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This work tries to explore how the remote sensing could be used in monitoring of selected 

water quality (WQ) parameters in small inland water bodies. The respective models to 

estimate the water quality parameters were proposed based on the Landsat 7 ETM+ images 

taken in 6 samplings from May 2012 to September 2014. The images used were scenes of 

WRS-2, path and row 191/25, as well as 190/25, respectively. Samples were taken from 

13 water bodies, from which 9 water bodies (20–90 Ha) were used in modelling (and some 

removed due to clouds and imagery gaps). The WQ parameters were chlorophyll-a 

(Chl-a), Total Carbon (TC), Total Organic Carbon (TOC), Total Nitrogen (TN), 

Temperature (T), and Secchi Disk Depth (SDD). The 3 × 3 moving average-window 

technique with a water-only-mask approach was used in order to limit the process toward 

the water areas only. The best models based on the surface reflectance (T based on 

brightness temperature [K]) showed a correlation r2 between 0.78 and 0.90 and NRMSE 

between 16.6 % and 8.0 %, respectively, for all the water quality indicators. This has proved 

that all the parameters can be remotely estimated. The models and workflow scheme 

created are intended to help to institutions mandated in the monitoring of water bodies. 

 

Keywords:  Landsat; Remote sensing; Algorithms; Model; Water quality; 

Water monitoring 
 

 

Introduction 
 

Water bodies, such as lakes and ponds, need to be carefully managed, as the water 

quality has a significant effect on the humans, aquatic organisms, and upon the 
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environment in general. The term "inland water" as described by Mishra [1] can 

be used for any ecosystem unless specifically termed otherwise. The deterioration 

of the water quality of inland water bodies is a serious ecological and social 

problem, since many lakes, ponds, reservoirs, and other inland water bodies (both 

natural and artificial) are the main sources of drinking water or are used for 

recreation and fishery. Inland water bodies in the Czech Republic are not 

different. To ensure a standard quality for the individual water bodies, it is a 

tedious and costly task [2]. Measuring of the respective quality parameters has to 

be done in-situ and the samples taken to the laboratory for analysis, which is both 

labour intensive and time consuming [3]. 

Remote sensing based methods for the water quality monitoring is one way 

of addressing the constraints that comes with such measurements. For this 

purpose, special algorithms are used for remotely sensed data to characterize the 

water quality, when various researchers utilize different satellite sensors for such 

monitoring of the respective parameters [4–8]. There are numerous sensors that 

can be used in remote sensing, such as LANDSAT, MODIS, MERIS, VIIRS, and 

HySpIRI [9]. By using these sensors, it is possible to measure the colour of water 

in detail and the variables — i.e., water quality parameters —, such as 

chlorophyll-a (Chl-a), total suspended sediment, coloured dissolved matter, and 

Secchi disk depth (SDD), can then be all observed quantitatively [10]. To do so, 

various studies have come up with algorithms based on Landsat data for 

estimating the individual types of water quality variables being monitored [11–19]. 

Such algorithms comprise the single bands, band ratios or other band 

combinations based on empirical relationship between the blue 450–500 nm, 

green 500–600 nm, and red 600–700 nm bands to remotely estimate the levels of 

chlorophyll-a in the inland water bodies. 

For instance, Brezonik [16] found the best correlation with a simple band 

ratio algorithm having used the bands 1 and 3 of Landsat TM with r2 over 0.88, 

  ln - 1.7237 9.6487Chl a x    (1) 

where x is a ratio of bands 1/3 and when an addition of yet another variable besides 

the band1/band3 ratio had not brought significant improvement. 

In this study, we chose the Landsat ETM+ imagery taking into account the 

spatial, temporal, and spectral resolution of the available imagery. Due to the size 

of the water bodies being monitored, a better spatial resolution compared to 

MODIS, MERIS, OCM-2, etc. has prevailed, as that supported also by Malthus 

and his report [10]. 

