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Impacts and vibrations 

This book deals with the mechanics of impacts and vibrations and mitigation of 
their effects. It brings the expressions for impacts and for velocity, displacement 
and force in various cases of braking or stopping, and pays attention to the fact that 
force impulses propagate in bodies only with limited velocity. Then, it shows how 
various materials respond to load, how they absorb energy and how they can fail. 
Further it describes technical means for impact energy absorption, such as bend 
parts, compressed shells, composites, air cushions and hydraulic shock dampers 
with constant deceleration. One chapter is devoted to vibrations and mitigation of 
their effects. Formulae are presented for free and forced vibrations, without or with 
damping, and attention is also paid to the transmission of forces into foundations 
and to kinematic exciting, appearing during a vehicle´s ride on a wavy road. Also a 
dynamic absorber of vibrations is described and vibrations of a system of several 
bodies. More complex analysis needs numerical methods, such as the finite 
element method. The last chapter is devoted to the dimensional analysis and theory 
of similarity, which can spare work during the development of appliances for the 
damping of impacts and vibrations. The book contains explanatory examples, 
numerous figures and references.      

 

The book can be downloaded on http://hdl.handle.net/. 
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Rázy a vibrace   

Kniha se zabývá mechanikou rázů a vibrací a zmírňováním jejich účinků. Nejprve 
uvádí základní vztahy pro rázy a dále pro rychlosti, dráhy a síly při různých 
způsobech zastavování a brzdění. Všímá si i toho, že silové impulsy v tělesech se 
šíří pouze omezenou rychlostí. Ukazuje, jak se při zatížení chovají různé typy 
materiálů, jak mohou pohlcovat energii a jak dochází k jejich porušování. V další 
kapitole se popisují konstrukční prvky pro absorbování energie při nárazech: od 
ohýbaných dílů přes skořepiny až po kompozity, vzduchové polštáře a hydraulické 
tlumiče s konstantním zpomalením, jež zajišťuje nejúčinnější brzdění. Samostatná 
kapitola je věnována vibracím a zmírňování jejich účinků. Jsou uvedeny vztahy pro 
volné i vynucené kmitání, tlumené i netlumené. Pozornost je věnována i přenosu sil 
do základů a kinematickému buzení, vyskytujícímu se například při jízdě vozidla 
po nerovné vozovce. Je také vysvětlen dynamický absorbér vibrací a situace při 
kmitání více hmot. Ve složitějších případech se pro analýzu užívají numerické 
postupy, jako je metoda konečných prvků. Poslední kapitola je věnována teorii 
podobnosti a rozměrové analýze, které mohou ušetřit práci při vývoji zařízení pro 
tlumení rázů a vibrací. Kniha obsahuje řadu vysvětlujících příkladů, četné obrázky 
a odkazy na literaturu. 

Kniha je volně přístupná na http://hdl.handle.net/. 
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1. Introduction  

Wherever something moves, dynamic forces appear. They are often unfavourable, 
for example in collisions of vehicles or at impact on an obstacle, during 
manipulation with various objects, at impact by a hard object of very low mass and 
high velocity. They appear in transport or technological processes. Higher impact 
forces can cause damage or even destruction of the bodies. Problems occur also in 
appliances with rotational or periodic movement, such as motors or machines. If 
they are not sufficiently balanced, additional forces cause noise and increased wear 
of bearings, and are a source of parasitic forces and can even lead to an accident, 
especially at resonance. 

Those, who want to face these phenomena and mitigate their consequences 
efficiently, should know their principal features. Such knowledge brings fruits. 
From the beginning, cars and other transport means were equipped by suspensions 
that have been permanently improved. Today, due to the high safety demands, cars 
and trains use deformable zones, which deform during a collision in a controllable 
manner and absorb great part of the energy of impact so that the space for the 
driver and passengers are protected from the consequences of the accident. Well 
designed and dimensioned machine appliances are safer, with smoother running 
and longer life. Dynamic absorbers of vibrations, which minimise the vibrations in 
a special way, namely by adding another vibrating mass, are used in small objects, 
such as hand shavers, but also in very large structures, such as skyscrapers.  

During time, the knowledge of dynamics, including vibrations, has significantly 
increased. Numerous special literatures exist and also computer programs have 
been developed, which can solve very complex problems. An important problem 
therefore is the ability to describe adequately the problem to be solved and to 
propose the solution and suitable software. This book wants to serve as an 
introduction to the problems of impacts and vibrations and their mitigation. In 
addition to the explanation of principal terms and theory for obtaining general idea 
it gives simple formulae for elementary calculations. Also some technical solutions 
are mentioned. The individual chapters are complemented by solved problems and 
references for further study. 
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The arrangement of the book is as follows. Chapter 2 explains the principles of the 
mechanics of collisions of bodies: the elastic impact, inelastic and partly elastic. 
Formulae for velocities and energies are presented, as well as a simplified 
determination of the maximum force at an impact on an elastic body. Chapter 3 
shows the features caused by the limited velocity of propagation of force impulses 
in bodies and explains the conditions when this must be taken into consideration. 
Chapter 4 is devoted to the time course of velocity, path of the body, and force for 
various cases of its braking or slowing down. Attention is also paid to energies. 
Chapter 5 shows the behaviour of various materials under load: elastic, elastic-
plastic and viscoelastic. It explains the distribution of stresses, development of 
deformations, and energy absorption during elastic-plastic bending. Also it deals 
with the loss of stability at buckling of slender and thin-walled elements loaded by 
compressive force, which are often used for mitigation of impacts. It shows the role 
of stress concentrators and the behaviour of bodies with cracks, and explains the 
failure of bodies from brittle materials. The following chapter describes structural 
elements used for energy absorption at impacts: bent rings, compressed shells and 
other parts, materials with cellular structure such as honeycombs or stiff foams, 
composites including the types used for ballistic protection, as well as airbags and 
similar components. It also explains the construction of hydraulic dampers with 
constant deceleration, which ensure the most efficient stopping and impact 
damping. Chapter 7 is devoted to vibrations and mitigation of their effects, 
especially the transmission of forces onto bearings, foundations or constructions in 
their vicinity. Formulae are presented here for free vibrations without damping and 
with it and for forced vibrations. Attention is also paid to the kinematic excitation 
that arises, for example, during a ride of a vehicle on an uneven road. Also a 
dynamic absorber of vibrations is described, which uses a mass attached via a 
spring to the vibrating body. With proper tuning it is only this additional mass that 
vibrates, while the main body, which is excited, remains calm. The vibrations of a 
system of several bodies are also mentioned briefly. More complex cases of impact 
load or vibrations are solved by numerical procedures, such as the finite element 
method. Such solutions need suitable computer programs, which are also 
mentioned briefly. The last chapter is devoted to the dimensional analysis and 
theory of similarity, which enable reduction of the extent of computations and 
experiments and generalisation of the results and thus savings in the research and 
development of various appliances for damping and mitigation of impacts and 
vibrations.    
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2. Impacts and hits  

2.1  Introduction 

Impacts of two or more bodies occur very often. Examples are: a collision of two 
bodies of comparable mass, an impact of a body on a strong barrier, or a strike by a 
body of high or very small mass. They often occur in transport and also in various 
technological processes. Practical examples are: 

- Collisions of transport means (cars, trains, ships, airplanes) or impacts of 
them on various structures or barriers. 

- Fall of objects from height (e.g. a vehicle, fall of an object during 
manipulation, fall of stones on the road, a vehicle or transport belt). 

- Strike by a flying object (a projectile, hail, stream of sand or small balls in 
shot-peening for surface strengthening or for cleaning of various parts). 

- Strike by a hammer or power-hammer in forging, work of a pneumatic 
pick or a percussion drill. 

- Driving of nails into wood or piles into the soil. 
- Work of machines or mechanisms with reversible or repeated movements 

(looms, manipulation with moulds in foundries or in glass works, 
conveyers, manipulators and robots, planers, crane bridges, valves in 
combustion engines, doors in transport means, and many others). 

Often it is also necessary to stop a movement within a very short distance. For 
example a train whose brakes failed, must not leave the rails at the end of platform. 

There are also examples from the world of entertainment: collisions of billiard balls 
or return of a ball in tennis or football. Some readers may remember an artist 
performance in a circus arena, where one man laid on the ground with a large stone 
on his breast, and another man hit the stone by a big hammer. Most spectators were 
horrified at this instant. But those, who had known principles of mechanics, sat 
calm, as they knew that nothing could happen. 

A special case is so-called hydraulic impact that occurs if the flow of liquid is 
stopped suddenly. (This phenomenon will be explained at the end of the next 
chapter.) 
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In all these examples small or high forces arise. Sometimes they can cause 
destruction of the bodies in contact or increased noise and wear. The task of this 
chapter is to provide a general idea so that the reader can orientate himself in 
solution of these problems with the aim to minimise the forces and damage, or – on 
the contrary – to utilise efficiently the energy of an impact. Here, we shall remind 
the principal concepts and relationships of the pertinent branches of mechanics and 
illustrate their applications on simple problems. More comprehensive materials can 

be found in textbooks of dynamics and other literature, for example [1  6].    

The base for solution of impact problems are Newton’s laws and equations of 
motion, the laws of conservation of momentum and energy, and expressions for the 
calculation of kinetic energy and work of deformation. The problem is very simple 
if only the velocities of bodies after collision must be determined. Here, we shall 
look at velocities, deceleration, braking distances and duration of impact in several 
basic cases. The forces at impact will be considered here only very briefly, as they 
will be treated in more detail in a separate chapter. 

2.2  Direct collision of mass points 

The situation can be illustrated on two elastic balls of masses m1, m2, which move 
in horizontal direction along the same straight line (Fig. 2.1, left). The velocity of 
the first ball is higher than that of the second ball, v10 > v20, and they touch one 
another. Since this instant force N acts among them, both balls are compressed and 
the distance between their centres of gravity gets smaller. This is the compression 
period, which ends at time tc, when this distance is minimum and the contact force 
is the highest (Fig. 2.1, centre). At this instant the velocity of both bodies equals vc. 
Then, the stage of restitution follows. If the deformations were only elastic, a part 
of the kinetic energy was changed into potential energy of elastic stresses. This 
energy is gradually released during the restitution period, the deformations become 
smaller and after certain time both bodies get apart and continue in their movement  

   

 
      m1          m2          m1+m2      m1     m2 

      v10      v20               vc    v1f          v2f 

   

ř á ř á á

  1 

 
         before the impact   during the impact after the impact 

Figure 2.1. Collision of two bodies 
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by different velocities v1f, v2f  (Fig. 2.1, right).  

This is elastic impact. Sometimes, no springing back occurs and both bodies 
continue as a whole by velocity vc. This is inelastic impact. Usually, partial 
rebound occurs, and one speaks about partially elastic impact. Now, we shall look 
at the individual cases. We start with the velocity vc at the end of the first period, 
which is common to all cases. This velocity can be obtained from the law of 
momentum conservation. It is 

 m1v10 + m2v20 = (m1 + m2) vc ,            (2.1) 

from which it follows 

 vc = (m1v10 + m2v20) / (m1 + m2) .            (2.2) 

2.3  Elastic impact 

If the impact was elastic, no energy was consumed (dissipated) during it. The 
velocities after springing back can be thus determined via the law of energy 
conservation, which says that the sum of kinetic energies after the impact must be 
the same as before the impact: 

 Ekin,0 = Ekin,f  = ½ m1v10
2 + ½ m2v20

2  =  ½ m1v1f
2 + ½ m2v2f

2 .           (2.3) 

Also the law of momentum conservation of this system of two bodies is valid: 

 m1v10 + m2v20  =  m1v1f + m2v2f             (2.4) 

After expressing the velocity v2f from this equation and inserting it into Equation 
(2.3) one obtains, after a rearrangement, the final velocity of body 1: 

 ,
2)(

21

22121
1 mm

vmvmm
v f 


                    (2.5) 

Similar procedure gives the final velocity of the second body:

 
21

11212
2

2)(

mm

vmvmm
v f 


 .                  (2.6) 

Let us look at some examples. The reader is encouraged to solve them also, with 
the use of formulae (2.2), (2.5) a (2.6).  

Case A. Both balls have the same mass (m1 = m2) and move one against the other 

by the same velocities (v20 =  v10; the minus sign means that the direction v20 is 
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opposite to direction v10). Inserting these values into Equations (2.2), (2.5) and 

(2.6) gives vc = 0, v1f = v10 a v2f  = v20 = v10. The balls bounce back and each 
moves by its original velocity in the opposite direction.  

Case B. Both balls have the same mass, the ball 1 moves by velocity v10, the ball 2 
does not move (v20 = 0).  It follows from Eqs. (2.2), (2.5) and (2.6) that vc = ½ v10, 
v1f = 0, v2f = v10. The first ball stops, while the other starts moving by the velocity 
v10 in the direction of initial movement of the first ball. The ball 1 has passed its 
momentum on the ball 2. Both balls thus have exchanged their velocities.  

Case C. The second ball has much higher mass than the first one, m2 >> m1, and 
does not move (v20 = 0). The common velocity at the end of the compression period 

is therefore vc = 0.  The velocities after the collision are: v1f =  v10, v2f = 0. The 
second ball does not move (it is much larger than the first ball), and ball 1 jumps 
back with the same velocity with which it fell on the second ball. 

Case D. The second ball has much higher mass than the first ball and the same 

velocity, but in the opposite direction, m2 >> m1, v20 =  v10. The common velocity 

at the end of the compression period is vc =  v10, and the velocities after the 

collision will be: v1f =  3v10, v2f =  v10. The second ball practically does not 
change its velocity (it is much larger than the first ball), but the ball No. 1 jumps 
back by higher velocity than the velocity of its impact on the second ball. 
Something similar happens if a car going on a road loses a wheel, which continues 
moving (by inertia) in its original direction and hits a much heavier car coming 
from the opposite direction. The wheel is flung back by very high velocity and can 
hit another car and damage it. 

In all cases the difference of velocities of both material points after the collision 
equals the opposite difference of their velocities before the collision. This holds for 
elastic impact in general. One can also say that the absolute value of the difference 
of the velocities of both elastic bodies after the impact is the same as before it.   

Despite of significant simplifications, the presented examples show clearly that in a 
head-on collision of two cars the lighter vehicles is at a disadvantage, especially if 
the other vehicle is much heavier. A light vehicle can be damaged and flung away 
and the collision can be fatal for the passengers, while the driver of much heavier 
vehicle will feel only slight impact and its velocity changes only a little.  

Ideally elastic impact is one extreme case. Now we shall look at the other extreme.  
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2.4  Inelastic impact 

If the impact were perfectly inelastic, if, for example, both bodies were from 
modelling clay and join during the collision strongly so that they form one body, 
they would finally move by the velocity vc, defined by Equation (2.2). Kinetic 
energy of this system will be 

 Ekin,f =  ½ (m1+m2) vc
2  .             (2.7) 

It is smaller than the initial energy Ekin,0 in Eq. (2.3), because a part of it was 
changed into deformation work (dissipation). The loss of energy is 

           Ekin =  ½ m1v10
2 + ½ m2v20

2 – ½ (m1+m2)vc
2 =  22010

21

21

2

1
vv

mm

mm



.       (2.8) 

In reality, however, no impact is perfectly elastic or inelastic, and can be denoted 
as partly elastic. 

