NN ) (22)

Where TN is total nitrogen, TKN total Kjedahl nitrogen and NN nitrate and nitrite. The

sample was added by manual means into a high temperature combustion reactor with an

oxidative catalyst. The reactor at a temperature of 850 °C all the carbons were oxidized to

carbon dioxide and all chemically bound nitrogen were converted to nitric oxide NO [227].

Flow of oxygen, which was used as a carrier gas and as a source of oxygen, then transported

these products into the detector. Firstly, the products were led into the infrared detector where

the carbon dioxide was determined then into the ND25 detector (on the right in Figure 34)

where the nitric oxide was determined.

In the chemiluminescent detector sample gas was mixed with ozone in the reaction

chamber which was then heated at 50 °C to form excited nitrogen dioxide NO2 [227].

NO+O
3
→NO

2

∗+O
2
→NO

2
+O

2
+hv (23)

The fast decomposition of the NO2
* produces light, this was measured by a photo

multiplier tube (PMT) and was cooled to a temperature of 10 °C. The electric signal from the

PMT was amplified and then transported into the controlling computer and was calculated

[227].

 2.2.3 Data Processing

Images from Landsat 7 ETM+ data with a spatial resolution of 30 m were used. The

study area is fully covered by both Landsat scenes of WRS-2, path and row 191/25 and 190/25

respectively, which gives average satellite revisit time of 8 days. The Landsat ETM+ images

were downloaded from earth explorer site (http://earthexplorer.usgs.gov) run by the USGS

(United States Geological Survey). The images were downloaded in tif file format. The files

were then loaded into Grass GIS and Quantum GIS as visualized in figure 35. The projection

for the images was in UTM zone 33N, Ellipsoid being WGS84. The images had gaps in them

 77



which were caused by Scan Line Corrector (SLC). Since 21st of May 2003 Landsat 7 ETM+

has developed this fault as the SLC is to ensure that all scans are well aligned parallel to each

other which compensates for the motion (forward) of the satellite [229].

Due to the above issue all sampling points that fell within the gaps were completely

removed. To check for points that fell within hazy, cloudy and shady areas, RGB colour

combination was used. This visually enhanced the areas that were affected by the above

mention phenomena. All such points that were within cloudy, hazy and shady areas were

removed. Bands combination 1,6,6 was used for highlighting haze and clouds whereas 4,2,1

was used for highlighting green vegetation [230]. The gps points were then transformed into

vector files and were loaded onto the images and data from the point sampling were extracted

(Figure 35). The extracted values were further analysed using various tools. 

Conversion of raw Digital Numbers (DN) numbers to Spectral radiance at sensor

The data extracted from the from the TIFF were calibrated as DN numbers and had to be

converted to spectral radiance based on the recorded signal. The conversion of DN was based
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Figure 35: Band combination 7,5,3 of Landsat ETM+ with points of
sampling loaded unto it.



on the equation as espoused by Chander et al  [231], Landsat 7 science data users handbook

[28] and this is seen in equation 24 below,

Lλ=[ LMAX λ−LMIN λ

Qcalmax−Qcalmin
](Qcal−Qcalmin)+LMINλ (24)

where 

Lλ  is the Spectral radiance at sensor's aperture [w/(m2 sr μm)]

Qcal is the Quantised calibrated value in DN

Qcalmin is the Minimum quantised calibrated value corresponding LMINλ in DN

Qcalmax is the Maximum quantised calibrated value corresponding LMAXλ in DN

LMIN λ  is the Spectral radiance at sensor scale Qcalmin [w/(m2 sr μm)]

LMAXλ is the Spectral radiance at sensor scale Qcalmax [w/(m2 sr μm)]

Conversion of DN numbers to Top of Atmosphere Reflectance

By using this formula the output was then processed into TOAR by relying the formulas

below also based on Landsat 7 science data users handbook [28] and Chander et al [231]. This

converted the radiance recorded at sensors to reflectance.

ρλ=
π∗Lλ∗d

2

ESUN λ∗cos(θ ο)
(25)

Where 

ρλ is Planetary TOA reflectance

π  is determined constant 

Lλ is the spectral radiance at the sensor's aperture

d  is the Earth Sun distance

ESUN λ is the Mean exoatmospheric Solar irradiance

θο  is the Solar Zenith angle.
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Each of the images downloaded were processed based on the above equations by the use of 

Grass GIS and Quantum GIS software. This particular process was embedded in the 

i.landsat.toar command in Grass GIS.

Atmospheric Correction

The conditions pertaining to the exact time that images are taken do have considerable

effects on them. Therefore the best data to be derived from the acquired satellite data, these

effects of the atmosphere needs to limited.  A number of methods for reducing the effect of

atmospheric conditions on remotely sensed images have been deliberated on in chapter1.2.3.

Atmospherically corrected images (Landsat Surface Reflectance product) were downloaded

from USGS website (http://earthexplorer.usgs.gov). The input material was TOAR and based

on the method proposed by Masek et al [117] and the output landsat surface reflectance

product. Masek et al used the following steps described below [117]. These steps are

embedded in LEDAPS. 

ρTOA=T g(O3O2CO2NO2CH 4)Χ[¿ρR+A+T R+ AT g(H 2O)
ρs

1−SS+ Aρs

] (26)

where ρs is the surface reflectance

T g is the gaseous transmission due the gases O3,O2,CO2,NO2,CH4

T R+A is the Rayleigh and aerosol transmission

ρR+ A is the Raleigh and aerosols atmospheric intrinsic reflectance

SR+ A is the Raleigh and aerosols spherical albedo

The computation of the transmission, intrinsic reflectance and spherical albedo were

done based on 6S radiative transfer code [117].

Smoothing 

When the images are being taken by the satellite the noise as a property of the sensor

affects the images taken. The noise prevents some important data from standing out and also

contributing to some data being missing. To check this phenomenon we first created a water

only image based on a map of water bodies in the Czech Republic (Figure 36). 
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http://earthexplorer.usgs.gov/


Based on the map a water only mask was created by classifying water and non water

areas. Classification of water and non water areas were considered but this method did not give

a favourable result. Normalised difference water index [232] was tried where the green (band

2) and shot wave infra-red 1 (band 5) of Landsat 7 ETM+ were used in creating the NDWI.

The mask was used during the smoothing of data to limit the effect of noise and to avoid non

water areas such as vegetation along the banks of the water bodies. 

The images were spatially filtered by convolving the image with a small moving window

[68]. Each pixel in the original image was replaced by a weighted average of the product from

the window as well as the neighbouring pixels [81].  
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Figure 36: Map of water areas in the Czech Republic



The discrete convolution filtering was adopted where the 3×3 averaging window (Figure 37) 

was used.  

The resultant pixel values in the new image were expressed based on equation (7).