  



Danquah K.A.B. et al.: Sci. Pap. Univ. Pardubice, Ser. A 24 (2018) 167–185 

169 

The following reasons were also in favour of choosing the Landsat ETM+: 

‒ economic reasons (available for free), 

‒ easy and quick access to Landsat data from United States Geological 

Survey (USGS), 

‒ extended scope (coverage), 

‒ availability of the already processed images. 

 

In this paper, we seek to  

‒ use the remote sensing as a tool to estimate the water quality parameters in 

small inland water bodies in the Pardubice and Hradec Kralove regions by 

constructing a model based on multiple water bodies, as well as multiple 

sampling using the Landsat ETM+ data, 

‒ effect of 3 × 3 window averaging on the data used, 

‒ the effect of atmospheric correction on the data used. 

 

All the water bodies sampled during this research are relatively small 

compared to water bodies, which are object of modelling in most of the mentioned 

articles. One of the objectives is thus also a finding if satellite monitoring using 

30 m Landsat data is applicable to such small water bodies. The Landsat 7 was 

the only Landsat satellite available from the beginning of the sampling and its 

long operational time allows us to use the models created to estimate the water 

quality parameters from 1999 to the present and, thanks to a close similarity of 

TM and ETM+ sensor bands, it would be possible to go even further back in time, 

but this is out of scope of this article. A newer Landsat 8 and especially Sentinel-2 

satellites are superior to Landsat 7 with respect to the sensor spatial and spectral 

resolution, when the water quality models for such sensors are also prepared. 

Along with commonly modelled Chl-a and SDD, we also tried to estimate 

total organic carbon (TOC), total nitrogen (TN), and temperature (T) using the 

same methodology. In the case of TOC, the main reason was to explore how well 

this water quality parameter would agree with satellite models compared to 

Chl-a, because of an easier measurement, together with the occurrence of 

chlorophyll-a indicating the overall eutrophication of water and its pollution. 

Total organic carbon in water is a result of mixture of both dissolved and 

suspended organic matter present in water, only part of which causes the water 

colouring and changes in its transparency detectable by the satellite. In our 

opinion, it is not so different from the case of the chlorophyll-a parameter as it 

may seem at a first glance. While chlorophyll-a is a green substance, the optical 

properties of water are affected by many other substances, some of them being 

optically similar, namely chlorophylls -b, -c, and the products of chlorophyll 

decomposition as such. In principle, in the case of Chl-a, we are estimating a 

subset of what the satellite can really "see" and, vice versa, for TOC. In both cases, 

we can estimate this parameter thanks to an inter-correlation in occurrence of the 

involved substances. 
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The total carbon (TC) parameter was added to evaluate its correlation as well, 

because it is measured along with TOC in the same laboratory instrument, although 

we are aware that the substantial inorganic carbon component in this parameter has 

likely little to do with the water quality or colour registered by the satellite. TN is 

another parameter measured easily by the same analytical instrument, and nitrogen 

is both part of biomass and a nutrient, so it might also correlate with the algae content 

and eutrophication, as well as with the satellite bands. Temperature is usually 

estimated by computing the brightness of temperature from the satellite thermal 

bands [20,21]. In this work, we tried to apply the same regression-based algorithm 

on the computed band of the brightness temperature like that for the reflexive satellite 

bands of the other water quality parameters. 

 

 

Materials and methods 

 

Study area 

 

This work concentrates on water bodies near Pardubice (50°02′19″N 15°46′45″E) 

and Hradec Kralove (50°12′34″N15°50′00″E), two larger towns in Eastern 

Bohemia. Water bodies in the selected area are mainly fishponds and reservoirs 

formed after sand mining (Fig. 1). 

 

 

Fig. 1 Study area 



Danquah K.A.B. et al.: Sci. Pap. Univ. Pardubice, Ser. A 24 (2018) 167–185 

171 

In the map, the water bodies sampled are highlighted by deeper grey colour, 

but the other water bodies visible can be monitored via the models as well. 