2.5  Partly elastic impact 

During the first stage of impact a part of the kinetic energy is accumulated in the 
bodies as potential energy of elastic stresses (Eel), and a part of the energy (W) was 
consumed for plastic deforming of one or both bodies, for the creation of fracture 
surfaces when damaged bodies break, and also in friction and other processes, 
among other for the generation of noise during the collision. W denotes the work 
done at the impact, or, generally, dissipated energy. Only elastic energy is released 
during the rebounding. The momentum conservation law (2.4) now holds similarly 
to elastic impact, but the law of energy conservation (2.3) changes to 

 ½ m1v10
2  + ½ m2v20

2 = ½ m1v1f
2  + ½ m2v2f

2  + W .         (2.9) 

The velocities after impact can be obtained by solving Eqs. (2.4) and (2.9). 
Equation (2.4) is squared, the terms (½ m1v1f

2 + ½ m2v2f
2) in equation (2.9) are 

transferred to the left side, then this equation is multiplied by [2(m1 + m2)] and 
both expressions are summed. In this way we obtain 

 W
mm

mm
vvvv ff

21

212
2010

2
21 2)()(


  .         (2.10) 

Expressing v2f from Eq. (2.4) and rearranging, we get the final velocity of body 1: 
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   W
mm

mm
vv

mm

m
vv cf

21

212
2010

21

2
1 2





 ;        (2.11) 

vc is the common velocity of both bodies at the end of compression stage, defined 
by Equation (2.2). Similarly we obtain the final velocity of the second body: 

   W
mm

mm
vv

mm

m
vv cf

21

212
2010

21

1
2 2





  .             (2.12) 

These expressions hold also for the velocities during the impact. In this case W 
expresses the work consumed till the investigated instant. For W = 0, that is no 
consumed energy during the impact, Equations (2.11) and (2.12) change to 
equations (2.5) a (2.6) for elastic impact.  

For simpler evaluation of impacts with various bodies Newton has defined 

coefficient of restitution  as the ratio of the difference of velocities of both bodies 
after the impact and the difference of the velocities before the impact, 

 
2010

21

vv

vv ff




  .             (2.13) 

The coefficient of restitution for an elastic impact is   = 1, while for inelastic one it 

is   =  0. For partly elastic impact  varies between 0 and 1; it is the closer to 1, the 
bigger rebound.   

The coefficient of restitution can be determined in experimental way, for example 
from the height hf of the rebound of a ball from the investigated material after its 
fall on a massive body from height h0. In this case, h0 and hf are known, and also 

the velocity of impact v10 = (2gh0) and rebound velocity v1f = (2ghf); for massive 
base v20 = v2f = 0. After inserting these values into Eq. (2.13) one obtains 

 
0h

h f .            (2.14) 

The potential energy in gravitational field is   

 Upot = m g h ;              (2.15) 
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g is the acceleration of gravity, m is the mass of the body and h is the height of its 
fall. Expression (2.14) also says that the coefficient of restitution equals the square 
root of the ratio of the potential energies of the body after the impact and before it. 

REMARK. In the past, the coefficient of restitution was considered as material 
constant. Table 1 shows values for several material pairs. The situation, however, is 
more complex, as the behaviour at impact is influenced also by the condition of 
surface of both bodies (e.g. roughness) and also by the velocity of impact and other 
factors. Table 1 can thus serve only for orientation.  

Table 1. Coefficients of restitution of various materials [5, 7] 

material (pair of materials) body            . 
quenched steel     bearing balls   0.98  
glass – glass    ball and massive plate  0.94 
structural steel   ball and massive plate  0.93 
ivory    billiard balls   0.82 
rubber – marble  rubber ball, massive plate 0.82 
cast iron   balls    0.68 
wood (elm)   balls    0.60 
bell bronze   balls    0.59 
lead    balls    0.20 
clay    balls    0.17 

Now we shall look at the relation between the coefficient of restitution and the 
energy consumed during the impact. It follows from Eq. (2.9) that the consumed 
energy equals the difference of energies of both bodies before and after the impact,   

 W = ½ m10
2 + ½ m20

2   ½ m1f
2  ½ m2f

2 ,         (2.16) 

Expression of the velocities in Eq. (2.13) by means of Equations (2.11) a (2.12) and  
a rearrangement gives 

 
2010

21

212
2010 2)(

vv

W
mm

mm
vv






   ,         (2.17) 
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 )1()(
2

1 22
2010

21

21 


 vv
mm

mm
W   .          (2.18) 

For v20 = 0 and m2 >> m1 (that is, for impact of body 1 on a massive body 2) one 
gets the following simple relationship between the coefficient of restitution and the 
ratio of the work dissipated at impact and the initial kinetic energy: 

 )/(1 0,,1 kinEW  , and also  W / E1,kin,0  = 1 – 2 .        (2.19) 

With the known coefficient of restitution  and the velocity vc at the end of 
compression, given by Eq. (2.2), the formulae for final velocities can be written as: 
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  ,          (2.20) 
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  .          (2.21) 

They differ from expressions (2.5) and (2.6) only by the coefficient of restitution . 

2.6 Oblique impact 

The situation in real impacts usually differs from the ideal case of impact of two 
balls moving on the same line. For example, so-called oblique impact occurs if the 
vectors of velocity of both bodies do not lie on the same line, but intersect. In such 
case the velocities and forces at the contact have general directions, which have a 
component in the normal direction to the contact surface and a component in the 
direction of the tangent to this surface. For the velocity components in the normal 
direction everything said above holds. The tangential components remain without 
any change. Similar situation also exists in the case when the vectors of velocities 
of both bodies lie on the same line, but the plane, tangent to the surfaces of both 
bodies, is not perpendicular to this line. The effect of contact forces in normal 
direction will be addressed in the following chapter. The tangential component of 
the force acts at some distance from the centroids and tries to rotate each body, so 
that the residual movement can be much more complex. More to this topic can be 
found, for example, in [1].         

The use of the derived expressions will be illustrated on three practical problems. 
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Problem 1. Efficiency of forging  

A hammer of mass m1 falls by velocity v10 on a forged object lying on an anvil, 
whose common mass is m2 and velocity v20 = 0 (Fig 2.2a). We shall assume that the 
impact is perfectly inelastic so that the hammer does not rebound.     

If the efficiency of forging should be the highest, most energy should be passed on 
the forged object. It means that the loss of energy of the hammer should be the 
highest. Expression (2.8) thus changes for v20 = 0 to      
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vmE kinkin 




  .       (2.22) 

This value is maximum if the fraction m2/(m1 + m2) is the highest. This will be for 
m2>>m1. The most efficient forging is achieved if the mass of the forged body and 
the anvil is biggest compared to the mass of the hammer.   

A very similar case is the impact of a hammer on a stone lying on the breast of a 
circus artist. Big mass of the stone significantly damps the effect of the stroke.  

Problem 2. Efficiency of the pile driving into soil     

Some structures on soils of low load-carrying capacity rest on piles driven into the 
soil. During driving-in a hammer of mass m1 falls on the pile and passes on it a part 
of its kinetic energy (Fig. 2.2b). This impact is partly elastic and due to transmitted 
energy the pile penetrates into the soil. The amount of energy passed on the pile is 
the highest if the loss of kinetic energy of the hammer is the smallest. Contrariwise 
to forging the formula (2.22) must have the smallest value. This is achieved if the 
mass of the pile driver is highest compared to the mass of the pile, m1>>m2. 

 
           a.       b. 

        Figure 2.2.   Forging (a) and pile driving (b) 
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REMARK. h0 is the fall height of the pile driver, considered usually as the distance 
of the pile driver and pile before the impact. In fact, also potential energy of the 
hammer is released during its movement during the pile penetration into the soil. 
This component is usually small compared to the total height h0 of the fall.   

Problem 3. Determination of velocity of a bullet by means of ballistic pendulum   

The schematic is in Figure 2.3. The projectile penetrates into the pendulum body 
(e.g. a case with sand) and causes it to swing. The bullet velocity is then 
determined from the swing height. The problem will be solved for the following 
values: bullet mass m1 = 0.01 kg, pendulum mass m2 = 10 kg, the pendulum arm R 
= 3 m, height of swing of the pendulum centroid h = 5 mm. 

    

 

 
Figure 2.3.  Ballistic pendulum 

Solution. The bullet penetrates into the pendulum and passes its energy on it. This 
impact can be considered as fully inelastic. A part of the kinetic energy of the 
projectile is dissipated by its plastic deformation and by mutual friction and 
crushing of sand grains, and another part is changed into kinetic energy of the 
pendulum and, gradually, into its potential energy. The amount of dissipated 
energy is not known yet. The energy conservation law “kinetic energy of the 
projectile changes into potential energy of the pendulum” thus cannot be used. The 
solution will be based on the law of momentum conservation: “the initial 
momentum of the bullet equals the momentum of the system “bullet + pendulum” 
at the first instant of bullet penetration”,    

 m1 v10  =  (m1 + m2) vc ;           (2.24) 

vc is the pendulum velocity immediately after the penetration of the bullet. At this 
instant the system “pendulum plus bullet” has kinetic energy Ekin = ½ (m1 + m2) vc

2, 
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which changes into the potential energy of the system, Epot = (m1 + m2)gh, where g 
is acceleration of gravity (9.81 m/s2) and h is the distance between the height of the 
centroid of the system at the swing and the initial height. The condition of equality 
of both energies gives (after a rearrangement)  

 gh
m

mm
v 2

1

21
0,1


            (2.25) 

The initial velocity of the bullet for the above values is v10 = 313.5 m/s. 

Comment 1. We have assumed that the bullet penetrated into the pendulum at its 
centroid and that the pendulum could not rotate, so that its moment of inertia was 
not considered. As very small heights of swing are difficult to measure, one usually 

measures the horizontal displacement of the pendulum, d = [R2 – (R – h)2], which, 
in our case is d = 173 mm. Now, it is necessary to check, whether the calculated 
time tb for stopping the bullet was significantly shorter than the period of pendulum 

oscillation, T = 2(R/g). The movement of the bullet in the pendulum can be 
approximately considered as uniformly delayed, so that the time of stopping at the 
distance d is tb = 2d/v10 = 2×0.173/300 = 0.001153 s. This is much less than T =     

= 2 (3.0/9.81) = 3.475 s, so that no further correction is necessary. 

Comment 2.  Kinetic energy of the bullet before penetrating into the pendulum was  
Ekin  =  ½ m1v10

2 = 450.0 J. The potential energy of the pendulum with the bullet 
after the swing is Epot =  (m1+m2)gh = (0.01+10) ×9.81×0.005 = 0.491 J. This is 
only a little more than one thousandth of the initial energy (449.509 J). This means 
that nearly 99.9 % was absorbed by irreversible processes. If this energy would not 
be absorbed, the pendulum would swing as high as 4.58 m (provided its 
construction would allow it), or the bullet would cause the corresponding damage. 
This illustrates the great importance of energy dissipation for the mitigation of 
impact consequences. 

2.7  Forces at impacts – simplified solution  

Essential for the determination of forces is the knowledge of the relationship 
between the force and deformation. The contact details will be investigated later. 
This section will be limited on the strike of a rigid body of mass m and velocity v0 
on a spring (of negligible mass) attached to a rigid base. The word “spring” can 
denote any elastic body.   
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Since the spring is touched by the body, it is compressed by the force  

 F = k x ;            (2.26) 

k is the spring stiffness and x its compression, equal to the body displacement.  

The problem could be solved by the methods of dynamics using the basic equation 
F = ma, which would give the time course of the displacement and force. This will 
be shown in Chapter 5. If only the maximum force should be known, we can get it 
from the law of energy conservation. The moving body has kinetic energy  

Ekin = ½ mv0
2 .                 (2.27)  

During the spring compression, the kinetic energy of the body changes into 
deformation energy of the spring. This energy can be expressed (see Eq. 2.26) as   

 Epot = ½ Fx  = ½ F2/k = ½ kx2          (2.28) 

At the instant of maximum compression the body is at rest and its kinetic energy 
was changed into the potential energy of the spring,   

 Ekin = Epot = ½ F2/k  .           (2.29) 

Combination of Eqs. (2.27) and (2.28) gives the maximum force 

 mkvkWF kin 0max 2   .          (2.30) 

We can see that the maximum force at the impact is directly proportional to the 
velocity of impact v0 and is higher for higher stiffness of the spring or bumper and 
higher mass of the moving body; in both cases it grows with their square root. 

Also the knowledge of maximum deceleration is important. At an impact of a car 
on an obstacle a question is what the consequences are for the passengers or cargo, 
and about the strength of their fixing. The basic dynamic equation,   

 F = m a  ,            (2.31) 

gives that the maximum deceleration will be 

 amax  =  Fmax / m  = v0 mk /           (2.32) 

REMARK. All cases here considered horizontal movement. If the bodies move in 
vertical direction, the changes of their potential energy in gravitation field must be 
considered, as well. A fall from the height h releases energy Epol = mgh. This 
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energy must be added to the kinetic energy of the moving body. Generally, one 
should work with the position of the centroid of body 1 during compression of 
bodies 1 and 2. This fact can be important especially for bodies of high 
compliance.   

The importance of spring compliance will be illustrated on the following problem.   

Example. 

A vehicle with elastic bumper, going by velocity v = 10 km/h, hits a massive stiff 
wall. What is the maximum force at the impact, the time to stop and maximum 
deceleration? Assume the mass of the vehicle m = 1000 kg and stiffness of the 
bumper k = 500 N/mm = 500 kN/m. 

Solution. The maximum force at impact can easily be obtained from the law of 
energy conservation. At the beginning the vehicle has kinetic energy, which will be 
converted to the potential energy of the bumper spring, Ekin = Upot. The velocity is v 
= 10000/3600 = 2.78 m/s and kinetic energy Ekin = 3865 J. Equation (2.30) yields 

 mkvF max = 500000100078,2   = 62163 N . 

The path to stopping, corresponding to this force, is xb = Fmax/k = 62163/500000 = 
0,1243 m. The maximum deceleration can be obtained from the basic equation for 
movement: F = ma. From here, amax = Fmax/m = 62163/1000 = 62.16 m/s2. This is 
more than 6 g ! The time to stopping will be tb = 0.070 s; the pertinent formula 
(4.18) is given in Chapter 4.  

This impact was at relatively slow velocity, 10 km/h. The force and deceleration at 
the speed 50 km/h would be 5-times higher (i.e. 30g !); cf. Eqs. (2.30) and (2.32).   

The energy of impact is proportional to the square of velocity; it is thus 25-times 
higher. This had to be considered in the design of the bumper or energy absorber.   

Let us look at the situation of a spring with ten times higher compliance, so that the 
stiffness is k´ = k/10 = 50000 N/m. The impact velocity is again 10 km/h. The 

corresponding maximal force will be Fmax = 2.78(1000×50000) = 19657.6 N, i.e. 
3.16-times lower. Maximum deceleration, which is always at the end of stopping 
for a linear spring, will be amax = 19657.6/1000 = 19.66 m/s2, i.e. about 2g. The 
braking distance will be xb = 19657.6/50000 = 0,3932 m = 39.3 cm. The time to 
stopping is 0.222 s. One can say roughly that ten-times increase of the spring 
compliance has led to three-times lower maximum force and deceleration, and 
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three times longer time to stopping and braking distance. (And thus three times 
larger deformation of the bumping element).  

REMARK. In this example, impact of a rigid body with an elastic bumper was 
considered. Often also the moving body, e.g. a car, deforms at the impact. This 
reduces the effects of the impact, as, from the mechanics point of view; both bodies 
are arranged in series (see Chapter 4.2, sub-chapter Several springs in series). 
However, the use of purely elastic elements for the stopping of a moving body 
would have two drawbacks. In comparison with the element causing constant 
deceleration, the maximum force corresponding to a simple spring will be at least 
twice as high (see Chapter 4). Moreover, due to the accumulation of energy in the 
bumper, the stopped body will have a tendency to spring back. More appropriate 
are therefore elements that absorb or dissipate the energy, for example by plastic 
deforming. Some possibilities will be shown in Chapter 6.  

References to Chapter 2. 
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3. Wave character of stress increase  

Any force impulse can propagate only with limited velocity. This fact is usually 
neglected, and the forces and deformations are calculated according to the theory 
based on the relationships between stress and strain under static load. In collisions 
of bodies and also in other cases of impact loading it is sometimes necessary to 
account for the finite velocity of propagation of force impulses in elastic materials. 
At the beginning all particles of a body are at rest and deformations, caused by the 
force, propagate from the place of disturbance in the form of elastic waves. The 
velocity of their propagation is high, but if the dimensions of the body are large, 
the duration of passage of waves through the body increases, and this phenomenon 

should be taken into account [1  3]. The situation can be illustrated on a simple 
problem where a one end of a long bar from elastic material is hit by a massive 
rigid body moving in the direction of the bar axis (Fig. 3.1). At the end of this 
chapter we also shall look at the hydraulic impact in liquids.     