In achieving the above the following steps were followed

Step 1. Using r.mask command in Grass GIS, a mask was created based on the water only map 

of Czech Republic. Non water areas were classified and masked out

Step 2. Using map calculator in Grass GIS, a water only mask was created based on an 

expression (27) using band 7 short-wave infrared (SWIR) of atmospherically corrected images.

Band 7<210 (27)

Step 3. Using the r.mfilter in Grass GIS a filter (Figure 37) was ran to smooth the data using 

the 3×3 average window.

The shortwave infra-red 2 band (band 7) was chosen because it has limited cloud

penetration, which provides good contrast between different vegetation also helps to

differentiate between clouds and snow[28].

 82

Figure 37: 3x3 averaging window
definition

Title: 3x3 average, non-null data only

Matrix 3

1 1 1

1 1 1

1 1 1

Divisor: 0

Type: P



 2.3  Regression Analysis, Model Creation and Testing performance of 
models

 2.3.1 Regression Analysis

The sample points were loaded unto the Landsat ETM+ images using the v.what module in 

Quantum GIS, the values was extracted from the images through the use of the attribute table. 

The attribute table is then exported to a spread sheet for the regression analysis.

This statistical analysis was done to check the relation between two variables being

spectral data and the various water quality parameters [233]. Coefficient of determination (r2),

was used in the analysis. The selected spectral data and the water quality parameters that had

good correlation were then further analysed.

 2.3.2  Regression models and Validation

To build the various models for each inland water quality parameter, these parameters

were measured or analysed, bands or combination of bands with high correlations were used.

The data with the best fit were used to create a calibration model in this work.  With dependent

variable y as against x independent variable base on least squares regression (y-y')2 [234]. This

process was repeated for all the chosen bands and band combination with high correlation. It

must be noted that a good regression should have a prediction of r2 values that are close to 1.

The slope intercepts of actual measured water quality parameters was then used in predicting

possible levels. The predicted values were then drawn against the actual values from which the

best correlation r2 was used in creating the model for the specific water quality parameter.
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Figure 38: Attribute table with data from uploaded sampling points in QuantumGIS



Some critical indicators such as root mean square error (RMSE) and normalised root mean

square error (NRMSE) were used to evaluate the level of accuracy of the models. They are

defined below.

RMSE=√∑i=1

n
( X obs ,i−Xmo del ,i)

2

n
(28)

NRMSE= RMSE
X obs ,max−X obs ,min

(29)

Where X obs, i are estimated or measured parameter, X model, i, values from the model

created, n is the number of samples and NRMSE X obs, max- X obs, min is the difference between the

maximum of measured parameter and the minimum of measured parameter.

Summary of chapter Two

In summary, the water bodies around the Pardubice and Hradec Kralove region that were

sampled for water quality parameters were Bunkov, Melice, Jezero, Oplatil, Pohranovsky

rybnik, Velka Cerna, Opatovicky pisnik, Ujezdsky rybnik, Bohumilecky rybnik, Spravcicky

pisnik, pisnik Hradek. In situ measurements were made from autumn 2011 to spring of 2015.

The samples were analysed in the laboratory for the Chl-a, TC, TOC, TN. SDD and T were

measured during sampling. Data remotely sourced were processed as TOAR and

atmospherically corrected images based on LEDAPS from from which the values were

extracted. Sampled points that were found in gaps created by SLC (chapter 2.2.3), covered by

cloud and cloud shadow were removed. TOAR image values and atmospherically corrected

image values were both smoothed to limit the effect of noise. Both smoothed, non-smoothed

TOAR and atmospherically corrected data were statistically analysed. Models were developed

based on smoothed TOAR image and atmospherically corrected image values. Bands or band

combinations with good r2 values were used in developing the models for the various

parameters. Smoothed atmospherically corrected image values were used for model creation.

The developed models were validated using r2, RMSE and NRMSE.
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 3 RESULTS AND DISCUSSION

 The current chapter outlines the various resultant outcomes of the various steps that

were taken. A critical look is also taken vis a vis the results from the preceding chapter whether

it meets the various expectations that were set in undertaking the various outlined steps in the

previous chapter.

 3.1 Sampled Water Quality Parameters 

In taking water samples, 198 samples were generally analysed taking into consideration

the various water quality parameters (chlorophyll-a, Total Carbon, Total Organic Carbon, Total

Nitrogen, Temperature, Secchi Depth). 

The mean and standard deviations were also calculated for each of the measured water

quality parameters. 121 samples (Table 7) were analysed for the various parameters under

consideration was due to the fact that some of the data was retained for application and

validation purposes. Those used for the model validation was not used at all in the model

creation.
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Table 7: Summary of Water Quality Parameters measured and number of samples taken

Date Samples Chl-a [ug/l] T [°C] Secchi [cm]

2011.09.15 9 1.5-71 19.5-20.9

2011.09.26 9 0.2-29

2012.05.29 9 2.2-31.9 53.31-58.9 16.03-18.07 0.16-0.18 21-23.4 21.5-480

2012.06.22 4 2.9-36.3 34.2-71.5 8.48-21.31 0.1-0.16 24.2-26.3 62-186

2012.07.31 to 01.08 8 0.7-9.7 26.3-28.4 44.5-228

2012.09.18 3 3-68.9 31.2-84.11 6.15-30.63 0.1-0.19 19.5-22.2 15-220

2012.11.14 6 2.2-8 4.16-6.86 8.3-9.2 240-635

2013.04.23 6 3.9-7.3 38.16-43.16 4.55-9.53 0.11-0.15 11.5-13.8 123-184

2013.05.09 4 0.4-20.9 35.01-60.81 6-19.06 0.31-1.68 18.7-22.7 52-620

2013.06.19 10 0.2-65.7 39.19-72.23 7.7-34.85 0.36-3.19 25.1-29.9 19-364

2013.07.29 9 0.5-49.5 26.8-99.55 5.41-43.86 0.36-3.52 26.6-29.9 22-485

2013.08.12 8 0.4-4.7 26.8-45.48 4.63-12.2 0.5-1.23 24.7-52.2 65-499

2014.05.21 8 0.7-8.1 31-52.81 8.18-14.96 0.62-1.4 18.8-21.6 125-275

2014.07.23 7 0.2-34.9 35.7-95.58 6.4-42.17 0.59-3.35 24.6-25.8 23-325

2014.09.16 6 1.9-39.1 33.96-85.22 5.8-30.92 0.59-2.54 20.3-21 24-490

2015.04.21 8 5.1-35.6 34.49-46.24 7.08-15.51 0.78-1.57 11.9-15.1 66-255

Mean 12.42 48.12 13.82 0.94 21.65 207.26

Std Dev 16.53 19.18 10.1 0.85 6.08 168.02

TC [mg/l] TOC [mg/l] TN [mg/l]



RGB band combinations 1,6,6 (Figure 39) and 4,2,1 (Figure 40) which were employed to

check both haze and cloud, as well as green vegetation [230]. When images are in grey,

identifying clouds and haze was difficult. Some of the clouds caused shades which also

affected the data that was being analysed. This phenomenon gave wrong reflectance values

which had to be either removed or corrected.
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Figure 39: RGB band combination1,6,6