All the water bodies are relatively small, those sampled in this work range 

from 8 to 90 hectares, approximately. The fish ponds were established in middle 

ages [22] and have inflow and outflow. Water reservoirs originating from sand 

mining are relatively new, on some of the water bodies the mining stopped few 

years ago, and do not have their own inflow / outflow. Most of water bodies of 

both types are used for fishing and water sports. In most of the fishponds, there is 

more or less intensive fish breeding / feeding. 

 

 

In situ sampling and laboratory analysis 

 

The samples were collected from the autumn of 2011 to spring of 2015. Field 

measurements took place on all 13 inland water bodies (highlighted in Fig. 1). 

GPS unit Trimble Juno SB was used to record the coordinates of these sites and 

the track of the boat used. Samples were taken using an inflatable boat and stored 

in cooling box with ice to ensure cold and dark conditions. One and a half litres 

of each of the water body was collected from a surface horizon of about 10 cm 

beneath the waterline. The sampling was done anytime in various water bodies 

between morning and afternoon, on the day of the satellite overpass, or if not 

possible, one day in advance or after the overpass. The respective temperatures 

were read out using a digital thermometer and Secchi disc depth (SDD) recorded 

at the time of sampling using 20 cm diameter Secchi disk. The water bodies for 

sampling namely are: Bohdanecsky rybnik, Bohumilecsky rybnik, Bunkov, 

Hradek, Jezero, Melice, Opatovicky pisnik, Oplatil, Placicky pisnik, Pohranovsky 

rybnik, Spravcicky pisnik, Ujezdsky rybnik, Velka Cerna. Due to the satellite data 

quality check (see next chapter), not all sampled water bodies and measurements 

were used for model development. Those actually used are highlighted using italic 

font in the above list, i.e. the mentioned water area ranging from 20 to 90 hectares. 

The weather conditions during sampling times were quite calm with some 

intermittent cloudy conditions. Nevertheless, visibility (general atmospheric 

clarity) on all the water bodies at the time of sampling was good. 

Some researchers have suggested that ground data collection should be 

done preferably in parallel with Landsat data acquisition, which helps to minimize 

errors when calibrating algorithms [16,23,24]. Other researchers state that 

measurements made 10 days after or before satellite overpass are acceptable as 

reported in [2] or that in-situ measurements taken a day before or after overpass 

tend to bring tightest correlation but a larger area to cover with longer revisit time 

may bring some loss in correlation [25]. In-situ measurements in this paper were 

thus mostly taken on the day of the satellite overpass. Where not possible, it was 

done a day before or a day after. 
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The chlorophyll-a analysis was done in the laboratory according to 

ISO-10260 [26], using Fisher micro fibre glass filters with 0.7 µm pore size. The 

pigment extraction process was accomplished by grinding the filter in ethanol 

(90%, v/v). The extract was hot water bathed at 75 oC for 5 min. and afterwards 

allowed to cool down for 15 min. before being put in a refrigerator for another 

minimal 30 min. This ensured a sufficient concentration of the chlorophyll-a for 

spectrophotometric determination. 

Total carbon (TC), Total organic carbon (TOC) and Total nitrogen (TN) 

analyses were done using a TOC/TN device and directly from collected samples. 

Table 1 summarises all the in-situ measurements. Not all of the individual samples 

and measurements were finally used in the model proposal, as part of them was 

later removed based on visual quality control of the satellite data in the location 

of measurement points (described in the next chapter in Fig. 2 and its caption). 

The empty cells mean no measurement of the particular water quality parameter 

was done. 