3.1  Longitudinal waves in a prismatic bar 

We shall assume that the bar is from an isotropic material of density  and modulus 
of elasticity E, and has the length L and cross section area S. The left end of the bar 
is free and the right end rests on a rigid wall. For simplicity, we shall consider only 
the forces, movement and deformations in axial direction, but we shall not assume 
that the compressive force could cause buckling or deflection of the bar. The 
moving body has velocity v and the mass m much bigger than the bar.  

The situation is depicted in the right part of Figure 3.1. Using two fictitious cuts at 
the distance x from the hit end we take out an element of infinitesimal thickness dx 
from the bar and write the equation of equilibrium of forces acting on it. Due to 
these forces,   the left section moves by u and the right one moves by u + du, or by 
u + )/( xu  dx. The investigated element thus becomes longer by )/( xu  dx. 

NOTE. As these displacements depend simultaneously on the position x and time t, 

partial derivatives and symbol  are here used instead of simple derivatives 
(symbol d), used for functions of one variable. 
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Figure 3.1  Left: Impact of a massive body on a bar, and propagation of 
stress waves (below). Right: the forces acting on an element of the bar.   

The strain (relative elongation) is  =  u/x and the corresponding stress equals 

 = E, where E is modulus of elasticity of the bar (Young modulus). 

Generally, the stress and deformation vary continuously along the bar. In the left 

cross section of the element the stress (x) acts, while stress (x+dx) = (x) + d  
acts in the right section. The corresponding forces, equal to the product of stress 
and area of the cross section, are F(x) and F(x) + dF. The difference of both forces, 

dF = S d [=SEd = SE(u/x)dx], gives this element the acceleration  = 2u/t2 = 

dF/dm, where dm is its mass, for which it holds dm =  S dx;  being the density of 
the bar. These quantities can now be used to write the equilibrium of forces acting 
on the infinitesimal element of the bar:   

 S d = dm 
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dx .                 (3.1) 

A rearrangement gives the basic equation for the propagation of stress waves in the 
direction of the bar axis: 

 2u/t2 = c2 (2u/x2) ,             (3.2) 

where  


E

c                 (3.3) 

is the velocity of propagation of longitudinal elastic waves in one-dimensional 

medium, so-called phase velocity. For steel (E = 210 GPa,  = 7850 kg/m3): c = 

5172 m/s, for concrete (E = 44.0 GPa,  = 1950 kg/m3): c = 4750 m/s. The 
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velocity v (= u/t) of the particle movement, following from the solution of 

Equation (3.2), is v =  c(u/x).  

If a massive rigid body hits the left end of the bar by velocity v0, compressive stress  

  Ev
c

v
E 0

0
0               (3.4) 

starts propagating from here by velocity c. At time t the elastic wave arrives at the 

distance x = ct. In the influenced region compressive stress acts; right of it no 
stress acts yet (Fig. 3.1, left). The compressive stress causes the shortening of the 

loaded part of the bar by x = x/E = v0x/c. This shortening is identical with the 
displacement of the moving body during the time t, which makes u = v0t = v0x/c. 

Further, we shall assume that the stress is distributed uniformly in the cross section, 
and is lower than the yield strength of the bar material. (The case of higher stress 

will be looked on later.) The region with  grows by the velocity c till the instant 
when the front of the stress wave arrives at the rigid wall. This is in time  

 t = L/c .              (3.5) 

The compressive stress wave is reflected back again as compressive (of the same 
magnitude) and propagates leftwards (Fig. 3.1 left down). The resultant stress in 

the influenced region equals the sum of the initial and reflected wave, that is 2 = 

20. The body, whose mass m is very big, moves further with the same velocity. 

When the reflected wave reaches at time 2t the left end of the bar, it again reflects 
from the massive body and moves as compressive wave rightwards. The resultant 

stress in the influenced region is 3 = 30. The process continues in this way 

further, with the stress increasing by steps 20 in time intervals 2t (Fig. 3.2). 

          

 


t



t

 
                   Figure 3.2.  Gradual growth of stress at the left end of the bar. 
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For an idea: the time needed by an impulse for passing a steel bar of length 1 m is 

t = 0.000193 s. Back to the left end it arrives at 2t = 0.000387 s. These are very 
short times, and for small bodies with characteristic dimensions of the order of 
centimetres, they are much shorter. 

If the right end of the bar is free, the stress wave is also reflected here, but not as 
compressive, but tensile. This has one unexpected consequence. If the bar is made 
of a brittle material and the stress exceeds its tensile strength, a small part of the 
bar near its free end tears off and flies away. Similar behaviour can be observed 
with Newton´s cradle [4, 5], depicted in Fig. 3.3. If the ball at the end of a series of 
balls hanging on thin fibres is moved aside and released, it swings back and hits the 
neighbouring ball and passes its impulse on it. This impulse propagates (invisibly) 
through the series and when it arrives at the last ball at right, this ball jumps away 
and falls back. This new impulse propagates leftwards to the first ball, which jumps 
away a little less, etc. After some time the process ends due to energy losses.       

 

           Figure  3.3.  Newton´s cradle 

Let us return to our long bar hit by a massive body by velocity v. At time t1 

compressive stress 1 = E v/c acts in the whole bar. Due to this stress, the bar 

becomes shorter by L = L1/E = Lv0/c. This shortening is identical with the 
displacement of the massive body during this time, u1 = v t1 = v0 L/c. Similar 
relations also hold during further compression of the bar. The massive body at the 

left end moves with constant velocity, but the stress here increases in steps 20 in 

the intervals 2t, as shown in Fig. 3.2. The picture shows the “accurate” stair-like 
curve and the stress growth proportional to time according to the quasistatic theory. 
At impact duration longer than five-times the time for the stress wave travel 
through the body and back, the difference between both solutions is negligible.             
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3.2   Elastic waves in a bar hit by a body of finite size  

The reality is more complex. The body, which hits the free end of the bar, has finite 
mass M and starts to slow down. The solution of this problem by Timoshenko [3] 
will be shown here. Denoting the mass of the body per unit of the cross section of 

the bar (=M/S) as m1, the compression stress at the end of the bar as , and 
instantaneous velocity of the body as v, we obtain the equation of motion    

 m1 
dt

dv   +   = 0 ,             (3.6) 

Using the relationship between velocity and stress,  

 0 = v0 (E)                (3.7) 

we can rewrite the Equation (3.6) as 

 01  
 dt

d

E

m  .             (3.8) 

This is a differential equation of the first order. After separation of variables  and 
t, we obtain after integration and rearrangement      
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0 exp

  ;                    (3.9) 

here 0 is the stress magnitude in the first instant of the contact, given by Equation 
(3.4) for v = v0. The stress along the stress wave is thus not constant, but decreases 
in exponential way. Similarly to the previous case this wave is reflected from the 
stiff wall as compressive one and returns back to the left end; here it is again 
reflects, and so on. A detailed solution is given, for example, in [3]. 

3.3   Elastic waves in a three-dimensional body  

Other influences exist as well. If a local force impulse acts at certain place of a 
massive three-dimensional body, stress waves start propagating from this place in 
all directions. If the impulse went out from inside the body, the front of the wave 
has spherical shape at the beginning; but at large distances the wave can be 
considered as plane. The state of stress is more complex (triaxial). In the direction 
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of propagation, formula similar to Eq. (3.3) holds for the velocity of longitudinal 

wave, but also the Poisson number  (=  transverse/longitudinal) plays a role: 

 



)21)(1(

)1(
1 




E
c                 (3.10) 

The velocity c1 is higher than the velocity c in a thin bar. This is because the lateral 
displacements in a three dimensional body are suppressed, while the longitudinal 
deformation in a bar is accompanied by lateral contraction. The ratio c1/c depends 

on Poisson´s number. For  = 0.2 is c1/c = 1.054, for  = 0.3 is c1/c = 1.160, and 

for  = 0.45 is c1/c = 1.948. For  approaching to 0.5 (incompressible material) the 
velocity of stress propagation would approach infinity. 

In addition to longitudinal waves also transverse waves exist, caused by the 
particles of the body moving perpendicularly to the direction of wave propagation. 
Their velocity is 

 

G

c 2
  ;            (3.11) 

G is the modulus of rigidity. Also surface waves (Rayleigh) exist and other. More 

to this topic can be found in [1  3, 6, 7], for example. 

3.4  Plastic waves 

If the stress caused by dynamic load, attains or exceeds the material´s yield 
strength, also plastic wave starts propagating from this point, in addition to the 
elastic wave. If the material exhibits linear strain hardening, the velocity of 
longitudinal plastic wave (i.e. velocity of growth of plasticised region) will be  


pl

pl

E
c   ;            (3.12) 

Epl is the strain hardening modulus of the material (see Fig. 5.2a and formula 5.2b 
in Chapter 5). Epl for construction metals is usually by two or three orders lower 
than Young modulus, so that the velocity of propagation of plastic waves is at least 
by one order lower than the velocity of elastic waves. For materials with nonlinear 
strain hardening it is necessary to replace Epl in Equation (3.12) by the tangent 

d/d to the curve     at the investigated point. If the tangent modulus decreases 
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with increasing strain, the longitudinal wave will propagate with lower velocity. In 
materials that strain-harden with increasing strain, the plastic wave will propagate 
by higher velocity. More to this topic can be found in [ 1, 6, 8]. 

3.5  Hydraulic shock                                                                                                                        

Sudden stopping of flow of a liquid in a tube causes a sudden increase of pressure, 
denoted as hydraulic shock. A similar peak of pressure arises if the liquid is 
suddenly brought to movement, for example if a moving body hits a hydraulic 
shock absorber, described in Chapter 6.8. This is caused by the fact that in liquids 

and gasses any pressure impulse can propagate  similarly to solids  only by finite 
velocity, equal the sound velocity. This velocity in a liquid, ch, depends on its 
compressibility as [9]: 

 

K

ch 
  ;               (3.13) 

 is the density of the liquid and K is the modulus of its compressibility. 
(Numerically it equals the pressure necessary for the volume change by 100%.) 
The corresponding pressure peak is (compare with Equation 3.4) 

 Kvph 0  .           (3.14) 

This pressure acts at the first instant, and gradually it develops to the values 
corresponding to the quasistatic solution. If the nominal pressure in operation is 
much higher than ph, the pressure increase due to hydraulic shock makes only part 
of the total pressure increase and is not very significant.  

The problems of impacts and shocks can be solved by various methods, simpler or 
more complex. At the beginning, it is reasonable to determine the duration of the 
impact according to the quasistatic theory and to compare it with the duration for 
the passage of the elastic wave through the body. Also it is possible to compare the 
maximum stress according to the quasistatic theory and determined, for example, 
via the law of energy conservation (given in Chapter 2.7) with the stress calculated 
for the first instant of the impact, Equation (3.4). If the values according to the 
quasistatic theory are significantly higher than those according to the wave theory, 
the wave effects do not need to be taken into consideration and the quasistatic 
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solution will be acceptable. In the opposite case, the wave character of stress 
increase must be considered. 
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4. Courses of stopping for various resistances  

This chapter will show the relationships among velocity, path, deceleration and 
forces, and the energy dissipated or accumulated in principal kinds of stopping, 
such as braking with constant resistance force, impact on a spring with linear 
characteristics (without energy dissipation), on a spring with linear characteristics 
and damping by shear friction, and impact on a spring with linear characteristics 
and damping proportional to velocity or damping proportional to the square of 

velocity. More can be found in literature [1   6].    

4.1  Braking with constant resistive force 

Constant force during braking can be achieved in several ways. It is, for example, 
friction with constant coefficient of friction, controlled deformation of specially 
shaped element made from metal, or gradual destruction of a honeycomb structure. 
Constant force can also be achieved by a hydraulic shock absorber of special 
construction, which will be described in Chapter 6.8. 

The situation at impact is depicted schematically in Fig. 4.1. A body of mass m hits 
at time t = 0 by velocity v0 at a bumper with a friction damper. During compression 
of the bumper a reaction force Ft = const arises, whose magnitude can be set up by 
adjusting the damper. The motion equation of the body is 

 m  + Ft = 0 ;              (4.1) 

 is the body deceleration; two dots above x denote its second derivative by time, 

 
     Figure 4.1.  Braking with constant force.  Ft –force, f – coefficient of friction 
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d2x/dt2. This equation can be rewritten to the form 

  =  Ft /m  .              (4.2) 

Integrations of this expression give velocity (  = v) and displacement (x) of the 

body: 

 =  (Ft/m) t + C1  ,             (4.3)  

 x =  (Ft/2m) t2 + C1t + C2  ;             (4.4) 

C1 and C2 are integration constants, which can be determined from the initial 
conditions. In the investigated case these conditions are: x(t=0) = 0 a v(t=0) = v0, so 
that it follows from Eqs. (4.3) and (4.4) that C1 = v0 and C2 = 0, and thus 

 v(t) = v0  (Ft/m) t                (4.5) 

x(t) =  v0 t  (Ft/2m) t2 .               (4.6) 

Velocity during the braking decreases with time linearly from v0 to 0 (dashed line 
in Fig. 4.2a). The stopping time according to Eq. (4.5) for v(tb) = 0 is 

 tb = v0 m/Ft .              (4.7) 

The path x grows with time slower according to quadratic parabola (solid curve in 
Fig. 4.2). The braking path can be obtained from Eq. (4.6). For the time t = tb, 
expressed via Eq. (4.7) it is: 

 

Figure 4.2. Braking with constant resistance. Velocity v and path x as 
          functions of time t. v0 – initial velocity,  xb, tb – braking distance and time 
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 xb = ½ v0
2 m/Ft              (4.8) 

The deceleration during stopping is constant according to Eq. (4.2), and equal 

 a  =   Ft/m  .              (4.9) 

The braking force, also constant, equals Ft. The velocity of the body decreases with 
the path x according to the expression 

 v = )2( 2
0 axv  ,            (4.10) 

which is obtained if the acceleration is expressed as  = d( 2)/(2dx) and integrated. 

The course is depicted in Fig. 4.3. 

    

   Figure 4.3. Braking with constant resistance. Velocity v as function of path x.  

If a device for stopping of a moving body should be designed, Equation (4.9) can 
be used to determine the deceleration a for the allowable force F, or, vice versa, the 
necessary braking force Ft for the prescribed deceleration a. Equation (4.8) serves 
for the determination of the braking distance, or the braking force for the maximum 
allowable path. The stopping with constant deceleration exhibits the lowest 
braking force and deceleration, and is, therefore, the most efficient! This is 
obvious from Fig. 4.4, which compares the courses of braking forces at various 
cases of stopping. Except the stopping with constant deceleration (line “a”), any 
other case of braking exhibits higher values of braking force, either at the 
beginning or at the end of stopping. The efficiency of a stopping appliance can be 
evaluated according to the ratio of the force for constant deceleration and the 
maximum force needed with the investigated shock absorber,      
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Fmean / Fmax = F            (4.11) 

In design of shock absorbers, F is called Crash Force Efficiency, CFE [2].    

           
xb

F

a

d
c

b

x0
 

Figure  4.4. Courses of resistive forces in various cases of braking.    
            a - constant force, b – force decreasing linearly with displacement, 
       c – spring with linear characteristics, d – force increasing with square of path    

4.2 Impact on a spring with linear characteristics  

The arrangement is depicted schematically in Fig. 4.5. At time t = 0 a body of mass 
m hits by velocity v0 a spring of stiffness k, assumed constant. Compression of the 
spring generates a reaction force of magnitude  

F = kx ;            (4.12) 
x is the displacement of the body, identical with the compression of the spring 
(curve „c“ in Fig. 4.4). 