Figure 40: RGB band combination 4,2,1



 3.2 Top of Atmosphere Reflectance

All the DNs from the 121 sample points that had been extracted were turned into TOAR

values. The regression relationship between the reflectance values (bands and combination of

bands) and that of the measured parameters showed varied levels of correlation based on

measured Pearson coefficient squared (r2). Linear correlation varied vis a vis the measured

water quality parameters and TOAR values. Band combination of visible bands (from blue to

near infra-red) band 1, 2, 3, 4, (450nm to 900nm) with the other bands (Shortwave infra-red 1

to Shortwave infra-red 2) 5, 6, 7 (1550 to 2350). Panchromatic band (band 8) which is 15 m
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Table 8: r2 values of band and combinations based on smoothed TOAR values

(part 1)

(part 2)

Parameter L61 L62 L1/L2 L1/L3 L1/L4 L1/L6 L1/L8 L2/L1

R^2 chl-a [ug/l] 0.0926 0.0936 0.4742 0.3948 0.1554 0.0595 0.4181 0.1720

R^2 log chl-a [ug/l] 0.0146 0.0136 0.3550 0.5184 0.0634 0.0342 0.3008 0.1678

0.1775 0.1747 0.2179 0.4717 0.2566 0.0014 0.4032 0.1073

Log TC 0.1481 0.1461 0.2198 0.4707 0.2673 0.0090 0.4153 0.1203

0.2791 0.2797 0.5273 0.5331 0.4382 0.1795 0.6887 0.4755
 LogTOC 0.3228 0.3259 0.6534 0.5785 0.4185 0.2951 0.6446 0.4585

0.0779 0.0745 0.1455 0.2543 0.1906 0.1327 0.2802 0.0564
0.0007 0.0003 0.0499 0.1137 0.0479 0.1347 0.0840 0.0117

T [°C] 0.9032 0.9062 0.2156 0.0581 0.3505 0.3471 0.2406 0.1408

Log T 0.8932 0.9010 0.2328 0.0556 0.3480 0.4063 0.2307 0.1401

Secchi [cm] 0.1737 0.1711 0.5703 0.6217 0.1073 0.2737 0.3142 0.1975

Log Secchi 0.1859 0.1798 0.6445 0.7648 0.1774 0.1303 0.5003 0.2026

TC [mg/l]

TOC [mg/l]

TN [mg/l]
LogTN [mg/l]

Parameter L2/L3 L2/L8 L3/L1 L3/L2 L4/L1 L8/L1 L8/L2

R^2 chl-a [ug/l] 0.1992 0.2059 0.4071 0.1870 0.2289 0.4221 0.2124

R^2 log chl-a [ug/l] 0.3917 0.1376 0.4919 0.3570 0.0937 0.2748 0.1296

0.4662 0.3536 0.5206 0.5149 0.2026 0.3475 0.2996

Log TC 0.4619 0.3676 0.5123 0.5033 0.2155 0.3612 0.3139

0.3142 0.5139 0.5864 0.3445 0.4385 0.6480 0.4824
 LogTOC 0.3192 0.4076 0.6223 0.3534 0.3565 0.5652 0.3718

0.2342 0.2617 0.2885 0.2651 0.2710 0.3076 0.2751
0.1131 0.0757 0.1229 0.1260 0.1039 0.1049 0.0930

T [°C] 0.0009 0.1284 0.0717 0.0043 0.2356 0.2262 0.1322
Log T 0.0001 0.1063 0.0672 0.0019 0.2028 0.2007 0.1042

Secchi [cm] 0.3915 0.0739 0.6119 0.4015 0.0706 0.2590 0.0722

Log Secchi 0.5461 0.2045 0.7917 0.5620 0.1595 0.4468 0.1938

TC [mg/l]

TOC [mg/l]

TN [mg/l]
LogTN [mg/l]



was also included. These combinations and single bands had varied r2 values (table 3.2 part 1 

and 2). Values of r2 that were >0.4 were considered in the regression analysis. 

The combination of blue band (band 1) and the panchromatic band (band 8) showed 

varied correlation levels. In some cases though quite low, generally there seem to be some 

appreciable  level  of  correlation  (Table  8)  vis  a  vis  the  water  quality  parameters  with  the 

parameter most prominent being Temperature.

The r2 values for each parameter with the best fit was also identified based on the analysis 

made. SDD had r2  value of 0.79 based on band combination L3/L1 and Log of SDD (Figure 

41), Chl-a had r2 value of 0.52 based on L1/L3 (fit was not developed). TOC (Figure 42) had r2 

value of 0.62 from band combination of band 8 (panchromatic), band 1 (blue). TC had the best 

fit from L3/L1 with r2 value of 0.52 (Figure 43). Thermal band 62 (1040nm) with temperature 

had r2 value of 0.91 (Figure 44). TN had very low r2 values and therefore no fit was developed. 

In this regard only smoothed TOAR values were considered in the analysis. This was because 

the smoothed values limited the effect of noise on them as compared to the non-smoothed 

TOAR  values  (see  Table  8  and  Appendix  6.5).  Smoothing  was  done  by  using  the  3×3 

averaging window on the data to limit the effect of noise on the data.
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Figure 41: Band combination with the best fit based on TOAR
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Figure 42:  Band combination with the best fit based on TOAR
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Figure 43: Band combination with the best fit based on TOAR
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 3.3 Atmospherically Corrected Data

All 121 sample points were considered based on atmospherically corrected images. The

RGB band combination (1,6,6) [230] highlighted the issue of sampling points that were

affected by clouds or in general atmospheric conditions. It was identified that some of the

points were in cloud shade, gaps from SLC as well as those completely covered by cloud. In all

49 sampling points were identified and removed as seen in Table 9.  There was general

improvement in smoothed data as it limited the general effect of noise on the data. But there

was no improvement and no substantial change was observed for TC and LogTOC parameters.
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Figure 44: Band combination with the best fit based on TOAR
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Table 9: Sampling points after removal of problematic points 

(part1)

(part 2)
Date Sample No Water Body Chl T [°C] Secchi [cm]

2012.07.31 to 01.08 1 Spravcicky 2.9
2012.07.31 to 01.08 2 Spravcicky 3.6
2012.07.31 to 01.08 3 Spravcicky 3.6
2012.07.31 to 01.08 4 Pohranovsky 4.8 29.5 42.5
2012.07.31 to 01.08 5 Pohranovsky 9.7 28.4 44.5
2012.07.31 to 01.08 6 Oplatil 0.7 26.3 201
2012.07.31 to 01.08 7 Oplatil 1.5 26.3 194
2012.07.31 to 01.08 8 Oplatil 1.5 26.7 228