 
Table 1 In situ measurements, mean and standard deviation 

Date Samples Chl-a 
TC 

[mg L–1] 

TOC 

[mg L–1] 

TN 

[mg L–1] 

T 

[°C] 

Secchi 

[cm] 

2011.09.15 9 1.5–71 

   

19.5–20.9 

 

2011.09.26 9 0.2–29 

     

2012.05.29 9 2.2–31.9 53.3–58.9 16.0–18.1 0.16–0.18 21.0–23.4 21–480 

2012.06.22 4 2.9–36.3 34.2–71.5 8.5–21.3 0.10–0.16 24.2–26.3 62–186 

2012.07.31–08.01 8 0.7–9.7 

   

26.3–28.4 44–228 

2012.09.18 3 3.0–68.9 31.2–84.1 6.1–30.6 0.10–0.19 19.5–22.2 15–220 

2012.11.14 6 2.2–8.0 

 

4.2–6.9 

 

8.3–9.2 240–635 

2013.04.23 6 3.9–7.3 38.2–43.2 4.5–9.5 0.11–0.15 11.5–13.8 123–184 

2013.05.09 4 0.4–20.9 35.0–60.8 6–19.1 0.31–1.68 18.7–22.7 52–620 

2013.06.19 10 0.2–65.7 39.2–72.2 7.7–34.8 0.36–3.19 25.1–29.9 19–364 

2013.07.29 9 0.5–49.5 26.8–99.5 5.4–43.9 0.36–3.52 26.6–29.9 22–485 

2013.08.12 8 0.4–4.7 26.8–45.5 4.6–12.2 0.50–1.23 24.7–52.2 65–499 

2014.05.21 8 0.7–8.1 31.0–52.8 8.2–15.0 0.62–1.40 18.8–21.6 125–275 

2014.07.23 7 0.2–34.9 35.7–95.6 6.4–42.2 0.59–3.35 24.6–25.8 23–325 

2014.09.16 6 1.9–39.1 34.0–85.2 5.8–31.0 0.59–2.54 20.3–21.0 24–490 

2015.04.21 8 5.1–35.6 34.5–46.2 7.1–15.5 0.78–1.57 11.9–15.1 66–255 

Mean 

 

12.42 48.12 13.82 0.94 21.65 207.3 

Std Dev 

 

16.53 19.18 10.10 0.85 6.08 168.0 
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Satellite data, processing, and smoothing 

 

Images from Landsat 7 ETM+ with a spatial resolution of 30 by 30 m were used. 

The study area is fully covered by both Landsat scenes of WRS-2, path and row 

191/25 and 190/25 respectively, having an average satellite revisit time of 8 days. 

The corresponding images were downloaded from Earth Explorer (see 

http://earthexplorer.usgs.gov). We analysed together data from the individual 

sampling dates. The problem of missing data strips in Landsat 7 imagery [27] was 

solved by removing affected measurements from the processing, if the 

measurement location is not covered by smoothing filter described further on. 

Cloud cover and cloud shade sometimes impacted the satellite images used 

for analysis. To identify such areas affected by haze and thin clouds, we used the 

RGB band combination as suggested in literature (see [24]). The band combination 

1,6,6 (L1 Blue 0.450–0.515 nm, L6 Thermal Infrared 10.40–12.50 nm) (Fig. 2) was 

used to highlight the areas affected by haze and clouds. Such an approach is 

relative, showing which areas of an image are relatively more or less hazy. Thus, 

we checked this also by using true colour imagery with a fixed colour 

interpretation, which was used to check all the images. Based on this, all the 

measurements that fell into the affected areas were completely removed. 

 

 

Fig. 2 RGB band combination 1,6,6 on example of Landsat 7 image path/row 190/25, 

acquisition date 2011.09.25 
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Various levels of the satellite data processing were tried in the initially 

developed models. The digital number (DN) pixel values obtained from Landsat 7 

ETM+ were converted into TOA (top of atmosphere) reflectance. Along with DN 

data, also surface reflectance (SR) product by USGS (http://earthexplorer.usgs.gov) 

was downloaded and used. An assumption that atmospherically corrected SR 

product should perform best for reflective bands was confirmed; therefore, in this 

particular work, atmospherically corrected images were used. 