The motion equation of the body is  

 m  + kx = 0 ;           (4.13) 

 is acceleration of the body. Equation (4.13) can be rewritten to the form 

 + (k/m) x = 0 .           (4.14) 

This differential equation of the second order is the same as the well known 
equation of free vibrations of a mass point on a spring, which is usually written as 

  + 2 x = 0  ;            (4.15) 



Jaroslav Menčík: Impacts and vibrations  

35 
 

   

  Figure 4.5. Braking by a spring with linear characteristics

  corresponds to circular frequency (angular velocity), equal  = (k/m). General 
solution of Equation (4.15) is 

 x(t) = A sin(t) + B cos(t) = C sin(t + ) .         (4.16) 

A and B, or C and  are constants, which can be determined from the initial 
conditions. For velocity v(t) and acceleration a(t), it holds 

 v(t) = dx/dt =  C cos(t + )  =  v0 cos(t +) ,         (4.17)   

a(t) = dv/dt = d2x/dt2  =  C sin(t + ) = v0 sin(t +) .      (4.18)  

In this case, at the beginning (t = 0) the displacement x = 0 and velocity v(0) = v0. 

With these conditions,  = 0 and C = v0/. The velocity decreases during the 
braking with time as a cosine function, and the displacement and deceleration 
increase as sinus functions (Fig. 4.6). As stopping of a moving body is 
investigated, only the first quarter period of the oscillating movement will be 

considered here. The velocity drops to zero for t = /2, that is in the time  

     

  Figure 4.6.   Impact on a spring with linear characteristics 



Jaroslav Menčík: Impacts and vibrations 

36 
 

k

m
tb 22





  ,           (4.19)  

with the corresponding displacement 

 xmax(v = 0) = xb = v0/  = v0(m/k) .         (4.20) 

As it follows from Eq. (4.12), the force during braking grows linearly with the path 
(line c in Fig. 4.4). 

The maximum deceleration and maximum force will be attained at the end of 
braking (t = tb, x = xb), with the values 

 amax = v0(k/m)  ,           (4.21) 

Fmax = m amax = v0(mk) .           (4.22) 

The maximum force and deceleration will be higher for higher initial velocity and 

stiffness of the spring k (more accurately, square root of it, k; see also the example 
at the end of Chapter 2. 

Let us look at the influence of the mass of the stopped body. It is of two kinds: the 

maximum deceleration decreases with the square root of m, i.e. m, while the 

maximum force increases proportionally to m. Four times heavier body means the 
deceleration drops to 50% and the maximum force at stopping is twice as high. 

It is also useful to know the relationships among the energy to be dissipated and the 
individual quantities. The kinetic energy changes during stopping into the potential 
energy of the compressed spring, so that   

 Ekin = ½ mv0
2 = Epot = ½ Fmax xmax = ½ k xmax

2 = ½ Fmax
2 / k      (4.23) 

These formulae enable one to determine the maximum force or braking path or 
demanded spring stiffness for the given energy of impact. However, one problem 
remains with this arrangement. The compressed spring has a tendency to rebound 
and throw the stopped body back by the initial velocity. A strong joining of the 

body and spring would cause their permanent oscillations with the frequency  
given above. If the body should stop at reaching the maximum compression, a 
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suitable mechanism must be used here that will ensure it. It is also possible to 
utilise the energy dissipation during the braking, as described in Chapter 4.3.    

Several springs in series   

Until now we assumed that the body hits one spring, which will be compressed. 
However, often it comes to a collision of two bodies, and each is less or more 
compliant. An example is a collision of two cars or impact of a car on a compliant 
barrier. Sometimes a protective layer from a more compliant material was created 
on the surface of the body to be protected and this body itself has certain 
compliance even without this layer. Basically, we can imagine both parts as springs 
in series (Fig. 4.7a).  How is this situation solved? 

 

C1 C2 
k1

k2  

       a.     b. 
Figure 4.7.   Springs connected in series (a) and parallel (b) 

Generally, more springs can be arranged in series. In such case, the same force acts 
in each spring (generally, in each element in the series) and their deformations are 
summed up. Since the deformation is calculated as the product of force and 
compliance, the resultant compliance C of n springs in series equals the sum of 
compliances of the individual springs:      

 
 

 j

n

j
j k

CkCC
/1

1
1,

1

  ;         (4.24) 

C is compliance; its reciprocal, k, is stiffness; j-th spring is denoted by subscript j. 
For two springs in series:  

 
21

21
21 ,

kk

kk
kCCC


   .                (4.25) 

If none of the springs has limited deformation, the stiffness k of the system for the 
whole extent of deforming is described by Eq. (4.25). In some cases, however, one 
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spring has limited stroke and the situation is more complex, as it will be shown 
further. The compressions of the individual springs are x1, x2, and the resultant 

compression is x = x1 + x2. The maximum possible compression of spring 1 is 1. 
As soon as spring 1 exceeds this deformation, with corresponding force 

F = k11             (4.26) 

and the total deformation  

  = F/C ,             (4.27) 

the spring 1 does not act any more, and further increase of force is held by the 
spring 2 only. The total compliance of the system now corresponds only to this 
spring. Therefore, the stiffness has increased from the value k, given by Equation 
(4.25), to the value k2. The situation is depicted in Fig. 4.8. The area below the 
curve Force – Displacement represents the work consumed or accumulated. In the 

first stage (for x  1) a simple relationship holds between the energy and force, 
and this makes possible easy determination of the displacement and force for the  

 
Figure 4.8.  Two springs in series. Force F and energy U as functions of compression x. 

       x1  – maximum possible compression of spring 1, F1 – corresponding force 

known energy of the moving body. This was illustrated by an example in Chapter 
2.7.  If, on the other hand, the energy of the body to be stopped is higher than    

½F 2/k, no explicit relationship between the energy and force exists. The force is 

 F = F1 + (x – x1)k2             (4.28) 
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and the consumed energy equals  

 E = ½ F1x1 + ½ (x–x1)(F+F1) .          (4.29) 

If the force or displacement should be determined for the energy to be absorbed, 
the easiest way is to calculate the energies for various values of the path x. Also 
Excel can be used for this purpose. The pertinent table can be used for the 
determination of the path corresponding to the dissipated energy.   

REMARK. With parallel springs (Fig. 4.7b), the forces of individual springs are 
added together and the resultant stiffness equals the sum of their stiffnesses,  

k =   kj  .            (4.30) 

 
4.3  Impact on a spring with linear characteristics and friction damping  

The situation is depicted in Fig. 4.9. The body of mass m and velocity v0 hits a 
spring, which is joined with an additional friction damper, whose resistance Ft is 
constant. The motion equation for the decelerated body is 

 m  + kx + Ft = 0  ;           (4.31) 

k is the spring stiffness (N/m) and Ft is friction force (N), for example Ft  = N f, 
where N is the force pressing the brake pad in a friction damper to the solid 
counterpart, and f is the coefficient of friction, assumed constant. 

After a rearrangement, we obtain the following equation for the movement (again 

2 = k/m): 

  + 2 x =  Ft /m  ,           (4.32) 

This is nonhomogeneous differential equation, i.e. with nonzero right side. The 
solution is obtained as a sum of the solution of the homogeneous equation and so-
called particular integral, 

 x(t) = xhom + xpart .           (4.33) 

The solution of homogeneous equation (without the right side) is the same as in the 
previous section [Eq. (4.16)], and the particular integral is a function that satisfies 
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F m, v0 
f 

 

  Figure 4.9. Braking with a linear spring and friction damper. 
F – total force from the spring (= kx) and friction damper (= Ft) 

the complete equation (4.32). The resultant solution has the form       

x (t) = C sin(t + )  Ft /(m2)  ;         (4.34) 

 = (k/m) is circular frequency and C and  are constants, which will be obtained 
from the initial conditions. The solution for t = 0, x = 0 and  = v0 is 

 x(t)  =  


0v  sin (t)  
2m

Ft  ;            (4.35) 

the angle  is in radians. Insertion of both constants into Eq. (4.34) will yield the 
time course of the path during braking. The velocity decreases with time as  

(t) = C cos(t) .            (4.36) 

Both courses are similar to those depicted in Figure 4.6. 

The time for the drop of velocity to zero is obtained from the condition cos(tb) = 
0:  

 tb = 


2

            (4.37) 

The braking path corresponding to this time is 

xb (v = 0) = 


0v  sin(tb)   Ft /(m2) .         (4.38) 

This path is also equal to the maximal compression of the spring. The 
corresponding force Fmax = kxb will try to return the body back, and this must be 
avoided by a suitable means. 
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Generally, the braking force is proportional to the compression of the spring; it thus 
increases proportionally to the path (curve “c” in Fig. 4.4). 

A part of the initial kinetic energy Ekin = ½ m v0
2 was dissipated by friction and 

another part remained accumulated in the spring. The dissipated energy Wdis and 
accumulated energy of elastic stresses Eel are    

 Wdis = Ft xb , Eel = ½ Fmax xb = ½ k xb
2  .             (4.39) 

The total work consumed in the braking equals the sum of both components, 

 Etot = Wdis + Eel .           (4.40) 

This relationship can be used for the determination of the braking distance xb and 
maximum braking force Fmax for the given energy of impact E, spring stiffness 
k and the force of the damper, or for the finding of the necessary stiffness of the 
spring for the given braking distance or other parameters.   

4.4    Impact on a spring with linear characteristics and damping 
         proportional to velocity  

The arrangement is depicted in Figure 4.10. It differs from the previous case by the 
damper whose resistance is directly proportional to the velocity of the body. Such 
case is typical for common dampers of vibration that use a liquid.    

   

 

F 

x 

m, v0 

 

 Figure 4.10. Braking with a linear spring and damping proportional to velocity 

The motion equation for the decelerated body is  

 m  + b  + kx = 0 ;            (4.41) 

k is the spring stiffness (N/m) and b is the damper constant (Ns/m), giving the 
resistive force of the damper at velocity 1 m/s. After a rearrangement we get 



Jaroslav Menčík: Impacts and vibrations 

42 
 

  + (b/m)  + (k/m)x = 0 ,    resp.   + 2N  + 2x = 0        (4.42) 

The solution can be sought in the form x = Cet, where  is a constant. (Generally, 

two solutions exist, with constants C1, 1, and C2, 2.) With x expressed in 
Equation (4.42) in this way we get the following expression for the calculation of 

constants 1, 2 from the damper parameters: 

 22
2,1   NN ;          (4.43) 

here N = b/(2m), 2 = k/m. For vibrating movement,  denotes natural circular 
frequency of free vibrations, and N denotes the “frequency” of damping. With 

respect to mutual relation of N and , three general cases can appear: 

1.   N  <    (subcritical damping) 

The roots of Eq. (4.42) are complex conjugate, and the general solution is  

 x(t) = C eN t sin (1t + 0)  ,          (4.44) 

where C and  0 are constants, which will be found from initial conditions. For  
x(0) = 0 and (0) = v(0) = v0, the solution is 

 x(t) = 
1

0


v eN t sin (1t) .           (4.45)  

The expression (4.45) has two components: exponentially decreasing term eN t and 

sinus term [sin (1t)], where 1 is the natural circular frequency of the vibrations 

with damping, which is related with the natural frequency  without damping as  

 1 = ( 2 – N2) =  (1 – 2)  ;          (4.46) 

 = N/ is so-called relative damping. NOTE: Damped vibrations are somewhat 
slower than those without damping.   

The sinus component in Eq. (4.45) shows that the displacement will be alternately 
positive and negative, so that the braked body will oscillate periodically there and 
back, though with damping. The frequency of vibrations f1 is related to the circular 

frequency 1 as  

 1= 2 f1  .            (4.47) 
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More pronounced vibrations are unsuitable in stopping, so that this case does not 
come into consideration. Hydraulic dampers with the resistance proportional to 
velocity are used especially for damping of vibrations. This case will be addressed 
in more detail in Chapter 7.  

2.    N  =    (critical damping) 

General solution is 

 x(t) = eN t  (C1 + C2 t) ;           (4.48) 

C1 and C2 are constants. The time course of the movement of the stopped body for 
initial conditions x(0) = 0 and v(0) = v0 is 

 x(t) = v0 t e
N t               (4.49)  

and velocity   

 (t) = v0 e
N t (1  Nt) .           (4.50) 

Figure 4.11 shows both courses. We can see that the moving body is slowing 
down; at certain point its velocity drops to zero, then the body starts moving back 
and after some time it stops. This behaviour is understandable: the moving body 
passes a part of its kinetic energy on the spring as potential energy, and this energy 
then forces the body to move back. Even this case is not desirable for the stopping 
of a single impact. Again, an additional mechanism had to be used, which ensures 
the complete stop when the velocity drops to zero.   

   

v

x
x
v

t

v0

0

 

     Figure 4.11.  Braking with critical damping (a schematic) 

Similar situation is in the following case with more pronounced damping. 
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3.   N  >    (supercritical damping) 

The time course of the path of the braked body for the initial conditions x(0) = 0 
and v(0) = v0 is 

 x(t) = (v0/) eN t sinh( t)               (4.51)  

and the velocity is   

(t) = v0 e
N t [cosh( t) – (N/) sinh( t)] ;              (4.52) 

 is defined by the expression 

 2 = N2 – 2 .            (4.53) 

The time courses for critical and supercritical damping are similar to Fig. 4.11. The 
velocity decreases monotonously to zero and then it attains small negative values 
for some time. This means that the body at the end of its braking returns a small 
piece back. This, however, does not need to mean a serious problem, especially if 
similar mechanism is used for complete arrest as in the previous case.  
 

4.5  Impact on a spring with linear characteristics and damping 
         proportional to the velocity squared  

The resistance proportional to the square of velocity is typical of dampers where 
the resistance is created by the flow of gas through and opening. The arrangement 
is the same as in Figure 4.10; only the characteristic of the damper is different. The 
motion equation is [1]:  

  + ½ R 2 + 2 x = 0 ;               (4.54) 

R [m–1] is a constant characterising the damping, and  = (k/m) is circular 
frequency of free vibration; k is the spring stiffness and m is the mass of the 
stopped body. 

The solution by elementary functions is not possible. However, if the acceleration 
is expressed by the derivative of the squared velocity with respect to the path,  

  = d(v2)/(2dx) = d( 2)/(2dx) ,          (4.55) 

and the notation 2 = z is introduced, Equation (4.54) can, after multiplication by 

two, be rewritten to the form 
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 dz/dx ± R z = – 22 x .            (4.56) 

The solution of this equation is 

 z(x) = C exp(± Rx) ± zp ,          (4.57) 

where C is integration constant and zp is particular integral. Its possible form is [1] 

 zp = [22/R2] (1 ± Rx) .           (4.58) 

The sign + holds for  > 0, the sign minus is for <0. For positive values  and the 

impact, where the displacement at the beginning (t = 0) is x = 0 and velocity v(0) = 
v0, one obtains, after some algebra, the following expression for the velocity as a 
function of position x:  

 v = v0[1 – (2w2/(Rv0
2))x] = v0(1 – Ax) ;         (4.59) 

A is the constant given by the expression A = [22/(Rv0
2)]. The path to arrest xb is 

obtained from Equation (4.59) for (v) = 0: 

 xb = Rv0
2/(22) .            (4.60) 

The time course of the motion can (with respect that v = dx/dt) be obtained by 
numerical integration of the modified expression (4.59). 

Remark. From mathematical point of view, one solution of Equation (4.54) could 
express oscillatory movement. In our case, on the assumption that the stopping is 
achieved during the first half-period (using intensive damping with energy 
absorption), the movement back was not considered. 