2012.09.11 1 Pohranovsky 28 89.52 32.92 0.19 21.6 15
2012.09.11 2 Pohranovsky 3 22.2 25
2012.09.11 3 Oplatil 4.3 31.2 6.15 0.1 22.9 220
2012.09.18 1 Pohranovsky 26 84.11 30.63 0.13 19.5 24
2012.09.18 2 Pohranovsky 24.5 20.3 25.5
2012.09.18 4 Oplatil 14.6 21.6 210
2012.09.18 5 Bunkov 68.9 37.35 0.15 21.3 29
2012.09.18 6 Bunkov 7.3 21.7 33
2012.11.14 3 Oplatil 7.3 6.09 8.3
2012.11.14 4 Jezero 7.3 4.16 8.4 514
2012.11.14 5 Jezero 3.6 4.4 8.5 635
2012.11.14 6 Jezero 2.2 4.79 8.5 614
2013.05.09 1 Jezero 0.4 35.01 7.06 0.33 18.9 530

2013.05.09 2 Jezero 0.4 33.68 6 0.31 18.7 620

2013.05.09 6 Melice 0.7 31.36 7.41 0.43 20.6 324

2013.05.09 7 Pohranovsky 17.3 18.39 1.52 21.5

2013.05.09 8 Pohranovsky 20.9 59.29 18.59 1.3 20.5 54

2013.05.09 9 Pohranovsky 15.3 60.81 19.09 1.68 20.8 52

2013.05.09 10 Pohranovsky 17.4 60.81 19.09 1.68 20.8 52

TC [mg/l] TOC [mg/l] TN [mg/l]

Date Sample No Water Body Chl T [°C] Secchi [cm]
2011.09.15 1 Melice 2.2 20.2
2011.09.15 2 Melice 2.2 20.3
2011.09.15 3 Melice 1.5 20.6
2011.09.15 4 Bunkov 71 19.7
2011.09.15 5 Bunkov 65 19.5
2011.09.15 8 Pohranovsky 6.7 20
2011.09.15 9 Pohranovsky 5.2 20
2011.09.26 1 Melice 4.4

2011.09.26 2 Melice 0.2
2011.09.26 5 Oplatil 2.2
2011.09.26 8 Oplatil 2.2

2012.05.29 1 Pohranovsky 17.4 58.2 18.07 0.18 22.6 110
2012.05.29 2 Pohranovsky 11.6 58.9 17.7 0.16 22.3 185
2012.05.29 3 Oplatil 3.6 21.5 480
2012.05.29 4 Oplatil 3.6 21 480
2012.05.29 5 Oplatil 2.2 21 400
2012.05.29 7 Oplatil 2.2 21 480
2012.09.16 2 Melice 3.2 21.2
2012.09.16 3 Melice 3.2 21.3
2012.09.16 4 Melice 2.5 21.6
2012.09.16 5 Bunkov 72 20.7

TC [mg/l] TOC [mg/l] TN [mg/l]
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(part 3)
Date Sample No Water Body Chl T [°C] Secchi [cm]

2013.06.19 1 Placicky 3.4 44.3 15.75 1.02 25.8 190

2013.06.19 2 Placicky 2.8 39.56 11.51 1 25.7 218

2013.06.19 3 Opatovicky 0.2 39.66 7.7 0.38 25.1 363

2013.06.19 4 Opatovicky 1.8 39.19 8.91 0.36 28.3 364

2013.06.19 5 Ujezdsky 29.6 68.19 31.66 2.02 28.4 26

2013.06.19 6 Ujezdsky 47.2 70.65 32.2 2.16 28.4 29

2013.06.19 7 Bohumilecky 65.7 70.65 34.2 3.19 29.7 19

2013.06.19 8 Bohumilecky 58.6 71.44 34.72 2.65 29.4 23

2013.06.19 9 Bohumilecky 59 72.23 34.85 2.69 29.9 21

2013.07.29 1 Placicky 4.74 29.18 10.16 0.64 27.5 166

2013.07.29 4 Opatovicky 0.5 36.46 5.69 0.36 26.6 479

2013.07.29 5 Oplatil 1.5 29.95 6.45 0.46 27.2

2013.07.29 7 Pohranovsky 49.5 95.83 39.96 2.86 29.4 22

2013.07.29 8 Pohranovsky 39.7 99.55 3.52 29.3 30

2014.05.21 3 Melice 1.5 31.59 9.2 0.66 19 275

2014.05.21 8 Pohranovsky 4.4 52.29 14.04 1.15 21 170

2015.04.21 1 Pohranovsky 12.9 43.75 13.04 1.21 14.3 80

2015.04.21 2 Pohranovsky 9.6 46.24 15.51 1.39 14.2 66

2015.04.21 3 Oplatil 8.9 38.42 7.91 0.8 11.9 117

2015.04.21 4 Oplatil 9.2 38 7.41 0.78 12.3 114

2015.04.21 5 Oplatil 11.1 37.58 7.08 0.84 12.4 127

2015.04.21 6 Bunkov 35.6 44.36 15.45 1.57 15.1 227

2015.04.21 7 Melice 7 34.63 9.36 0.66 13.4 255

2015.04.21 8 Melice 5.1 34.49 8.96 0.64 12.6 255

TC [mg/l] TOC [mg/l] TN [mg/l]

Figure 45: water only mask showing the southern part of the research area



Water only mask (Figure 45) was used to mask out all the non-water areas specifically in 

the area of study before smoothing process. The atmospherically corrected image values were 

smoothed using the 3×3 averaging window. Statistically this improved the values of  r2. Only 

considered  r2 where values of  r2> 0.4. Without the smoothing of atmospherically corrected 

values,  r2  values  for  r2  >0.4  vis  a  vis  all  measured  water  quality  parameters  were  less. 

Smoothing  generally  improved  correlation  between  the  measured  water  quality  and  the 

atmospherically corrected data values, thus only results from smoothed imagery are presented 

here.

Atmospheric  correction  generally  improved  the  correlations,  but  there  was  no 

improvement for TC and LogTOC parameters in linear r2 (Table 1). 

Model Creation and Verification

Although based on the literature reviewed, it came out that correlation should be expected only 

with the visible bands and with thermal bands for temperature, all available Landsat ETM+ 

bands  were  considered.  These  are  blue  (band1),  green  (band2),  red  (band3),  near-infrared 

(band4), short-wave infra-red 1 (band5) and thermal infra-red (band6), short-wave infra-red 2 

(band7) of Landsat ETM+ gave the necessary range for which we could rely on to create the 

various  models  for  the  water  quality  parameters  being  analysed.  Band  6  was  used  for 

temperature models whereas the rest was considered for all the other water quality
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Table 1: Change in r2 due to atmospherically  
corrected data.