Band 6 of ETM+ (10400–12500 nm) is the thermal infrared band being 

used to create the temperature model. DN's were converted into brightness 

temperature in Kelvins, since this band is not available as atmospherically 

corrected [28]. The brightness temperature computed from the band 6 corresponds 

to the temperature measured in situ precisely only for the surfaces having 

properties of the absolutely black body. Moreover, it is affected by the influence 

of atmosphere above the surface. Because of these facts, the brightness 

temperature may differ from the actual temperature measured on the water 

surface. It was not used directly as the result, but as input into a regression model 

described in next chapter. 

To reduce the negative impact of noise in the imagery on the models, image 

smoothing was used on reflective bands. A water-only-mask was created based 

on a detailed vector map of inland water bodies in the Czech Republic (map data 

© VÚV TGM, http://www.dibavod.cz) and infrared bands thresholding. The 

mask limited the area for which the averaging 3 × 3 window was used. Through 

smoothing the noise effect was limited and non-water areas, such as vegetation 

along the banks of the water bodies, were eliminated. By using the 3 × 3 averaging 

window, the images were spatially filtered by convolving the image with a small 

window. Each pixel in the original image was replaced by a weighted average of 

the product from the window, which applies also to the neighbouring pixels [29],  

 
orig

9

new i i1i
DN Z DN DN


  (2) 

where the DN represents the brightness values of the pixels and Zi is divisor that 

equals to the inverted number of values in the averaging window matrix (herein, 

Zi = 1/9). The same formula applies to DN, TOA, and SR imagery. 

In order to achieve the above described, the following steps were included: 

Step 1 Using r.mask command in Grass GIS, a mask was created based on 

existing detailed water areas map. Non water areas were masked out. 

Step 2 Using map calculator in Grass GIS, an open water mask was created based 

on band 7 threshold (Band7 < 210). This way water areas affected by water 

vegetation, the surface algae cover, accumulated sediment, etc. were 

masked out (in addition to the mask created in step 1). 

Step 3 Using the r.mfilter in Grass GIS a filter was ran to smooth the open water 

pixel values using the 3 × 3 average window.  
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Effectively, the high and low values are averaged out by reducing the 

extreme values, eliminating possible artificial or unusual correlations that might 

arise from noise in the imagery [30]. In the same time, by computing the average 

in floating point numbers, the smoothing process increases the actual number of 

digital levels in the band, having effectively increased radiometric resolution at 

the cost of decreasing intrinsic spatial resolution – although actual pixel size is 

not changed, discernible high frequency details are reduced. This detail reduction 

should not have any adverse effect on the model since water-quality parameter 

levels usually do not exhibit high-frequency spatial changes. 

 

 

Development of models 

 

The monitoring of the various inland water vis-à-vis, the various parameters under 

consideration are defined based on the changes in optical properties of the water 

column [30,31]. By selecting the spectral bands and band ratios (band 

combinations) for consideration in creating the models for the various parameters, 

all possible reflective band combinations were first evaluated based on linear r2 

between the respective parameter and every band combination. 

In case of temperature, considering, that at least part of the differences 

between measured and brightness temperature should have character of the 

additive and multiplicative factor in the space of actual vs. brightness temperature, 

we then treated the brightness temperature in the same way as the other bands, 

constructing the linear regression model between the values of brightness 

temperature and the respective measurements. 

Three indices used in assessing the performance of the models developed 

were the coefficient of determination (r2), the root mean square error (RMSE), 

and normalized root mean square error (NRMSE) serving in assessment of the 

models that had been created based on measured vs. estimated values. Based on 

these indices and on closeness of a model to the 1:1 line in the performance charts, 

the best model for each water quality parameter could be chosen. Such a model 

can then be applied to the satellite imagery in order to obtain the maps of the water 

quality at the water surfaces visible in the imagery as described below. 