4.6  Changes of kinetic energy during braking 

The task of a braking appliance in some cases is not to arrest the moving body 
fully, but to sufficiently reduce its kinetic energy, as the complete arrest will be 
achieved by other means. For such purpose it is useful to understand how the 
kinetic energy of the body decreases with decreasing velocity. Using the formulae 
for kinetic energy at the beginning of braking of the body with velocity v0 and at 
the instant when the velocity dropped to v,  

 Ekin,0 = ½ mv0
2 ,   Ekin,v = ½ mv2             (4.61) 

one obtains 

 Ekin,v /Ekin,0  = (v /v0)
2              (4.62)   
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For example, the drop of velocity v to the half of its initial value causes the 
decrease of kinetic energy of the body (and thus its possibility to cause damage) to 
one quarter; the drop of velocity to one tenth reduces the kinetic energy to one 
percent, and with the drop of velocity to three percent of the initial value the energy 
drops to less than one thousandth. In such case, even a harder dead stop can be 
acceptable. 
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5. Response and damage of materials  
and components 

5.1  Introduction 

Analysis of load response needs the knowledge of relationship between stress and 
strain for the used material. On the other hand, this knowledge makes the choice of 
material for particular application easier. Figure 5.1 shows stress – strain diagrams 

( – ) of tensile tests for various kinds of materials. The work expended for failure 
is proportional to the area below the stress – strain curve. 

Figure 5.1a is typical of brittle materials such as glass, ceramics, quenched steel, or 

concrete. For low stress, direct proportionality exists between stress and strain ,  

 = E  ;               (5.1) 

E is the modulus of elasticity in tension (Young modulus). Failure occurs if the 

maximum stress attains the ultimate strength P.  The failure is sudden, without  

          

      a.                b.             c.        d. 

      Figure 5.1.  Diagrams of tensile tests for various materials.  
                 a – brittle material, b, c – elastic-plastic materials, d – rubber.  

 – stress,  – strain, p – ultimate strength, Y – yield strength 
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permanent deformations of the broken parts. The compressive strength is roughly 
one order higher than that in tension. Energy consumption till fracture is low. 

Figures 5.1b, c are typical of ductile metal materials, such as soft structural steel, 

aluminium, copper and their alloys. For stresses lower than the yield stress Y also 
here direct proportionality exists between stress and strain. As soon as the stress 
attains and exceeds the yield strength, the deformations start increasing faster, and 
permanent changes of shape and dimensions appear. Due to plastic deforming the 
energy consumption till failure is much higher than with brittle materials. 

Figure 5.1d is typical for rubber and some other polymeric materials.  The diagram 
is nonlinear for wider extent of loads, but no permanent deformations arise before 
fracture.  

Now we shall look at the behaviour of the individual materials and components 
from them. We shall also look at the influence of shape and further factors. 

5.2  Elastic – plastic response of ductile materials     

The actual stress-strain diagrams are often approximated by simple expressions for 

easy understanding and calculations. Three most usual approximations are [1  3]: 

Bilinear function (Fig. 5.2a): 

  ≤ Y           = /            Y  yield strength       (5.2a) 

  > Y     = Y + (  Y)/E´;    E´  strain hardening modulus    (5.2b) 

Power-law function (Fig. 5.2b), 

  ≤ Y           = /           (5.3a) 

  > Y            = Km ;            K, m  constants         (5.3b) 

Ideal elastic-plastic material without strain-hardening (Fig. 5.2c). 

  ≤ Y           = /           (5.4a) 

  > Y       = Y             Y  strain at  =Y       (5.4b) 

These formulae and diagrams are suitable for small strains. The stress at common 
tensile test is usually determined as the load divided by the nominal area of the 

cross-section,  = F / S,  and such diagrams are called conventional. The fact that   
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    a.            b.      c. 
Figure 5.2. Idealised diagrams. a – bilinear function, b – linear + power function, 

c – ideal elastic-plastic material without strain hardening; Y – yield strength 

in addition to the elongation of the specimen  also its area changes, is usually 
neglected. This is allowable for deformations not exceeding several percent. The 
changes at larger deformations are not negligible, and the true stress differs from 
the nominal value. The relationship between the true stress and strain in tensile test 
of a soft structural steel is marked in Fig. 5.1c by dashed curve; the upper value of 

P corresponds to the true stress at fracture. The differences grow especially at 
stresses approaching the ultimate strength, when a neck appears at the position of 
the future fracture (Fig. 5.3a). The situation in compression is opposite: the cross-
section area becomes larger (Fig. 5.3b) and the true compressive stress is lower 
than the nominal one. Very ductile materials could sustain unlimited load in 
uniaxial compression. (Remember, for example, creation of foils from aluminium 
by rolling). Such behaviour must be respected in design of components for 
damping of impacts, where the permanent strains can be very large. 

               
 a.         b. 

 Figure 5.3.  Deformations of ductile materials under: a – tension, b - compression 
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Further material characteristics of elastic-plastic materials 

For elastic-plastic materials, used for components undergoing irreversible 
deforming in shock damping, also other characteristics are important in addition to 
strength: ductility, contraction and notch sensitivity [4], and fracture toughness for 
components with cracks. The last one will be treated later; here the first three are 
described. 

Ductility is defined from the maximum strain in tensile test:  

 
0

0

0 



L

LL
A u  ;            (5.5) 

L0 is the initial length of the bar or its part, and Lu is the (ultimate) length of this 
part after fracture. The test bar is deformed not uniformly during testing; near the 
fracture section, called the neck, it elongates much more. Therefore, it must be 
considered how the ductility (5.5) was calculated. According to the standard [5] for 
material testing the ductility is given in percent and the subscript indicates whether 
the initial measured length equals five- or ten times the diameter of the bar (written 
as A5, resp. A10). If it is assumed that plastic properties of the designed component 
will play a role in the use, the material must have sufficient ductility. According to 
[5], A5 = 15% or more is demanded for common steel structures, and the ultimate 
strength should be at least by 20% higher than the yield stress.     

Contraction is defined as the largest relative reduction of the cross section area of 
the test bar, measured after the fracture, 

 0
0

0 


S

SS
Z u             (5.6) 

S0 is the initial cross section area and Su is the area of the smallest cross section of 
the broken bar. Z is given in percent. 

Notch sensitivity is usually measured on a standard specimen with a notch, hit by 
a pendulum impact testing machine (Fig. 5.4). It is measured as the work K needed 
for the specimen breaking, divided by the area of the narrowest cross section, S0, 

        
0S

K
KC      (J/cm2)           (5.7) 
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Figure 5.4.  Determination of notch sensitivity by pendulum hammer 

5.3  Load response of viscoelastic materials   

Many components are made of polymeric materials. Here, the deformation depends 
not only at the load magnitude, but also on its duration and time course. Such 
materials are termed viscoelastic (VE), and many models exist for description of 
their behaviour [6]. These models are depicted as combination of elastic elements 
(with deformations directly proportional to the load or stress) and viscous elements, 
where stresses and forces are proportional to the velocity of deforming and the 
deformations grow with some delay. For elastic elements Hooke law is used, 

 E , while viscous elements are described by Newton law,  =  , where  is 

dynamic viscosity and  = d/dt is strain rate. Two simplest models of VE materials 

are Maxwell body (M in Fig. 5.5) and Kelvin-Voigt body (K-V in Fig. 5.5). 
Maxwell body responds to load from the very beginning (the elastic part of 
deformation is instantaneous and is followed by the gradual growth of viscous part, 
which could grow in this model without limitation. The deformations of Kelvin-
Voigt body grow from zero gradually and have finite magnitude. Often, more 
complex models are used, such as standard linear solid (= Kelvin-Voigt body in   

        

      Figure 5.5.  Viscoelastic models. Deformation response to sudden load.  
   M – Maxwell body, K-V – Kelvin-Voigt body, SLS – Standard Linear Solid 
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series with a spring, SLS in Fig. 5.5). This body can model the loads, which are 
constant or monotonically changing, but also vibrations with damping. With 
monotonic load the response function consisting of several terms is used. Often, it 
is described by means of a series of exponential functions, such as [6, 7]:  

  







 



n

j
jj tCCFty

1
0 /exp)(   ;          (5.8) 

F is the load, y is the deformation, t is the time, C0, C1,… are constants for given 

material and geometry of the body and load, and j is the relaxation time, which 
characterises the rate of fading away of the load effects. Under fast load, the 
viscoelastic effects are usually small and for a short-time impact only the spring C0 

reacts. For steady-state vibrations the so-called phase angle  is important, which 
characterises the shift between the load and deformation, as well as the energy 
losses; see also the hysteresis loop in Fig. 7.14 in Chapter 7.10.   

5.4  Brittle and ductile failure   

If the load attains the critical magnitude, failure of the body follows. Either as 
permanent change of its form (accompanied sometimes by fracture) with ductile 
materials, or fracture with materials brittle. A strict division of materials on brittle 
and ductile is not quite correct. Only a few materials can be termed really brittle, 
for example diamond or chalk. With many materials permanent change of shape 
can be achieved, though sometimes only in a very minute volume and extent, for 
example a permanent imprint made by a diamond in glass during microhardness 
testing [15]. It is more appropriate to speak about brittle or ductile fracture. Ductile 
fracture is accompanied by relatively large changes in shape. Brittle fracture does 
not exhibit signs of permanent change of shape. Many materials can fail by both 
modes, depending on the situation. Five factors contributing significantly to 
brittle fracture: 1. brittle material, 2. tensile stress, 3. low temperature, 4. impact 
or sudden load, and 5. complicated shape of the component, with notches or other 
stress concentrators. Some factors will be looked at here in more detail.  

State of stress. Tensile stresses try to move the individual atoms apart, and this 
promotes the fracture by detachment, Fig. 5.6a. Shear stress moves the individual 
layers of atoms one along another, which promotes plastic deforming, Fig. 5.6b. 
However, one must not forget that under shear load also planes with tensile stress 
exist in the body, and tensile load generates also shear stresses in certain directions.  
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a. b. 
 

 Figure 5.6. Fracture by tearing-off (a) and permanent shape change by shear (b).   

Temperature. Permanent shape changes of metal bodies occur by movement of 
many atoms. These are more movable at higher temperatures and less movable at 
lower ones. For example, a part of soft steel, which can be deformed permanently 
by fast load even at room temperature, breaks if the temperature is lower than so-
called transition temperature. This is the temperature where the notch sensitivity 
increases suddenly. Transition temperatures of various materials are different. They 

are very low for some metals, e.g. below 100C, while for some other the 
transition occurs even at room temperature.    

Stress concentrators. The stress in the vicinity of a sudden change of shape or cross 
section is high, but at some distance from it is much lower. Suitable conditions for 
plastic flow (and also for the absorption of impact energy) thus exist only in a 
small volume. The ability of plastic flow here is exhausted rather soon, in contrast 
to a component with constant or slowly changing cross section, where the plastic 
deforming can occur in much larger volume. This issue will be addressed later.      

Loading rate. Movement of atoms (during plastic flow) into new equilibrium 
positions needs time. The stress in dynamic loading grows very quickly, so that 
better conditions can arise for tearing-off than for plastic deforming.      

Dangerous are especially the loads occurring at mutual collisions of brittle bodies 
or impacts on them. They are dangerous because due to absence of plasticity nearly 
all energy of impact is changed into the energy of elastic stresses, so that these can 
attain very high values. With respect to the lower tensile strength and low fracture 
energy of brittle materials even a seemingly innocent impact can cause damage or 
even fracture of the body.   
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The behaviour at impact depends on many factors. In addition to dimensions and 
mass of both bodies also their physical and strength properties play a role, as well 
as the total compliance given by the material, shape and way of fixing; a part is 
also played by the character of mutual contact and initial velocity of impact.   

As regards physical quantities, modulus of elasticity is important in particular. If 
one or both bodies are of ductile material, quantities characterising these properties 
are important, for example yield stress and the strength. Also the strength 
dependence on the duration of load action can be important. This phenomenon, 
known as static fatigue, is observed with glass, china and some kinds of ceramics. 
It is caused by very slow growth of the present microscopic defects under load and 
enhanced by corrosive action of environment, such as air humidity. In contrast to 
common strength tests, where the stress increases slowly, so that the time to 

fracture takes tens of seconds, the duration of load at impact is only 102 to 105 s,  
i.e. 1000 – 1000000 times shorter. Shorter time under load reduces the stress 
corrosion at the crack tip, which results in higher strength. The strength increase in 
these cases is not very high (the strength of glass under impact is about 1,2–2 times 
higher than that under slowly increasing load, and further shortening of the time 
has no more influence), but sometimes it can decide whether the object fails or not. 
 

Deformations and failure of components from various materials 

Regardless some uncertainty we shall use the terms ductile and brittle materials in 
their common sense. 

5.5  Ductile materials  elastic-plastic bending  

Components intended for energy absorption should not be loaded by tension. 
Bending is better. Here we shall show the evolution of stresses in this case.  
Figure 5.7 shows a beam on two supports, loaded in the centre by a transverse 
force. The lower part shows the distribution of bending moments 

Fig. 5.7.   Elastic-plastic bending.       
Plastically deformed region and the 
distribution of moments. M - bending 
moment, MK - moment, at which the 
yield stress is attained on the surface.  
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Figure 5.8 shows gradual changes of stress distribution in the section in the middle 
of span. For simplicity we shall investigate the rectangular cross-section and ideal 
elastic-plastic material without strain-hardening (Fig. 5.2c) and with the same yield 
stress both in tension and compression. This is considerable simplification, but 
acceptable for giving general insight.    

           

         Figure 5.8.   Elastic-plastic bending.  
   Stress distribution in the most strained cross-section during load increase  
   (I , II, III, IV). ze – border between  elastic and plastic deformations. 

At the beginning (Fig. 5.8-I) material deforms only elastically, and the stresses in 
the cross-section are proportional to the distance from the neutral axis. The stresses 
are tensile in one half of the cross-section and compressive in the other, equal [8]:  

 z
J

M
z )(  .            (5.9) 

M is the bending moment and J is the moment of inertia in bending (for rectangular 
cross-section, J = bh3/12; h is the height of the cross-section and b is its width). 
Similar stress distribution exists till the maximal stress on the surface attains the 

yield strength Y (Fig. 5.8-II). The corresponding moment and load are 

 
6

2bh
ZM YYK   ;  

l

M
F K

K

4
  ,        (5.10) 

Z is the section modulus in bending and l is the span of the beam. During further 
load increase the stress distribution changes. At places where the stress has attained 
the yield strength, the stress does not increase any more (material without strain 
hardening, Fig. 5.2c, is assumed). The moment increase above MK is therefore 

transferred only by the material from the region with the stress still lower than Y, 
and deformation will therefore increase faster. Near the neutral axis the elastic core 
exists with stress growing linearly with the distance from this axis (Fig. 5.8-III). In 
larger distances than ze the material is fully plasticised, and the stress here is 
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constant, equal the yield strength Y. The transition between the elastic core and 

plastic region is at the distance ze from neutral axis [1  3, 8]: 

 ze  = 








 

b

Mh

Y

plel

4
3

2
  ;          (5.11)  

Melpl is elastic-plastic moment, higher than MK. Increase of the load causes further 
increase in thickness of the plasticised regions and reduction of thickness of elastic 
core. This core disappears when the bending moment attains the ultimate value  

 
4

2bh
M YM   ;           (5.12) 

Now the cross section is fully plasticised (Fig. 5.8-IV). The ultimate moment of 
rectangular cross section is by 50% higher than the moment corresponding to first 
attaining the yield stress. The deflection of the beam is still very small at this 
instant. The moment MM could lead to unlimited rotation of both arms of a beam 
from a nonstrengthening material, and thus to the collapse of the structure. (With 
real materials some strain hardening occurs.) As the deformations are concentrated 
in the region of maximum moment, we speak about plastic hinge here (Fig. 5.7). 

REMARK. As it is obvious from equations (5.10) and (5.12), plastic hinge arises 
relatively soon after the condition for plastic flow was exceeded. Also the 
deformations corresponding to the inception of plastic hinge are relatively small. 