Parameter
Chl-a 0.47 0.55

LogChl-a 0.51 0.71

TC 0.52 0.44
LogTC 0.51 0.48

TOC 0.61 0.6

LogTOC 0.65 0.66

T 0.91

LogT 0.9

SDD 0.62 0.75
LogSDD 0.79 0.84

Toar r2 Atcorr r2



parameters.  In  all  44  models  were  created  for  all  the  water  quality  parameters  that  were 

analysed. All the models were developed using atmospherically corrected and smoothed data 

turned into units of reflectance. The model for temperature was developed based on smoothed 

TOA brightness  temperature  values  in  Kelvin  [28]  as  current  atmospherically  corrected 

imagery for Landsat ETM+ does not contain thermal bands.

 

Models were developed based on not only linear functions  but also exponential, power and 

logarithmic functions. In most of the cases we realised the linear functions worked better as 

basis for developing the models (see appendix 6.1). Out of the 44 models created 37 (Table 11) 

of them were based on liner functions and the rest being exponential, power and logarithmic. 

The model charts with the best fits were chosen to develop the models and model performance 

charts created (figures 46 to 57). The red line in model performance charts is ideal model line, 

where estimated and measured values would be equal.
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Table 11: Bands used in model creation and their r2 values based on linear function
Parameter Bands Parameter Bands

Chl-a L2/L1 0.51 T L61 0.9
Chl-a L3/L1 0.52 T L62 0.91

LogChl-a L3 0.5 LogT L61 0.82
LogChl-a L1/L3 0.66 LogT L62 0.83
LogChl-a L2/L1 0.45 SDD L3 0.49
LogChl-a L3/L1 0.66 SDD L1/L2 0.66
LogChl-a L3/L2 0.47 SDD L1/L3 0.75

TC L3/L1 0.44 SDD L2/L1 0.64
LogTC L3/L1 0.48 SDD L3/L1 0.7
TOC L1/L3 0.41 SDD L3/L2 0.41
TOC L2/L1 0.53 LogSDD L3 0.64
TOC L3/L1 0.5 LogSDD L1/L2 0.59
TOC L4/L1 0.42 LogSDD L1/L3 0.72

LogTOC L2 0.45 LogSDD L2/L1 0.69
LogTOC L3 0.42 LogSDD L2/L3 0.41
LogTOC L1/L2 0.55 LogSDD L3/L1 0.84
LogTOC L1/L3 0.52 LogSDD L3/L5 0.45
LogTOC L1/L4 0.42
LogTOC L2/L1 0.64
LogTOC L3/L1 0.66

r2 r2
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Figure 46: Model fit for SDD
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Figure 47: Scatter plot for Model Performance of SDD
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Figure 48: Model fit for Chl-a
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Figure 49: Scatter plot for Model performance of Chl-a
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Figure 50: Model fit for TC
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Figure 51: Scatter plot for Model performance of TC
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Figure 52: Model fit for TOC

Figure 53: Scatter plot for Model performance of TOC
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Figure 54: Model fit for T
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Figure 55: Scatter plot for Model performance of T
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Figure 56: Model fit for TN
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Figure 57: Scatter plot for Model performance of TN
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The models developed from model charts showed varied correlations between the measured 

values vis a vis the estimated values based on the models for validation purposes. The model 

performances based on scatter plots from which the r2, RMSE, NRMSE of the created models 

were measured and a summary of the models of each water quality parameter is seen in Table 

12. Figure 47 shows the model fit on which the model for SDD was developed showing fit r2 

value of 0.77. Figure 49 shows the model fit for Chl-a showing a r2 value of 0.82 and Figure 48

the performance chart of the model. Figure 50 illustrates model fit for TC with r2 value of 0.83 

and Figure 51 shows the model performance. TOC model fit is illustrated in Figure 52 showing

r2 value of 0.87 and Figure 53 shows the model performance chart. Figure 54 shows the model 

fit for T indicating r2 value of 0.91 followed by the performance chart of the model (Figure 55).

Based on model performance, model maps were built for the two best performing models of 

each parameter for each of the water quality parameter. The models were developed based on 

individual water quality parameters (variables) similarly as done by Olmanson et al [235], 

Hellweger et al [126] and Wu et al [236]. See appendix 6.3 for further performance charts for 

the models developed.

The best two models for each water quality parameter with highest correlation as well as good 

RMSE and NRMSE were used in creating the model maps (Figure 56 to Figure 65). From
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Table 12: Best Models developed based on water quality parameters

Parameter Models r2 RMSE NRMSE Range(min,max) n
SDD [cm] 245.7(L1/L3)-194.4 0.77 102 0.17 19-635 32
SDD [cm] 10^(-1.819(L3/L1)+3.347) 0.77 105 0.17 19-635 32

Chl-a [ug/l] 33.66*(L3/L1)^3.405 0.82 8.4 0.13 0.2-65.7 30
Chl-a [ug/l] 10^(-0.8330(L1/L3)+2.331) 0.82 8.5 0.13 0.2-65.7 30
TC [mg/l] 53.946*(L3/L1)+15.150 0.83 7.5 0.13 29.1- 85.2 25
TC [mg/l] 10^(-0.1640*(L1/L3)+1.988) 0.81 8.1 0.14 29.1- 85.2 25

TOC [mg/l] 33.58*(L3/L1)-6.0159 0.9 3.5 0.12 4.2-34.8 25
TOC [mg/l] 10^(0.9279*(L3/L1)+0.4906) 0.87 4.2 0.14 4.2-34.8 25
TN [mg/l] 10^(1.764*(L2/L1)-2.051) 0.78 0.47 0.15 0.09-3.19 25
TN [mg/l] 3.257*(L2/L1)-2.294 0.75 0.49 0.16 0.09-3.19 25

TEMP  [°C] 0.0154*(L62/L1)-27.05 0.9 1.7 0.08 8.3-29.9 36
TEMP  [°C] 1.1203*L62-302.78 0.88 1.9 0.09 8.3-29.9 36



Table 12, all the best correlations are based on visible bands 1,2,3 as espoused in the reviewed 

literature. Models with the best r2 fit, RMSE and NRMSE are summarised in Table 12.
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Figure 57: Model 10^(-1.819(L3/L1)+3.347) map of SDD levels for
2013.05.09

Figure 56: Model (245.7*L1/L3-194.4) map of SDD levels for
2013.05.09.



The model maps show the various levels of water quality parameters (SDD, Chl-a, TC,

TOC, TEMP) on some of the water bodies sampled as well as those that were not sampled.