 

 

Results and discussion 

 

Spectral bands selected for model creation and analysis 

 

Table 2 shows all the coefficients r2 whose values are 0.6 and above that 

considered after plotting the actual measurement of parameters against the 

smoothed values extracted from Landsat 7 ETM+ image spectral bands. In the 

table, one can see that all the water quality parameters (except temperature T) 
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were in general correlations with the Landsat 7 ETM+ band 3 (L3 onwards) and 

band combinations (ratios) of L1 (0.450–0.515 nm), L2 (0.520–0.605 nm), 

L3 (0.630–0.690 nm). This also shows that combination of the Landsat 7 ETM+ 

band L1 (0.450–0.515 nm) and band L3 (0.630–0.690 nm) was probably the most 

suitable for the Chl-a modelling, as well as for SDD, TC and TOC, because of 

best correlations. Here, it should be noted that higher correlations of logarithm 

of a parameter with bands not always mean a better resulting model (as shown 

later on) and so linear and logarithmic correlations should not be directly 

compared. TN shows a better correlation with combination of bands L2 and L1. 

 
Table 2 Bands and band combinations considered for model creation 

Parameter Band r2 Parameter Band r2 

SDD L1/L2 0.64 TOC L1/L2 0.62 

SDD L1/L3 0.77 TOC L1/L3 0.75 

SDD L2/L1 0.69 TOC L2/L1 0.78 

SDD L3/L1 0.75 TOC L3/L1 0.90 

Log(SDD) L3 0.71 Log(TOC) L2 0.71 

Log(SDD) L1/L2 0.61 Log(TOC) L3 0.64 

Log(SDD) L1/L3 0.80 Log(TOC) L1/L2 0.73 

Log(SDD) L2/L1 0.74 Log(TOC) L1/L3 0.76 

Log(SDD) L3/L1 0.90 Log(TOC) L2/L1 0.81 

Chl-a L1/L3 0.61 Log(TOC) L3/L1 0.85 

Chl-a L2/L1 0.64 TN L2/L1 0.75 

Chl-a L3/L1 0.80 TN L3/L1 0.68 

Log(Chl-a) L3 0.77 TN L4/L1 0.60 

Log(Chl-a) L1/L3 0.86 Log(TN) L1/L2 0.70 

Log(Chl-a) L2/L3 0.74 Log(TN) L2/L1 0.79 

Log(Chl-a) L3/L1 0.80 T L1 0.88 

Log(Chl-a) L3/L2 0.74 T L61 0.87 

TC L2 0.67 T L62 0.88 

TC L3 0.74 T L1/L61 0.89 

TC L1/L3 0.75 T L1/L62 0.89 

TC L2/L1 0.62 T L61/L1 0.90 

TC L3/L1 0.83 T L62/L1 0.90 

Log(TC) L2 0.66 LogT L1 0.91 

Log(TC) L3 0.73 LogT L61 0.84 

Log(TC) L1/L3 0.77 LogT L62 0.86 

Log(TC) L2/L1 0.63 LogT L1/L61 0.92 

Log(TC) L3/L1 0.84 LogT L1/L62 0.92 

TOC L2 0.71 LogT L61/L1 0.87 

TOC L3 0.69 LogT L62/L1 0.87 
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This also buttressed the point that the bands in the visible region of the 

spectrum are most suitable for Chl-a and SDD analysis as found in most literature 

sources mentioned in the Introduction.  

Analysis for Temperature (T) was done based on uncorrected imagery 

because atmospherically corrected images of Landsat ETM+ (CDR-Surface 

Reflectance Climate Data Record, http://earthexplorer.usgs.gov) has no longer 

thermal infrared bands. Among all the parameters, the temperature had the best 

linear correlation of up to 0.92 between the measured values and a band or band 

combination values; specifically, with thermal bands L61 and L62 and 

surprisingly also with the blue band L1. 