Similar situation exists with other shapes of the cross section. The ultimate bending 
moment can be expressed in the form 

 MM = Y Zpl ;            (5.13) 

Zpl is so-called plastic section-modulus. The formulae for calculation can be found 

in Table 5.1 and literature, for example [9  11]. The proportion between the 
ultimate moment (in the plastic hinge) and the moment corresponding to the onset 
of plastic flow is the same as the ratio of the plastic and elastic modulus, MM/MK = 
Zpl/Z. This ratio also characterises the reserve of load carrying capacity after the 
yield strength has been reached. 
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Table 5.1.  Elastic and plastic section moduli in bending for important shapes   

Section shape    Z      Zpl                  Zpl /Z = MM /MK 

-------------------------------------------------------------------------------------------------- 
Rectangle bh2/6     bh2/4        1.5  b - width, h - height 

Circle  D3/32     d3/6        1.7  D - diameter 

I - profile                   1.15 

If plastic flow appeared during the loading, residual permanent deformations 
remain in the body after unloading. Elastic component of deformations disappears. 
However, if the stress was distributed non-uniformly in the cross section, such as, 

for example, in bending, also residual stress res remains in the body after 

unloading. The magnitude of this stress is obtained if fictive elastic stress f-el is 

subtracted from the true elastic-plastic stress el-pl. The fictive stress f-el is such 
stress, which would act if no plastic deformations would have arisen, i.e. as if the 
body had very high yield strength.  The residual stress can be calculated as: 

 res = el-pl  f-el           (5.14)  

Figure 5.9 shows the distribution of residual stress in the cross section after the 
elastic-plastic stress under load was distributed according to Fig. 5.8-III C. It is 
useful to know that the residual stresses in the place of the onset of plastic flow will 
have the opposite sign than the stresses under load. 

         

         Figure 5.9.   Elastic-plastic bending. Determination of residual stresses res. 

el-pl  - stress distribution in elastic-plastic state, f-el  - fictive elastic stresses   

During plastic flow much more energy is absorbed (dissipated) than during elastic 
deforming. The components designed for the reduction of impact effects by plastic 
flow, must, therefore, sustain large deformations without fracture; that is, they 
should have high ductility, which is here much more important than high strength. 
Bending is often used in metal parts for impact mitigation, so that they must sustain 
very large angles of bending without fracture.  
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5.6  Loss of stability by buckling 

Specific kind of failure is the loss of stability of components by buckling. The 
situation can be illustrated on an example of a slender bar loaded by axial 
compressive force (Fig. 5.10a, b). Under lower load, the bar has straight axis, and 
the compressive stress in the cross section is distributed uniformly, with magnitude  

 tl = F / S  ;            (5.15) 

F is axial force and S is the cross-section area. If, however, the force reaches so-
called critical value Fcr, the bar losses from any minute reason the stability and 
buckles (as shown by the dashed curve in Fig. 5.10a, b), and bending stress also 
appears here, which can be many times higher. This stress has the maximum value   

 max = F e /Z ;            (5.16) 

e is the deflection. For example, the total maximum stress in the outer fibre of a bar 
with circular cross section is 

 max = tl [1 + 8(d/D)] ;           (5.17) 

D is the bar diameter, d is its deflection, and tl is the compressive stress before 
buckling. For example, the same deflection as the bar diameter causes nine times 
higher stress than before buckling. Deflection quickly increases the value of e, so  

          

    a )      b )             c ) 

      Figure 5.10.  Loss of stability by buckling. a, b) bending of bars and other  
      slender parts, c) local loss of stability of an axially compressed cylindrical  
      shell. [from mdp.eng.cam.ac.uk; wikipedia.com; 26.1.2018]. 
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that the bending moment continues increasing. This leads to fast attaining the yield 
stress, plastic flow and maximum possible deformation of a ductile material, and 
fracture of a brittle material. The whole process is usually instable and often ends 
by a collapse of the structure.  

Critical load, at which the bar buckles in an ideal case, is [8, 9, 11,12]: 

 Fcr = 2EJ/l0
2 ,            (5.18) 

and the corresponding critical stress (F/S) is 

 cr = 2E/2 .             (5.19) 

Here E is the Young modulus, J is the inertia moment of the cross section in 
bending, l0 is the characteristic length of the bar, which considers its true length 

and also the fixing of its ends, and  is so-called slenderness ratio (=l0/i, where i is 
the radius of gyration). The conditions for buckling of plates and shells can be 
expressed in similar way.  

Formulae (5.18) and (5.19) hold for ideal cases: perfectly straight bar and 
compressive force acting in its axis, which passes through the centre of gravity of 
the cross section. These conditions are never totally fulfilled. Due to various 
imperfections the buckling starts at much lower load than Fcr. Nevertheless, the 
formulae are useful, as they say generally that  

the resistance to buckling is lower for slender elements and low material 
stiffness.  

The slenderness of an element is characterised by the ratio of its length and 
moment of inertia (or, simply, the thickness). The material stiffness is characterised 
by the modulus of elasticity. 

Formulae (5.18) a (5.19) may also be used if one wants that the element will 
collapse at a load not exceeding certain demanded value. 

Similar relationships with the modulus of elasticity, wall thickness, and 
characteristic length hold also for the loss of stability of plates loaded by 
compressive load in its central plane, or of shells. Here, also the local loss of 
stability can occur, for example during bending, but also during compression of an 
open profile or a thin wall tube loaded by axial compressive force (Fig. 5.10c). The 
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geometric parameter is the ratio of the wall thickness and the radius of the tube. 
This phenomenon, local buckling in thin-walled tubes, is used in the construction 
of one-shot absorbers of energy at impact, for example in trains or cars (Fig. 6.4). 
More details can be found in Chapter 6 and in literature, for example [19 - 22]. 

5.7  Influence of notches and other stress concentrators 

The shape of real parts is often complex, with sudden shape changes and notches 
(Fig. 5.11). It is important to know that the bodies with notches and other stress 
raisers are more prone to brittle fracture, i.e. with low energy consumption, even if 
they are made from a relatively ductile material. This is understandable from figure 
5.12. The stress in the notch region is distributed non-uniformly. It is highest in the 
notch root and decreases with increasing distance from it. The detailed distribution 
of stress can be obtained by computer analysis. An approximate value of the 
maximum stress on the surface is calculated by a simple formula   

 max =  nom ;           (5.20) 

nom is the nominal stress in the notch region, and  is the stress concentration 
factor. The values of these form factors for technically important shapes of notches 
and kinds of loading can be found in various handbooks, for example [12, 13]. 

 

 
Fig. 5.11. Examples of notches in components. The arrows show dangerous places. 

A component of brittle material fails if the maximum stress at certain place attains 

the material´s strength P. It follows from Equation (5.20) that a brittle component 
with a notch fails if the nominal stress reaches the value   

    nom = P /  .            (5.21) 



Jaroslav Menčík: Impacts and vibrations 

61 
 

This means that a notch reduces the technical strength –times ! 

 
 

 Figure 5.12.  Plate with and opening and  

 stress distribution at one end (a schematic). 
 

 

 

 

 

Ductile materials deform elastically at the beginning. If the stress at some place 
exceeds the yield strength, the material here deforms plastically and more energy is 
absorbed here. The plastic flow in components, containing a notch with 
nonhomogeneous stress distribution, is limited only to small volume of material 
around the notch. The total energy absorption during an impact is therefore smaller 
than it would be in a body without a notch, where homogeneous stress distribution 
creates better conditions for plastic flow in much larger volume. (Compare, in Fig. 

5.2, the area corresponding to elastic deforming (i.e. with the stress lower than Y) 
with the area of the whole diagram including plastic deformations.) Also, the 
energy of impact is distributed easily over large volume in a body of simple shape, 
so that the corresponding stresses will be relatively low. In a body with a notch, on 
the contrary, the same amount of energy is concentrated in much smaller volume, 
so that here much more intensive plastic flow occurs, up to the exhaustion of 
deforming ability of the material and to fracture. The influence of a notch can be 
illustrated via impact on a sample without a notch and with a notch as common in 
testing the notch sensitivity (Fig. 5.4). If the sample is smooth, the falling hammer 
bends it, while a sample with a notch is broken with signs of brittle fracture.      

Very dangerous are cracks, especially if tensile stress acts in the component. The 
failure of bodies containing cracks will be discussed in more detail in the next 
section. If one wants to avoid brittle fracture of a component from ductile material, 
all cracks and sudden changes of shape and stress concentrators should be avoided. 
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5.8  Influence of cracks, principles of fracture mechanics 

Resistance of a body to impact is significantly reduced by cracks. One or more of 
cracks could have arosen during manufacture or during operation, for example due 
to fatigue under repeated loading. A body with a crack breaks easily in brittle 
manner at impact. A crack represents a very strong stress concentrator that 
significantly reduces plastic deforming (and thus also energy absorption) in the 
pertinent region. The first theoretical analyses, made under the assumption of 
purely elastic response, gave infinitely high stress in the crack root, which is 
impossible. Later, two approaches were proposed, which have overcome this 
drawback [14, 15]. The first one works with concept of stress intensity factor K. 

This factor characterises the influence of nominal stress nom in the crack region by 
the following relationship:    

 KI = nom Y √l  ;           (5.22) 

l is the length or any other characteristic dimension of the crack, and Y is a factor 
characterising the influence of the shape and position of the crack, its relative size 
with respect to the cross section area there, and also the character of stress 
distribution (tension, bending, etc.). The dimension is Pa.m1/2 or MPa.m1/2. The 
subscript I, II or III at K denotes the mode of crack opening (Fig. 5.13). The crack 
starts growing quickly if the stress intensity factor attains critical value; that is at  

 K  KC .            (5.23) 

 

 

Figure 5.13. Basic modes of crack opening. 

 

 

 

Most important is the simple crack opening (mode I). The corresponding critical 
value, KIC, is called fracture toughness. This is measured on standard specimens 
containing a crack, with well-known relationship between the crack length and 
values of KI. In the test, the specimen is loaded by increasing load, and the instant 
is found when the crack starts propagating quickly. The pertinent crack length and 
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load are used for the calculation of KI, which now corresponds to the fracture 
toughness KIC. A possibility of fast fracture of another body with a crack is checked 
by comparing the value of stress intensity factor KI for this body (with particular 
crack and load) with fracture toughness KIC, measured (elsewhere) for this material.      

REMARK. The formulae or diagrams for the determination of stress intensity 
factor can be found in various handbooks [16] or determined using a suitable 
computer model.  

A component with a crack fails if the stress intensity factor at certain place attains 
critical value KIC. From equations (5.22) and (5.23) it follows that the failure 
occurs if the nominal stress reaches the critical value  

    
kr

C
cr

lY

K
  .            (5.24) 

As the shape factor Y depends also on the crack size, the critical length in some 
cases must be found by an iterative procedure. Vice versa, it is possible to find the 

critical crack length lcr for the assumed nominal stress nom as follows:  
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and to verify or ensure that the cracks in the component are smaller than lcr. 

The second approach to the assessment of the behaviour of an elastic body with a 
crack uses energy principles. If loaded, this body contains the accumulated energy 
of elastic stresses. If the crack grows, this energy is released gradually. On the 
other hand, the crack growth needs energy especially for plastic deforming of the 
material in the region of very high stresses in front of the crack tip and for creation 
of new fracture surfaces. The situation is depicted in Figure 5.14. The energy, 
consumed for the creation of new fracture surfaces grows directly proportionally 
with the crack length. The released energy grows with the square of this length. At 
the beginning, therefore, the energy needed for the crack growth prevails, but since 
a certain instant the energy released by this process will prevail, and the fracture 
process becomes unstable. For the description of fracture process, so-called energy 
release rate G was defined as the energy released by enlargement of the crack by  



Jaroslav Menčík: Impacts and vibrations 
 

64 
 

 

       Figure 5.14.  A plate with a crack: energy balance[15]. 
       U – energy of elastic stresses, released by crack growth,  
       Ws – energy consumed by this growth, ac – critical length 

unit area (J/m2), and specific fracture energy , expressing how much energy is 
needed for the creation of fracture area of unit size (J/m2). The condition of fast 
crack propagation is   

 G   ,     resp. G  GC  ;           (5.26) 

GC means critical value of energy release rate. 

Both approaches are equivalent in the evaluation of crack propagation in a brittle 
elastic body. For example, energy release rate for simple crack opening (mode I) is   

 GI  = KI
2 / [E/(1  2)]  .           (5.27)  

The formulae for other modes of crack opening are similar. 

Table 5.2 on the following page gives values of fracture toughness and specific 
fracture energy for some materials. 

The assessment of a possible failure uses commonly the stress intensity factor. 
However, the failure process should always be looked upon from energy point of 
view. For example, during an impact a certain amount of energy is passed to the 

body. And only if this amount is higher than the value  × S, where S is the 
remaining area of the cross section of the body at the crack, complete fracture can 
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be expected. Similarly, it can be predicted how much an existing crack becomes 
larger due to the impact, and what degradation of strength of the body it causes.  

Table 5.2. Fracture toughness KIC and specific fracture energy GC of some 
materials [17].  

Material     KIC (MPa m1/2)  GC (J/m2)      
---------------------------------------------------------------------------------------------- 
Steel       30 – 140           1000 – 85000   
Grey cast iron      10 – 25             860 – 5400  
Ceramics (various kinds)      1 – 20     2 – 2000  
Glass      0.6 – 1,0     6 – 10  
Epoxy resin     0.5 – 2,0               50 – 200 

Now we shall look at failure of brittle bodies without visible cracks. We shall also 
see that failure can sometimes occur in various modes depending on the load 
conditions. 

5.9  Failure of bodies from brittle materials 

Failure of a component from ceramics, glass or another brittle material due to an 
impact by another body will depend on its velocity, on the geometry and 
dimensions of both bodies, and on their fixing or support. Sometimes it can 
therefore occur in various ways. The characteristic features of failure in two cases 
will be shown on an example of a beam-like body supported at both ends and hit by 
a ball of a strong material (Fig. 5.15).   

As soon as both bodies come into contact, they start deforming at the region of 
contact. Moreover, the beam deflects. The velocity of the ball decreases and its 
kinetic energy changes gradually into the kinetic energy of the beam and the strain 
energy accumulated in both bodies. (Besides them, a part of energy is accumulated 
and dissipated at the beam supports.) Now, three cases can occur. If the energy of 
the flying ball is small, it all is converted into the strain energy, and the ball and the 
beam stop at certain deformation. However, they rebound immediately, the ball 
jumps back and the beam starts vibrating. (If the ball has fallen from certain height 
on a horizontal beam, the process will be repeated.) These vibrations will end after 
a while due to internal friction in the material and other energy losses. If the energy 
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of impact is very high, the beam breaks before the ball stops. The ball and the parts 
of the beam can continue moving. In the third, immediate case, cracks arise, but the 
beam retains its integrity.       

 

       Figure 5.15.  Various modes of failure by impact [15]:   
       a) due to bending stresses, b) due to contact stresses 

The damage of the beam can occur in two ways, depending on the dimensions of 
the beam and ball and on the conditions of impact [15]. In thin beams or plates 
bending stresses will prevail, so that the failure will be caused by bending (Fig. 
5.15a). In thick beams with high bending stiffness the bending stresses will be low, 
and damage can be expected rather at the contact (for example, formation of a 
conical crack, Fig. 5.15b). In some cases, both kinds of damage occur. 

If the velocity of impact is not high, the stresses can be determined from the 
formulae for stress, deformations and strain energy under static load, and with the 
assumption that the energy of impact will be changed into the energy of elastic 
stresses. In our case, bending and contact stresses are generated in the beam.  