They are depicting the levels for these water quality parameters for the date 2013.05.09

(figures 56, 57). The maps depicts the spatial distribution of the concentrations of the water

quality parameters in relation to the area the map covers. 
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Figure 58: Model 33.66*(L3/L1)^3.405 map showing the levels of Chl-
a for 2013.05.09

Figure 59: Model (10^(-0.8330*L1/L3)+2.331) map showing the levels
of Chl-a for 2013.05.09
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Figure 60: Model (53.946*(L3/L1)+15.150) map showing the levels of  
TC for 2013.05.09

Figure 61: Model (10^(-0.1640*(L1/L3)+1.988)) map showing the  
levels of TC for 2013.05.09
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Figure 63:Model (10^(0.9279*(L3/L1)+0.4906)) map showing the  
levels of TOC for 2013.05.09



Chl-a (Figure 58, 59), can be an indicator of the level of phytoplankton development as 

collaborated by Baborowski et al [237]. The blue areas of the water bodies represent low levels 

of Chl-a 0-15 ug/l (Figure 58, 59). Dark green portions show averagely high levels of Chl-a 

(30-45 ug/l), with the light green parts showing portions with high levels of Chl-a (60 ug/l and 

more). TC showed a range of levels from 35 mg/l to 90 mg/l. The yellow through to orange 

areas have low TC levels (35-48 mg/l), mid-levels from 62 to 76 mg/l (Figure 60, 61). The red 

(77-90 mg/l) depicts areas of the water bodies with relatively high levels of TC. TOC which 

encompasses the total amount of organic carbon, shows a range based of the models maps 

7mg/l to 38 mg/l. 7 to 14 mg/l (Figure 62, 63) shows low levels of TOC in the water bodies, 22 

to 30 mg/l shows mid levels of TOC and 30 to 38 mg/l shows high levels of TOC based of the 

models for TOC.
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Figure 64: Model (0.0154*(L62/L1)-27.05) map showing the levels of  
temperature for 2013.05.09



The model maps for temperature depicts a range of 15 to 25 °C (Figure 64, Figure 65).

It  is  quite evident  based on the model maps that  in all  cases the second best model 

performs similarly  to  the  best  one,  although checking for  the  performance,  r2,  RSME and 

NRSME may vary. It was realised that in some instances though a model's r2 value value might 

be high the RSME and NRMSE, and especially performance chart shape can give a greater 

picture. 

3.5  Validation of Models

There  is  always  the  need  to  verify  the  actual  performances  of  developed  models  on 

independent data set.  Some of the sampled data were retained as earlier mentioned for this 

particular  process.  The samples  were collected  on the 02.07 and 10.08 of  2015.  In all  12 

samples were taken for the validation, but two had to be removed due to clouds. The satellite 

data were smoothed and processed in the same way as in model creation. Validation of the 

models were based on the performance charts and the  r2  , RMSE and NRMSE values. This 

enabled the measurement of validity of the models created. Figure 66 shows the validation for
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Figure 65: Model (1.1203*L62-302.78) map showing the levels of  
Temperature for 2013.05.09



SDD taking into measured values for SDD and that of the estimated values based of the

developed model. The model performance for Chl-a is shown in figure 67 plotting measured

Chl-a values against estimated values based on the model developed for Chl-a.  Figures 68, 69

and 70 and 71 show the validation for models of TC, TOC, TEMP and TN respectively. It is

worth noting that most of the clear images were used for the model creation. Because of this

not that many images usable were available for the model validation that is how come we have

less sample space.
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Figure 66: Model performance for SDD
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Figure 67: Model performance for Chl-a
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Figure 68: Model performance for TC
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Figure 69: Model performance for TOC

Figure 70: Model performance for Temp.
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The root mean square root error (RMSE) and normalised root mean square error (NRMSE) 

were calculated. The performance indicators are summarised in table table 13. 
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Figure 1: Model Performance for TN
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Table 13: Validation of models developed for water quality parameters

Parameter Models RMSE NRMSE n
SDD[cm] 245.7(L1/L3)-194.4 0.78 109.56 0.25 10

CHL-a[ug/l] 33.66*L3/L1^3.405 0.83 6.43 0.23 10
TC[mg/l] 53.946*(L3/L1)+15.150 0.3 14.35 0.45 10

TOC[mg/l] 10^(0.9279*(L3/L1)+0.4906 0.61 6.76 0.28 10
TN[mg/l] 10^(1.764*L2/L1-2.051) 0.81 0.38 0.27 10

TEMP[°C] 1.1203*L62-302.78 0.89 1.78 0.28 10

r2



Comparing the models and the validations results based on tables 12 and 13, the margins 

between the performance figures of the models and the that of the validation are much as these 

differences were expected. However r2 , NRMSE values for TC were unusually low as model 

value was 0.83 (table 12) and 0.13 whereas that of the model validation was 0.3 (table 13) 

which failed to yield a positive result, as both models with the best fit were tested but both 

failed to give a good validation. TOC had r2, NRMSE values of 0.9, 0.12 (table 12), for the 

model validation r2 0.61 and 0.28 (table 13) for the model validation. SDD had 0.77 and 0.17 

(table 12)  r2 value for the model whereas 0.78 and 0.25 respectively (table 13) was recorded 

for model validation. In the case of Chl-a, the best r2, NRMSE values were 0.82 and 0.13 (table 

12) and r2, NRMSE values for the model validation was 0.83, 8.35 (table 13) respectively. For 

temperature model r2, NRMSE values was, 0.9 and 0.08 (12) and that of the model validation 

were 0.89 and 0.28 (table 13). It is worth noting that the model with the best fit for temperature 

failed to give a good validation but rather the second best did. For TN the best r2, NRMSE 

values were 0.78 and 0.15 (table 12) and r2, NRMSE values for the model validation was 0.81, 

0.28 (table 13). Further validation is needed for these models in future research as more points 

are needed to further test them.

 3.6  Application of Chl-a Model example

The models created were applied to surface water within the areas that the research covered to 

evaluate their application. The various seasons of the year were considered with the exception 

of winter.
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Figure 72: Model 33.66*(L3/L1)^3.405 of Chl-a on Oplatil and Bohdanecsky
rybnik   on 2012.05.29

Figure 73: Model 33.66*(L3/L1)^3.405 of Chl-a on Oplatil and Bohdanecsky
rybnik on 2012.06.22
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Figure 74: Model 33.66*(L3/L1)^3.405 of Chl-a on Oplatil and Bohdanecsky
rybnik on 2012.08.01

Figure 75: Model 33.66*(L3/L1)^3.405 of Chl-a on Oplatil and Bohdanecsky
rybnik on 2012.09.11
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Figure 77: Model 33.66*(L3/L1)^3.405 of Chl-a on Oplatil and Bohdanecsky
rybnik on 2012.11.14

Figure 76: Model 33.66*(L3/L1)^3.405 of Chl-a on Oplatil and Bohdanecsky
rybnik on 18.09.2012



The figures 72 to 77 show the levels of chlorophyll-a on Oplatil and Bohdanecsky rybnik 

during different seasons from May to November of 2012. The estimated levels of Chl-a were 

based on the model 33.66*(L3/L1)^3.405. Bohdanecsky rybnik is a protected national reserve 

as it serves as a breeding habitat for numerous species of birds. Based on models that have 

been developed the various water quality parameters of such water bodies could be estimated 

without disturbing the habitat of these birds. The average levels of Chl-a for the 

Bohdanecsky rybnik and Oplatil water bodies were measured based on the model developed 