 

 

Model creation and validation 

 

After analysing correlations of the various bands in relation to the parameters 

being monitored, different regression models vis-à-vis the in-situ measurements 

were constructed. To measure the performance of these models, we checked r2, 

RMSE, NRMSE for each of the model created and those with appreciably strong 

levels of all three indices considered. Table 3 shows the best two models for each 

water quality parameter and their properties. The range means minimum and 

maximum measured value of the parameter used in model development, n is the 

number of individual measurements used in the model development. 

 

 
Table 3 Best two models for every water quality parameter 

Parameter Models r2 RMSE NRMSE Range (min–max) n 

SDD [cm] 245.7 × (L1/L3) – 194.4 0.77 102 16.6 % 19–635 32 

SDD [cm] 10^(–1.819 × (L3/L1) + 3.347) 0.77 105 17.1 % 19–635 32 

Chl-a [μg L–1] 33.66 × (L3/L1)^3.405 0.82 8.4 12.8 % 0.2–65.7 30 

Chl-a [μg L-1] 10^(–0.8330 × (L1/L3) + 2.331) 0.82 8.5 12.9 % 0.2–65.7 30 

TC [mg L–1] 53.946 × (L3/L1) + 15.150 0.83 7.5 13.2 % 29.1– 85.2 25 

TC [mg L–1] 10^(–0.1640 × (L1/L3) + 1.988) 0.81 8.1 14.3 % 29.1– 85.2 25 

TOC [mg L–1] 33.58 × (L3/L1) – 6.0159 0.90 3.5 11.5 % 4.2–34.8 25 

TOC [mg L–1] 10^(0.9279 × (L3/L1) + 0.4906) 0.87 4.2 13.5 % 4.2–34.8 25 

TN [mg L–1] 10^(1.764 × (L2/L1) – 2.051) 0.78 0.47 15.2 % 0.09–3.19 25 

TN [mg L–1] 3.257 × (L2/L1) – 2.294 0.75 0.49 16.0 % 0.09–3.19 25 

T  [°C] 0.0154 × (L62/L1) – 27.05 0.90 1.7 8.0 %  8.3–29.9 36 

T  [°C] 1.1203 × L62 – 302.78 0.88 1.9 8.8 % 8.3–29.9 36 

  

http://earthexplorer.usgs.gov/
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The predictive models were used to estimate various parameters and then 

model performance charts made, showing a relation between the estimates and 

the in-situ measurements. Fig. 3 illustrates such charts for the best model for every 

water quality parameter. Similar charts could be assembled for several models of 

each water quality parameter and best model chosen based on the model 

parameters r2, RMSE, NRMSE and the charts.   

 

 

Fig. 3 Performance of best models created for the various parameters 6.33 cm 
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Measured Chl-a [μg L-1] Measured SDD [cm] 

Measured TN [mg L-1] Measured T [°C] 

Measured TOC [mg L-1] Measured TC [mg L-1] 

   SDD 245.66 L1L3 194.4  


 Chl-a 33.659 L3 L1 3.405

   TC 53.9461 L3 L1 15.1496    TOC 33.5812 L3 L1 6.0159

     log 1.7639 L2 L1 2.0513TN   1.1203 L62 302.78T
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Chlorophyll-a model application 

 

A set of Figs. 4, 5, 6, 7, 8, and 9 surveys the levels of chlorophyll-a and its spatial 

distribution on the surface of Oplatil, Bohdanecsky rybnik and the surrounding water 

reservoirs during the year 2012, namely from May to November (compare with 

Fig. 1 to identify the water bodies by shape). The estimated levels of Chl-a were 

based on the model: 

 

3.405
3

- 33.6
1

L
Chl a

L

 
  

 
 (3) 

Bohdanecsky rybnik is a protected national reserve serving as a breeding 

habitat for numerous species of wild birds. Based on models that have been 

developed, various water-quality parameters of such water bodies could be 

estimated without disturbing the habitat of these birds. 