Bending stresses 

If a concentrated force F acts in the middle of a long thin beam supported on its 
edges, it causes its deflection [15] 

 y = FCo = F l3/(48 EJo) ;           (5.28) 

Co is the bending compliance of the beam, l is its length, and Jo is the moment of 
inertia of the cross section in bending. The maximal bending (tensile) stress acts in 
the middle of the span, on the surface opposite to the force, and has the value  

 o = F l /(4Z) ;            (5.29) 
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Z is the section modulus of the beam in bending. The accumulated energy of 
bending stresses is 

 Epot,bend = ½ F y = ½ Co F
2 = l3/(96 EJo) F

2 .        (5.30) 

 

Contact stresses 

If a ball of radius R is pressed into the plane surface of a massive body, a circular  

contact area of radius a is created here. The centre of the ball moves by [8, 15] 

 y = Ccont F 
2/3 = [9F2/(16ReEe

2)]1/3  ;         (5.31) 

Ccont is so-called contact compliance, Re is the equivalent radius of curvature of the 
contacting surfaces, and Ee is the equivalent modulus of elasticity of both materials 
in contact. Both constants can be obtained from the relationships 

 1/Re = 1/R1 + 1/R2 , 1/Ee = (1  1
2)/E1 + (1  2

2)/E2       (5.32) 

R1 and R2 are the curvature radii of body 1 or 2 at contact point, E1 and E2 are their 

moduli of elasticity, and 1, 2 are Poisson numbers. If one surface (of body 2, for 
example) is plane, 1/R2 = 0. If it is concave, R2 has negative value. As it follows 
from Eq. (5.31), the deformation is not directly proportional to the force, but 
increases with its general root (= 2/3). The maximum tensile stress acts at the edge 
of contact surface and has the magnitude 

 cont = [(12)/3] p0  ;           (5.33) 

p0 is the maximum pressure in the centre of contact area:  

  p0 = 3/2 [F/(a2)] =  (6FEe
2/Re

2)1/3  .         (5.34) 

Strain energy, accumulated in the contact region, is 

 Epot, cont = 2/5 Ccont F
5/3                (5.35)   

The total accumulated energy equals the sum of the energies of bending and 
contact stresses,  

Epot  = Epot, bend + Epot, cont =  1/2 CoF
2 + 2/5 CcontF

5/3       (5.36) 

The energy of impact is 

 Eimp = ½ mv0
2      (or Eimp = mgh ) ,         (5.37) 
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where m is the mass of the ball, v0 is its velocity at the instant of touching the 
beam, g is acceleration of gravity, and h is the height of the fall. 

Under the assumption that the total impact energy is changed to the strain energy,   

 Eimp = Epot ,            (5.38) 

one can (under the known compliances Co and Ccont) determine from Eq. (5.36) the 
maximum force F and the corresponding bending and contact stresses, and check 
whether the component will sustain the impact, or not. Vice versa, it is also 
possible to determine the energy of impact, which a component of a known 
strength can survive. If the actual energy of impact is higher, the component breaks 
and the excess of energy is consumed for the creation of new fracture surfaces, 
acceleration of the broken parts, and further movement of the ball. 

The danger of impact load will be illustrated on two cases according to [15]. 

Example 1. A steel ball 20 mm in diameter falls from height of 5 cm on a glass 
specimen having the shape of a beam 10 mm wide, 3 mm thick and 100 mm long. 
Determine the maximum stress at impact and compare it with the stress caused by 
the dead weight of the ball. 

The material constants of the beam (1) and ball (2) are: 1 = 2500 kg m3, 2 = 

7820 kg m3, E1 = 70 GPa, E2 = 210 GPa, 1 = 0.25, 2 = 0.3. The characteristic 

beam constants are Co = 13.2×106 m.N1, Ccont = 0.261×106 m.N2/3, section 

modulus Z = 1,5×108 m3. The ball mas is m2 = 32.8 g. 

In the static case, the beam load corresponds to the weight of the ball, i.e. Fstat =  
m2g = 0.322 N. In the dynamic case, we shall use the energy of impact, W = mgh = 

16.1×103 J. The substitution of this value for U in Eq. (5.36) gives that the 
maximum force at impact will be Fdyn = 49.2 N, which is about 150-times higher 
than that caused by the dead weight ! The stresses will increase similarly: the 

maximum bending stress on static loading will be o,stat = 0.54 MPa; while it will be  

o,dyn = 82.0 MPa at impact. Maximum tensile stress at the periphery of the contact 

circle will be cont,stat = 20.9 MPa under the static load, and cont,dyn = 111.8 MPa at 
impact. For the sake of completeness it should be mentioned that the ball velocity 

was v0 = 1.0 m.s1, and the impact energy was divided between the energies of 
bending and contact stresses as follows: Uo,dyn = 16.0 mJ, Ucont,dyn = 0.1 mJ. 
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REMARK. In these calculations several quantities were neglected: the own weight 
of the beam, the energy released from the ball during its movement in the 
gravitational field due to the beam deflection, and the energy accumulated at the 
beam supports. 

The results indicate that whereas only negligible stresses arise under static load, 
dynamic load due to the same body causes stresses adequate for fracturing the glass 
specimen, where both its breakage as well as damage at the point of contact can be 
expected. We should also note that most of the impact energy was converted into 
bending stresses energy (but the contact stresses were higher than the bending 
ones). This holds quite generally for thin beams and other compliant bodies. The 
energy of contact stresses is therefore sometimes neglected in the calculation of 
dynamic forces, and simpler equation (5.30) is used instead of Eq. (5.36). On the 
other hand, the contact stresses alone can be considered when relatively rigid body 
is impacted.  

Example 2. How the situation will change if the glass specimen from the previous 
example is hit by a sharp corundum particle with velocity v0 = 1 m/s. The particle 
size is d = 0.1 mm and its tip radius is R = 0.01 mm? (The constants for corundum 

are 2 = 4000 kg m3, E2 = 370 GPa, 2 = 0.25, those for glass are E1 = 70 GPa, 1 

= 0.25. The corresponding constants of the contact are Re = 1x105 m, Ee = 67.7849 

GPa, a Ccont = 2.425×106 m/N2/3.)  

With regard to the minute weight of the particle (m = d3r/6 = 2.094×109 kg) and 

energy (Ekin = ½ mv0
2 = 1.047 × 109 J) we can expect that the impact will have an 

effect in the contact region only. Equation (3.35) will give, after a rearrangement, 
that the maximum force at impact will equal  

       F = [5Ukon/(2 Ccont)]
3/5 = [5×1.047×109/(2×2.425×106)]3/5 = 0.016592 N. 

It is obvious that the bending stresses caused by so small force will be negligible.  

The pressure in the centre of contact area, Equation (5.34) will be p0 = 5015 MPa, 

and the tensile stress at its fringe, Eq. (5.33), will be cont = 836 MPa. One can see 
that even a minute flying particle with sharp edges can bring about local surface 
damage at high impact velocity. 

Major deviations from quasistatic theory will arise at higher impact velocities. The 
inertia of the body being struck will be involved on an increasing scale, together 



Jaroslav Menčík: Impacts and vibrations 
 

70 
 

with the limited velocity at which it can deform. Both the deformation and the 
character of failure will change accordingly. Figure 5.16 shows three cases of 
damage of a glass plate whose centre was hit by a steel ball with various velocities. 
Figure 5.16a corresponds to relatively slow loading (up to impact velocity of about 
1 to 2 m/s). The deflection curve at the instant when the fracture stress was attained 
is the same as in the static case (and also the character of the cracks formed and the 
energy consumption). Figure 5.16b corresponds to medium impact velocities (m/s 
up to tens of m/s). Due to inertial forces, which prevent the plate from deflecting 
rapidly, its deflection curve after the first contact will have a somewhat different 
shape compared to slow deforming, showing a larger curvature at the point of 
impact. The bending stresses are rather higher, so that the fracture will occur before 
the force F would attain the value causing fracture under static load. Also the 
energy accumulated at the instant of fracture will be smaller. (On the other hand, 
very short times under load can cause somewhat higher strength.) 

    

              

Figure 5.16.  Fracture of glass panes at various impact velocities. 

Figure 5.16c corresponds to high velocities of impact (of the order of hundreds 
m/s), for example due to a shot. Even before the plate starts to deflect, the contact 
stresses will attain values leading to the formation of a conical fracture passing 
throughout the entire plate thickness and a small piece in form of a truncated cone 
is knocked out from the plate [15]. In such a case the energy of bending is 
negligible and only the energy of contact stresses applies. 

Many more cases of impact can arise in practice. The general rules involved will be 
similar to the examples given above. 
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6. Structural elements for impact damping  

This chapter shows how impacts are damped and energy absorbed using various 
kinds of elements, for example rings and systems of them, shells, honeycombs and 
other elements with cellular structure, inverted metal tubes, airbags and hydraulic 
shock dampers.   

6.1  Rings and systems of rings 

Efficient elementary parts for one-time absorption of mechanical energy are metal 
circular rings, which are deformed by point forces of radial direction (Fig. 6.1). 
These forces generate bending moments and stresses. The situation in the simplest 
case with two forces acting at the opposite points A on the ring of radius R is 
depicted in the figure. At the beginning only elastic deformations arise. Bending 

moment in the section containing angle  with the direction of the force F is [1, 2]:     

 M() =  ½ FR (2/  sin )  .            (6.1) 

 

 

  

Figure 6.1. Circular ring loaded 
by two forces at points A. 
Distribution of bending moments. 

  

 

The maximal bending moment and stresses act at the points of force application 

(section A;  = 0): 

 MA = (1/) FR = 0.3183 FR            (6.2) 
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The moment changes continuously to the point B, where it attains a lower 
maximum value of the opposite sense, 

MB = 0.1817 FR  ;             (6.3) 

see also Equation (6.10b) for n = 2. As soon as the bending moment in section A 
attains the value  

MY = Y Z ,              (6.4) 

where Z is the elastic section modulus for bending of the ring cross-section and Y 
is the material´s yield strength, plastic deformations appear in the outer fibres; in 
all other places the material is deformed elastically. For rectangular cross section, Z 
= bh2/6, with b denoting its width and h the thickness in the force direction; for 

circular cross section, Z = d3/32; d is the diameter of the ring cross section. The 
corresponding load is  

 FY = (1/0.3183) MY /R =  Y Z /R           (6.5) 

For simplicity, we shall assume here elastic-plasic material without strain 
hardening. With this material, the stress keeps the value equal the yield strength 
even for larger strains (Fig. 5.2c). The thickness of plastically deformed outer 
layers gradually increases (as explained in Chapter 5.5), and at the load  

 Fpl,1  =  Y Zpl / R             (6.6) 

the elastic core disappears and the cross-section at A is fully plasticised; plastic 
hinge was formed here (see Chapter 5.5). The corresponding bending moment is   

 Mpl = Y Zpl ;              (6.7) 

Zpl is so-called plastic section-modulus; for rectangular cross section, Zpl = bh2/4, 
and for circular cross section, Zpl = d3/6.  

When plastic hinge at section A has been created, a larger part of the ring is still 
deformed only elastically, and the total deformations are small. During further load 
increase the stresses at plastic hinges remain constant and grow only out of them. 
At force magnitudes   

Fpl,2  = Fm = 4 Mpl / R             (6.8) 
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plastic hinges develop also at sections B. Since this instant the deformations grow 
faster and continue till the points A touch one another. Assuming (for simplicity) 
that the length of the arm R of the force F is approximately constant during this 
stage, the work performed from the beginning of plastic deforming till the 
maximum possible displacement R of the points A is achieved, is 

L   Fpl,2 R =  4 Mpl .             (6.9) 

The plastic flow, and thus also the energy consumption, is concentrated in the 
regions of plastic hinges. The moments and stresses between them are lower. The 
energy consumption can be increased by creation of more plastic hinges. In general 
case of n radial forces, the elastic bending moments at sections A and B are:    

 MA = ½ FR (1/   cotg )  ,         (6.10a) 

MB = ½ FR (1/    1/sin ) ;     = /n ,   n is an integer.         (6.10b) 

The forces needed for full plastification (i.e. creation of plastic hinges also at 
sections B between the applications of point forces) are  

 
R

M

nR

M
F plpl

npl )/(sin

4

sin

4
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          (6.11) 

REMARK. Euqation (6.7) holds if the ring thickness in the direction of its axis is 
small, so that the bending stresses at every point act only in the direction of tangent 
to the ring circumference. With large thicknesses (if, for example, the rings are 
created from tubes of length comparable or larger than the diameter) the stress 
distribution of is more complicated. Transverse load causes the plain strain state, 
where – in addition to the bending stresses in the circumferential direction – also 

stresses appear in the direction of the tube axis, of magnitude y = x, where  is 
the coefficient of lateral contraction (Poisson number). The resistance to plastic 
deforming is somewhat higher. This can be approximately respected by replacing 

the yield strength Y in Equation (6.7) by the expression Y×(4/3).    

The character of deforming can be influenced by the velocity of loading, especially 
at very high velocities, so that inertial forces apply. If several rings are connected 
together in the direction of the acting force, elastic impulse propagates through 
them at impact (see also Chapter 3). If the opposite end is fixed, the impulse is 
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reflected with the same sign. The moments and stresses at this place are summed 
up, so that in addition to the plastic deforming of the first ring at the point of 
impact also the last ring at the place of support can be plasticised, while the rings 
between them are deformed not so intensively [2]. 

 

 

 

 

 

 

      Figure 6.2. Arrangement of rings: a) square, b - hexagonal 

Often, systems of connected rings are used. The character of their deforming is 
influenced by their arrangement. Figure 6.2a shows a square arrangement, and Fig.  
6.2b shows hexagonal arrangement. In [2], Figure 4.19, it is shown that with the 
square arangement of rings the individual rings buckle, but with the hexagonal 
arrangement the individual rows buckle as a whole. 

REMARK. Spring mattresses in old beds had also ring-like structure, and similar 
arrangement is also used in nets for retaining stones falling on a road from rocks.   

6.2  Zig-zag structures 

In some cases, metal bars bent in zig-zag way are useful. The load force can stretch 
or compress such „spring“; however, its sidesway buckling must be prevented.  
The bars are loaded by bending. The highest moment, acting at the folds, has the 
magnitude at the beginning of loading     

 M = F a .             (6.12) 

Initially the structure behaves as an elastic spring. As soon as the moment attains 
the value MY according to Eq. (6.4), the material at the folds starts deforming 
plastically, and on attaining Mpl according to Eq. (6.7) plastic hinges are created 
here. With growing deformation the bending moment gradually increases to the 
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value Mpl√2. The common metals usually strain-harden during larger deformations, 
so that, despite of the increase of the moment, the process proceeds in a stable 
manner till attaining the maximum compression, where the arms touch mutually 
along the whole length.       

6.3  Axisymmetric shells loaded by axial force 

With these shells, the local buckling of the walls appears at certain load. 
One example was given in Fig. 5.10c; three other are shown in Fig. 6.3.  

     

Section:  Hexagonal        Circular   Square 

    Figure 6.3.  Buckling of thin-walled tubes compressed by axial force [3, 4].  

These pictures were obtained by computer modelling; let us note that the 
finite element method (FEM) programs for nonlinear analysis of structures 
provide results conforming well to the results of experiments (compare the 
shape of local buckling in Fig. 6.3 with the photo in Fig. 5.10c). During the 
load increase further waves will arise at places yet unbuckled.    

Cylindrical shells are used, for example, as absorbers of front impacts in 
cars or railway vehicles (Fig. 6.4). The absorbers sometimes have the shape 
of a truncated cone, with small or large angle [4]. They are made of metal or 
of fiber reinforced composites. Characteristic structural quantities (for the 
determination of critical load) are the modulus of elasticity, wall thickness 
and some other characteristic dimension, for example the diameter of a 
cylindrical or conical shell, or the length of a side in a square or hexagonal 
shell.  
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         Fig. 6.4.  Absorbers of impact energy in cars and railway vehicles [5]. 
 

6.4  Materials with cellular structure 

The energy of impact can also be absorbed by irreversible deforming of cellular 
structures [2, 6, 7]. Important representatives are honeycombs and foams, known, 
for example, from sandwich structures (ski, corrugated board, walls of vehicles and 
aircrafts etc.). Honeycombs are plane configurations consisting of many cells, 
usually of the same form and size (Fig. 6.5). They are similar, in this respect, to the 
ring-like structures. Foams are spatial aggregates of cells resembling polyhedra. 
They can have valls closed or open, and their sizes vary. The material is metals, 
plastics or cardboard, but cellular structure is also typical of various plants, from 
grass to wood. They can be elastic, viscoelastic or elastic plastic, ductile or brittle.  