(33.66*(L3/L1)^3.405) for Chl-a. This was to estimated time line of Chl-a for the two water 

bodies, showing how the models really work. It estimates the averages of Chl-a in the two 

water bodies by measuring the whole water area of these water bodies and based on this,  

calculates the Chl-a average of each water body. The measurement of the Chl-a in each water 

body, relies on a vector layer created for Chl-a of all surface water bodies in the Czech 

Republic. The average for Bohdanecsky rybnik and Oplatil for 9th of May 2012 was 34.84 ug/l 

and 5.48 ug/l (Figure 78) respectively. For the 22nd of June the average measurements as per the
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Figure 78: Average Chl-a levels for Bohdanecsky rybnik and Oplatil in 2012 based
on Model developed for Chl-a.
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model were 8.71 ug/l, 47.58 ug/l. The next date (1st of August, 2012) showed 6.96 ug/l, 43.27 

for Oplatil and Bohdanecsky rybnik. That for 11th of September averages for the two water 

bodies were 3.63 ug/l and 37.86 ug/l. 18th of September showed averages of 9.59 and 39.08 

respectively. For the 14th of November the average Chl-a were 0.61 ug/l for Oplatil and 31.08 

ug/l for Bohdanecsky rybnik. The highest average for Bohdanecsky rybnik was in June 

whereas that for Oplatil was in September. (Figure 78)
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 4 CONCLUSION AND RECOMMENDATIONS

In looking at the use of remote sensing as a tool for monitoring inland water bodies the

following objectives were set. First to create a model for estimating the levels of inland water

quality parameters based on Landsat ETM+ data. Secondly to assess the effects of smoothing

on the models developed because of the sizes of the water bodies that were to be monitored.

Thirdly to analyse the effects of atmospheric correction on the models that were developed.

In analysing data statistically values from TOAR images and values from

atmospherically corrected images were those that were considered. The use of RGB band

combination did aid the identification of areas covered by clouds, cloud shade and haze. This

made it possible to identify and remove sample points which were affected by these

phenomenon. This is evident in Figure 39 and Figure 40. The area of study had general cloudy

conditions that sometimes made it next to impossible for the availability of clear images as in

the case of works focusing on arid or coastal regions. The careful examination of of images

and removal of problematic areas from the processing still makes it possible to build and use

models from satellite imagery for the purpose.

It was further demonstrated that despite the size of an inland water body, it is possible to

smooth images of them and that smoothing enhances the performance of the resultant model.

This is possible when the right water only mask is applied. Atmospheric correction did also

improve the overall quality values though in some situations it reduced correlation between

measured values and those extracted from atmospherically corrected images as visible in table

10. Atmospherically corrected Landsat ETM+ images downloaded from USGS. These images

were corrected based on the 6S algorithm as expounded by Masek et al [117]. 

From the models it is evident that most of the water quality parameters had varied r2

values though in some it was low vis a vis bands and band combinations that falls within the

range 450 (blue) – 690 (red) nm with the exception of temperature which was modelled based

on thermal bands.  Table 12 shows the two best models for each parameter analysed. 

Though mostly small sized inland water bodies were monitored in this research it

showed clearly that Landsat ETM+ data can be relied on for monitoring of inland water quality

parameters as shown by the models developed. It is also worth mentioning that we relied on
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Landsat ETM+ and not Landsat 8, because at the inception of our work it was the satellite in

operation. Additionally it is the longest running environmental satellite in orbit and this allows

the use of models to analyse trends in time (from the year of satellite launch to date). The

procedures are applicable to other satellite images, example Landsat 8.

Monitoring of small inland water bodies based of Landsat imagery

Though this research went well there were a few challenges worth noting. Thick clouds

caused a lot of data loss. Images with light clouds and haze could not be used even when a

robust atmospheric correction was adopted to limit the effect of the cloud and haze over water

bodies. Some of the samples could not be used due to the fact that on the day they were taken

available satellite images were cloudy. With this problem, some of the samples could not be

factored into our analysis. Also because of this issue the application of the models could not be

done in evenly spaced intervals for whole year of any of the years under review. Long

distances between the individual sampled water water bodies also made it time consuming

sampling a number of water bodies within the day of overpass. In some occasions, though the

weather was good not that many samples were taken due to the issue of time. One pertinent

issue, is the fact that not all water quality parameters can monitored based remote sensing with

the required precision based on this method. Also most of the parameters depend on similar

band combinations. It suffices to say that concentration from the models for the parameters

will have strong inter-correlation.  In some situations that might not be the case as in reality

parameters can behave independently. Example is SDD and Chl-a in situations of high

turbidity not related to algae growth. Due to the afore mentioned reasons remote sensing can

not solely be relied on but rather go hand in hand with traditional methods of inland water

monitoring. 

Benefits of this Research

  Models developed for the inland water quality parameters analysed, can be used in estimating

these parameters for other inland water bodies that are visible on the image used. Limiting in 

situ measurements reduces operational cost, time and energies spent monitoring inland water 

bodies.

Secondly similar water only masks could be developed as done in this research work so 

smoothing could be effectively done to limit the effect of noise on remotely sensed data for 

smaller inland water bodies.  This will aid effective inland water management.
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The models developed will help monitor special inland water bodies such those that serve as 

habitat or breeding spot without disturbance to the habitat. As demonstrated in the use of the 

models in estimating the levels of Chl-a on Bohdanecsky rybnik which is national reserve and 

a breeding place for different species of birds.

Last but not least models also helps in estimation of concentration not only for the areas that 

were sampled but rather for the whole water body. By this problematic areas of the water body 

could be identified.

Recommendations for Future work

The recommendations for future research to further enhance the findings made in this work are

as follows.

Exploring further methods of atmospheric correction methods in order to improve the quality 

of data and develop models based on Landsat 8 OLI and Sentinel-2 MSI. Sentinel-2 has better 

spatial and temporal resolution which has the potential to greatly enhance usability of the 

models for monitoring small water bodies.  

One other area that needs to be looked at is the measurement of wind currents during satellite 

overpass. Due to the size of the water bodies rapid changes could occur due to strong winds 

with respect to spectral properties of the water surface. 

Exploring other methods of collecting in situ data such as building mini sampling stations on 

these water bodies. A lot of time was spent on collecting samples as the sampled water bodies 

in terms of distance were quite far apart. Juggling between these water bodies was tedious 

work adding the time spent in the laboratory meant a few samples could be worked on at a 

time.

Also further work needs to be done regarding inland water quality parameters based on 

classification of water body types. Example sand lakes, reservoirs, fish ponds, lakes only. To 

clearly identify the patterns of inland water quality parameters during the various seasons of 

the year.