The average levels of Chl-a for Bohdanecsky rybnik and Oplatil were 

computed with the aid of the model as the average Chl-a concentration over the 

area of the water body visible in the image. This was to estimate time line of 

Chl-a for the two water bodies, showing an example of how to properly apply the 

model. It should be noted that Chl-a levels could be estimated also for all the 

smaller water objects visible in the map. The average for Oplatil and Bohdanecsky 

rybnik for 29th of May 2012 was 3.5 μg L–1 and 33.6 μg L–1, respectively (Fig. 4). 

For the 23nd of June the average concentrations of Chl-a were 4.9 μg L–1, 64.4 μg L–1 

per model (Fig. 5). 

 

 

Fig. 4 Chl-a on Oplatil and Bohdanecsky rybnik on  2012.05.29 
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Fig. 5 Chl-a on Oplatil and Bohdanecsky rybnik on  2012.06.23 

 

 

The next date (August 1st, 2012) showed 4.1 μg L–1, 52.4 μg L–1 (Fig. 6) for 

Oplatil and Bohdanecsky rybnik. 

 

 

Fig. 6 Chl-a on Oplatil and Bohdanecsky rybnik on 2012.08.01 

 

 

For September 11th, the averages for the two water bodies were 2.8 μg L–1 

and 39.6 μg L–1 (Fig. 7), analysis in September 18th revealed 5.3 and 42.3 (Fig. 8), 

respectively. Finally, in November 14th, the average Chl-a were 1.9 μg L–1 for 

Oplatil and 27.0 μg L–1 for Bohdanecsky rybnik (Fig. 9). 
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Fig. 7 Chl-a on Oplatil and Bohdanecsky rybnik on 2012.09.11 

 

 

Fig. 8 Chl-a on Oplatil and Bohdanecsky rybnik on 2012.09.18 

 

 

Fig. 9 Chl-a on Oplatil and Bohdanecsky rybnik on 2012.11.14 
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The highest average value for Bohdanecsky rybnik was ascertained in June 

whereas that one for Oplatil in September, but the general trend in time is quite 

similar for both water bodies, showing that the algae behave similarly in different 

water bodies depending on the weather conditions (Fig. 10). 

It is possible to apply the models on different water reservoirs that appear 

on the satellite images and, in the same way, for different water quality 

parameters. 

 

 

Fig. 10 Chl-a levels for Bohdanecsky rybnik and Oplatil in 2012 based on model 

 

 

Conclusions 

 

Inland water quality monitoring of small water bodies based on the remote sensing 

looks very promising. From the application of the developed models, it is shown 

how such a sensing may rely on as a tool for monitoring the quality of inland 

water reservoirs, especially those that are quite difficult to access or those 

applicable in simultaneous monitoring of a large number of water bodies which 

could be hard to achieve using traditional methods. Though being promising, there 

is a task of covering by haze and cloud shadows, making the use of images often 

difficult or nearly impossible in the climatic conditions of the Czech Republic. 

This prolongs the time to gather sufficient data for creating reliable models, but 

— more importantly —, lowers the reliability of getting the monitored data from 

the models in uninterrupted regular intervals as it is common with traditional 

monitoring. This situation would be improved by incorporating other satellites 

with shorter revisit time. 
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All the tested water quality parameters can be monitored using satellite 

remote sensing, although it is also evident that not all is monitored with the same 

precision enabled by this method. Also, most of the parameters depend on similar 

band combinations. It suffices to say that the concentrations ascertained with the 

aid of model parameters will have a strong intercorrelation. In some situations 

that might not be the case in real situations, such parameters can behave 

independently. An example is SDD and Chl-a under circumstances of high 

turbidity not related to algae growth in small inland water bodies. 

This paper has proved that the use of Landsat ETM+ in the monitoring on 

small inland water reservoirs is feasible. With the help of water-only-mask which 

is adapted when undertaking the smoothing procedure of image processing, it 

should be possible to monitor even water bodies as small as water objects whose 

size corresponds to a few pixels at the image. 
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