From the research emphasis has been brought to the fact that the use of remote sensing in near 

real time monitoring of water quality has been shown to be a good alternative to in situ 

monitoring.
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 6 APPENDICES

 6.1 Various functions used in developing models

142

Figure 79: Model Chart for SDD showing the functions used in developing models
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 6.2 Table showing the r2 values for Measured parameters
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Parameter L1/L2 L1/L3 L1/L4 L1/L5 L1/L7 L2/L1

R^2 chl-a 0.35 0.36 0.16 0.00 0.02 0.51

R^2 log chl-a 0.35 0.66 0.11 0.00 0.00 0.45

0.22 0.32 0.26 0.03 0.04 0.26

Log TC 0.25 0.34 0.27 0.02 0.04 0.30

0.39 0.41 0.39 0.02 0.00 0.53

 LogTOC 0.54 0.52 0.42 0.02 0.00 0.64

0.18 0.20 0.17 0.02 0.01 0.26

0.07 0.12 0.04 0.06 0.04 0.12

T [°C] 0.21 0.03 0.42 0.00 0.00 0.19

Log T 0.24 0.03 0.42 0.01 0.01 0.19

Secchi [cm] 0.66 0.75 0.22 0.00 0.02 0.64

Log Secchi 0.59 0.72 0.24 0.01 0.06 0.69

TC [mg/l]

TOC [mg/l]

TN [mg/l]

LogTN [mg/l]

Parameter L1 L2 L3 L4 L5 L7

R^2 chl-a 0.01 0.30 0.38 0.23 0.01 0.01

R^2 log chl-a 0.01 0.25 0.50 0.13 0.02 0.03

0.02 0.10 0.27 0.16 0.00 0.04

Log TC 0.03 0.11 0.29 0.18 0.00 0.05

0.09 0.38 0.38 0.36 0.02 0.01

 LogTOC 0.13 0.45 0.42 0.29 0.00 0.01

0.07 0.04 0.13 0.20 0.08 0.00

0.04 0.01 0.07 0.08 0.09 0.00

T [°C] 0.15 0.00 0.00 0.13 0.01 0.00

Log T 0.12 0.01 0.00 0.12 0.02 0.00

Secchi [cm] 0.10 0.28 0.49 0.06 0.01 0.02

Log Secchi 0.05 0.37 0.64 0.15 0.00 0.03

TC [mg/l]

TOC [mg/l]

TN [mg/l]

LogTN [mg/l]
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Parameter L2/L3 L2/L4 L2/L5 L2/L7 L3/L1 L3/L2

R^2 chl-a 0.16 0.00 0.11 0.16 0.52 0.20

R^2 log chl-a 0.44 0.02 0.07 0.11 0.66 0.47

0.25 0.06 0.09 0.10 0.44 0.31

Log TC 0.26 0.06 0.08 0.10 0.48 0.32

0.17 0.09 0.05 0.08 0.60 0.23

 LogTOC 0.19 0.05 0.10 0.11 0.66 0.24

0.15 0.04 0.00 0.00 0.35 0.19

0.11 0.00 0.02 0.01 0.21 0.14

T [°C] 0.01 0.14 0.05 0.03 0.06 0.00

Log T 0.01 0.11 0.06 0.04 0.05 0.01

Secchi [cm] 0.34 0.02 0.17 0.13 0.70 0.41

Log Secchi 0.41 0.00 0.20 0.20 0.84 0.52

TC [mg/l]

TOC [mg/l]

TN [mg/l]

LogTN [mg/l]



 6.3  Model charts and their model performance scatter plots for second 
best models.
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Figure 80:Model chart of SDD
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Figure 81: Scatter plot for Model Performance of SDD
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Illustration 2 part 1:Model chart for Chl-a
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Illustration 2 part 2: Scatter plot for Model
Performance of Chl-a
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Illustration 3 part 1: Model chart for TC
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Illustration 3 part 2: Scatter plot for Model
Performance of TC
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Illustration 4 part 1: Model chart for TOC
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Illustration 4 part 2: Scatter plot for Model Performance
of TOC
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Illustration 5 part 1:Model chart for T
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Illustration 5 part 2:Scatter plot for Model Performance 
of T

5 10 15 20 25 30 35
5

10

15

20

25

30

35

Model Performance
1.1737(L61)-318.8960

measured T [°C]

es
tim

at
ed

 T
 [°

C
]



154

Illustration 6 part 1: Model chart for SDD
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Illustration 6 part 2: Scatter plot for Model Performance of 
SDD
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Illustration 7 part 1: Model chart for SDD
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Illustration 7 part 2: Scatter plot for Model 
Performance of SDD
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Illustration 8 part 1: Model chart for SDD
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Illustration 8 part 2: Scatter plot for Model 
Performance of SDD
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Illustration 9 part 1: Model chart for Chl-a
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Illustration 9 part 2: Scatter plot for Model 
Performance of Chl-a
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Illustration 10 part 1: Model chart for Chl-a

0.5 1 1.5 2 2.5 3 3.5 4

-1

-0.5

0

0.5

1

1.5

2

f(x) = − 0.839x + 2.219
R² = 0.660

Chl-a

L1/L3

L
o

g
C

h
l-

a
 [u

g
/l]



163

Illustration 10 part 2: Scatter plot for Model Performance 
of Chl-a
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Illustration 11 part 1: Model chart for TOC
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Illustration 11 part 2: Scatter plot for Model 
Performance of TOC
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Illustration 12 part 1: Model chart for T
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Illustration 12 part 2: Scatter plot for Model 
Performance of T
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Illustration 13 part 1: Model chart for T
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Illustration 13 part 2: Scatter plot for Model Performance 
of T
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 6.4 Unsmoothed Top of Atmosphere Reflectance
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Parameter L1/L2 L1/L3 L1/L4 L1/L6 L3/L1 L4/L1 L62/L1

R^2 chl-a [ug/l] 0.2547 0.2811 0.0858 0.0535 0.2837 0.1387 0.0722

R^2 log chl-a [ug/l] 0.1622 0.1997 0.0258 0.0200 0.4293 0.0541 0.0280

0.1469 0.2051 0.0454 0.1033 0.2767 0.0633 0.1133

Log TC 0.1020 0.1605 0.3172 0.0360 0.4231 0.3059 0.0440

0.3164 0.3667 0.2046 0.1734 0.4425 0.2584 0.2085

 LogTOC 0.3452 0.4168 0.4447 0.2814 0.5592 0.4410 0.2860

0.1290 0.1646 0.0531 0.4249 0.2107 0.1221 0.4320
0.0282 0.0401 0.0167 0.3642 0.0918 0.0504 0.3553

T [°C] 0.2258 0.2466 0.3674 0.3563 0.0526 0.2973 0.3228

Log T [°C] 0.2300 0.2519 0.4192 0.4129 0.0615 0.3039 0.3496

SDD [cm] 0.3509 0.4073 0.1324 0.2013 0.5480 0.1125 0.1880

Log SDD [cm] 0.4221 0.4747 0.1972 0.1224 0.6588 0.1991 0.1224

TC [mg/l]

TOC [mg/l]

TN [mg/l]

LogTN [mg/l]
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