An important geometry characteristics of cellular structures is the relative density,                

           

 

 

  Figure 6.5.  Cells with honeycomb arrangement 
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defined as r = */, where * is the average density of cellular structure including 

the holes, and  is the density (kg/m3) of cell material (e.g. polymer or metal). 
Relative density of common technical composites amounts several percent. The 

complementary quantity is porosity , expressing the proportion of pores in the 

composite;  = 1  */ = 1 –  r.  

Deforming of honeycombs or foams in damping of impacts resembles the 
deforming of ring systems. Typical stress-strain diagram is depicted in Figure 6.6; 

 is the average macrostress calculated as the force acting in the honeycomb plane 
divided by the total cross section of the composite including the holes. It has three 
regions. Under low stress (region a) the deformations are elastic and the stress 
increases in direct proportionality with deformation. At certain instant the stress 
attains the critical value. The thin walls in composites from elastic-plastic materials 
buckle and bend in elastic-plastic manner. Further compression occurs under 
constant or very slowly increasing load (plateau b in Figure 6.6). The walls 
collapse more and more. From certain instant, the initially opposite sides of the 
individual cells touch mutually, so that a compact body is formed, and a load 
needed to further compression grows quickly (region c). Should the impact 
damping occur at approximately constant force, without peak values, the shock 
damper or energy absorber must be designed so that the assumed energy of impact 
is absorbed in region “b” in Figure 6.6.   

 

      Fig. 6.6.  Stress-strain curves for compression of a honeycomb (after  [2]). 

      a  linear elasticity (cell walls bend), b  plateau (elastic buckling, plastic 

      bending, brittle fracture), c  densification (cell walls are in contact). 

      L  charakteristic dimension of cell, t  cell wall thickness.  
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Elastic buckling of cell walls occurs at critical load, mentioned in Chapter 5.6. 
Some idea can be obtained from Euler´s theory of buckling of elastic bars, which 
also holds approximately for buckling of plates and walls in cells [8, 9]. The 
critical load for a straight bar loaded by axial force is   

 Fcr =  2 E J /(c L2) ;           (6.13) 

E is the tensile modulus of elasticity, L is the bar length, J is the moment of inertia 
of its cross section in bending, and c is a constant, characterising the support of the 
bar ends; for example, c = 4 if both ends are clamped. The moment of inertia of a 
rectangular cross section of width b and thickness t in the direction of bending is J 
= bt3/12. The area of cross section is S = bt. Dividing the critical force by the area S 
gives the corresponding critical stress in the wall: 

  cr = k E (t/L)2 ,            (6.14) 

where k is a constant. Critical is such stress, at which buckling should occur of an 
ideally straight bar, loaded by compressive force acting exactly in its axis. In 
reality, buckling occurs at significantly lower loads, due to various imperfections 
of the bar and load. 

REMARK. Similarly to bars, the critical stress for local buckling depends on the 
modulus of elasticity E, wall thickness t, and a characteristic dimension L, for 
example the radius of a circular shell.  

At buckling, the compressive stress is accompanied by bending stress, which can 
be many times higher, as it was shown in Chapter 5. Honeycombs or cells of 
elastic-plastic material deform plastically, with irreversible consumption of energy. 
If the walls are from a brittle material, they break on attaining the ultimite strength. 
The energy is consumed in fracture processes as well, though in lesser extent. But 
even these fractures, which occur at approximately constant stress, ensure that the 
compressive force is roughly constant.  
  

The application of such structures for damping elements needs the knowledge of 
relationship between the force and compression for the intended kind of element. 
        
6.5  Axisymmetrical tearing and inversion of metal tubes 

Creation of a plastic hinge consumes much more energy than elastic deforming.  
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A drawback in bending of a straight bar under transverse load is a limited extent of 
bending (only 90 – 180°) and, therefore, a limited amount of dissipated energy. 
Improvement can be reached by various ways. One of them [2] is axisymmetrical 
tearing of tubes in several directions simultaneously, for example by pressing a 
conical pin into them, followed by permanent bending achieved by winding the 
torn stripes. Figure 6.7a shows tearing of a tube of square cross-section: the 
pressing it onto a pyramidal pin on a massive support plate creates four wound 
stripes. Figure 6.7b shows simultaneous tearing of several stripes from a tube with 
circular cross section, pressed onto a suitably formed die. In both cases, suitable 
grooves can be made in the tube in advance for ensuring the demanded paths of 
fractures and constant width of created stripes. The total work W of the force F 
acting along the way x, consists of the work of tearing, Wtear, work of plastic 
bending and winding of the stripes, Wplast, and work of friction Wf between the bent 
stripes and the shaping die they slide along:  

 W = F x = Wtear + Wplast + Wf .          (6.15) 

The stripes are either wound permanently, or again straightened after bending, 
depending on the shape of the forming die. 

Another way for reshaping of relatively large extent is axisymmetrical bending 
with inversion of tubes from very ductile material, as shown in Fig. 6.7c [2].  If a 
suitably preformed tube is pressed onto a central stopper plate, the tube wall bends 
and is extended in the meridian direction and immediately bends back into the 
cylindrical shape of a larger diameter. The work of elastic deforming is negligible  

           

a.         b.      c. 

Figure 6.7. Forming of metal tubes: a, b) with tearing of walls, c) with inversion. 
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compared to the work of plastic forming, which is 

 W = F x = Wplast,bend, 1 + Wplast.bend, 2 + Wmembr + Wf  ,       (6.16) 

where Wplast,bend,1 is the work for meridian bending by 180° in one direction, and 
Wplast,bend,2  is the work of its straightening, Wmembr is the work of membrane forces 
expended for permanent enlargement or reduction of the diameter at the place of 
forming, and Wf is the work of friction forces between the tube and the support.  

The force depends on the deformation as follows. At the beginning the force 
necessary for deforming increases, but as soon as parts of the tube are inverted  into 
new shape (tubular of a different diameter), the deforming continues under constant 
force. This means that a suitable preforming can create an element for impact 
damping, where the force is approximately constant from the beginning of work.  
  

6.6  Composites 

Impacts can be damped also by means of composite materials and parts. Two or 
more components with various properties are composed so that the resulting 
material has different (and better) properties. An example of a composite material 
is a laminate with a polymer matrix of relatively low strength and dispersed fibres 
of high strength, for example of glass, kevlar, or carbon. The laminates are shaped 
before curing, and sometimes after it they are machined to final dimensions. An 
example of a composite product is ski, created as a sandwich consisting of two 
strong elastic layers with a softer core from polymer foam between them.  

A very wide range of properties of a composite can be achieved by the choice of 
components and their arrangement. If impacts should be mitigated, it is necessary 
that the composite has acceptable strength and especially high ability of absorbing 
the energy of impact. The applications are: parts of vehicles or aircrafts, protective 
helmets and shields, elements for protection of passengers during a collision, but 
also bullet-proof vests; they must prevent bullet penetration through the protective 
layer and, simultaneously, to reduce the maximum force caused by the projectile. 

The consumption of energy during the destruction of fiber reinforced composites 
is influenced by the material of the fibres and of the matrix, by the properties of the 
interfaces between them, by the shape and fraction of fibres and also by their 
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orientation, i.e. the angle of the fibers with respect to the direction of the load and 
axis of the body, and the order of laying the individual layers. A role is also played 
by the conditions of manufacturing, the component geometry and the conditions of 
use. If the properties depend on temperature, this factor is also important.   

For the mitigation of impact effects the high strength is not so much important as 
the ability to absorb (or dissipate) the energy at appropriate (not too high) force or 
stress. Energy is absorbed by plastic deforming and also by fracture processes. The 
principles of fracture mechanics were explained in Chapter 4. The consumption of 
energy during fracture depends on specific fracture energy (i.e. energy needed for 
creation of fracture area of unit size) and on the area of the created fracture 
surfaces. The fracture of fibre composites can propagate across the fibres, in the 
matrix, or at the interface fibre – matrix. As the total area of the contact of matrix 
with many fibres is very large, it is advantageous if the fibres are strong and the 
interface between them and the matrix is less strong, and their arrangement is such 
as to promote the propagation of cracks and growth of fracture surfaces in the 
space between fibres. An example is intentional splaying of a composite during 
failure in some applications [2].    

Sandwich parts can be used for catching impacts perpendicular to the surface. 
From macroscopic point of view, they are plates. The energy is accumulated and 
absorbed by bending, extension and fracture of outer layers, and by localized 
crushing of the core between them. Honeycombs and foams are very suitable for 
sandwich cores. The core can delaminate from the outer layers and sometimes a 
small and sharp body can break through the sandwich [2]. A role is sometimes 
played by stress waves and, perhaps, their reflections at the end opposite to impact.  

A special kind of sandwich is corrugated cardboard from paper or other material, 
used in packaging technology for protection of goods during manipulation and 
transport. The core, whose arrangement is similar to one or more rows of cells in 
Figure 6.5, is deformed under high forces; its walls warp and dampen the impact. 

Specific applications of composites are bulletproof vests [10]. Here, the 
experience is utilized that a bullet (from a hand gun) can be slowed down in an 
efficient way by several layers of strong fabric or fibers. Very strong and tough 
fibres, for example of Kevlar, “catch” the projectile and blunt its sharp tip (if it is 
from lead) and spread the effect onto a larger area from a layer to layer. This 
reduces the load concentration. In some applications the fibres are coated by a 
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resin, and then several these vowen or laminated layers are stacked and inserted 
between two layers of polyethylene. Even more layers can be created. Another 
problem a bulletproof vest must face is the high momentum (product of the mass 
and velocity) of the bullet or debris (e.g. from a grenade), so that wounding could 
be caused not by the sharp tip, but to high force acting over a large area. Therefore, 
various plates are sometimes inserted into the protective structure, made either of 
metals, for example steel or titanium, or from ceramics of very high strength and 
fracture toughness, e.g. Al2O3 or from carbides of some metals. The plates, which 
can reduce the momentum of the bullet and make it blunt and distribute the load 
and energy on a larger area, are suitable because they do not limit the mobility of 
the user in contrast to continuous armor. For example, similar kind of protection is 
used by some animals, for example armadillo, whose armor is made of hard chitin 
shell plates connected by leather. Certain drawback of metal inserts is higher mass 
(compared to textile), and brittleness of ceramic plates, so that such protective vest 
is unable to catch multiple hits at the same place.   

6.7  Air- or gas bags and cushions 

We have seen several times that an impact can be mitigated if an elastic stop is 
used, for example by a metal spring. Similar servis can also be done by an air 
spring, or filled by another gas. Well known are also bubble foils used for 
packaging of goods, or airbags used in cars.    

Airbag works as follows. A textile bag is hidden at a suitable place (for example, 
in the steering wheel or in a dashboard in front of the co-driver or passenger. An 
impact activates a mechanism, which very quickly (usually by a pyrotechnic 
process) releases the bag from the cover and triggers the gas generator, using 
sodium azide (NaN3) or other suitable chemical. The created gas (nitrogen in this 
case) fills the bag in front of the protected person that leans on it. The filled bag 
dampens the impact and distributes the acting force uniformly over a larger area. 
The design solution can be such that the gas filling slowly escapes through the 
pores in the fabric. This helps to prevent a too high peak force at the maximum 
compression of the bag. (Braking with constant force would be ideal.)     

Small air bags are often used in packaging technology for protection of goods 
transported in hard boxes. They can be in form of bubble foils with many small 
bubbles (cm in size) or sealed thin plastic bags filled with air. They are cheap and 
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very light, and their shape is adjusted easily to the space available or to the gap 
between the goods and the stiff container.  

The next section will summarise the principal formulae for the gas cushion. 
According to the equation of state of ideal gas, the following relationship holds 
between the gas pressure p and volume V of this gas [11, 12]: 

 p V 
n = p0 V0

n  .            (6.17) 

Subscript 0 denotes the values pertaining to the beginning of compression, and the 
exponent n is a constant, characterizing the process, which is, generally, polytropic. 
For isothermic change, n = 1, for adiabatic process (without heat exchange with the 
surroundings) n = 1.4. The initial pressure p0 can be the same or higher than the 
atmospheric pressure, depending on the construction of the particular damping 
element. The volume of the gas filling in the cushion is constant, and if also the 
area S of the contact of the decelerated body and the cushion will be constant, the 
simple relationship exists between the pressure p and the cushion height H:     

 p Hn = p0 H0
n  ,     resp.    p / p0 = (H0 / H)n  .        (6.18) 

REMARK. If a bubble foil is used, the total area S equals the sum of the loaded 
bubbles.   

We also want to know the relationship between the pressure p and compression  

of the cussion. As it holds  = H0  H, Equation (6.18) can be rewritten as follows:  

     p / p0 = [H0/(H0  )] n = [1  (/H0]
 n ,   resp.   p = p0 [1  (/H0]

 n       (6.19)  

For example, the compression of the initial cushion height by 10% causes (with n = 
1.4) the pressure increase by 16%; compression by 20% (i.e. to 80 % of the initial 
height) increases the pressure by 37 %, etc. With constant contact area, simple 
relationship between the pressure and force holds:  

 F = p S .            (6.20)  

REMARK. The pressure p0 in the unloaded damper is not observable for anybody 
out of the system.  

If a gas cushion is used for impact damping, we are interested in the pressure 

increment p during the compression from zero (or equilibrium) position instead of 
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the pressure p in the closed cushion. Only this increment creates the braking force. 
From the relationship 

 p = p0 + p .            (6.21) 

where p0 denotes the pressure in unloaded damper, we obtain 

 p = p – p0            (6.22)  

After expressing the pressure p from Equation (6.19) we get after a rearrangement   

   1)/(1 00  nHpp            (6.23) 

The energy of gas increases during the compression from the volume V0 to V [8, 9]:  
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V0 and V are the volumes of the cushion before and after compression, and p0, p are 
the corresponding pressures. In common cases atmospheric pressure can be used 
for p0. For a fast event, exponent n = 1.4, usual for adiabatic process, may be used, 
or somewhat lower. The initial volume of the cushion of cylindrical shape with 
area S and height H0 is 

 V0 = S H0            (6.25)  

Energy Epot, given by Equation (6.24), was taken from the stopped body, and is 
only accumulated in the compressed gas. As soon as the maximum compression 
was attained, the stopped body would be returned back. However, suitable design 
can ensure that the gas will be drained out at the instant of stopping or very shortly 
after it, so that no rebounding occurs.    

Solution of equations (6.22)  (6.24) for design parameters p0, V0, S and energy Epot 
that should be accumulated (or dissipated) can give the volume in compressed state 
and the corresponding maximum pressure and braking force. Also it is possible to 
determine the cushion volume for the given energy and maximum permitted force.  

6.8  Hydraulic shock absorbers with constant force 
 

In the previous chapter the stopping was investigated for various parameters of the  
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braking device (a spring with linear characteristics, friction or viscous damping,  
etc.). Here, the case will be investigated with constant deceleration, ensured by a 
hydraulic damper. In this damper a moving piston presses the working fluid (oil, 
for example) through one or more openings of smaller cross section. Due to 
throttling effect, overpressure arises at the openings, which acts against the piston 
and causes the braking. Common vibration dampers use constant cross section of 
the openings. Since the pressure difference on a slot or opening is higher for higher 
velocity of the liquid, the braking force increases with the piston velocity. Such 
kind of damper is not suitable for braking or shock damping, as it gives nonlinear 
course of braking force with maximum value at the beginning of braking (Fig. 4.4).  

Constant deceleration is achieved if the cross section area of the throttling slot gets 
smaller during braking in such way, that even during the decreasing velocity of the 
piston the pressure of the working liquid is constant.  

Reduction of the cross section area can be either continuous (for example, the 
piston closes a specially shaped opening in the cylinder wall, Fig. 6.8a, or a 
specially shaped needle closes an opening in the front of the cylinder, Fig. 6.8b), or 
successive, where several slots in the cylinder wall are gradually closed by the 
moving piston (Fig. 6.8c) so that the area for the liquid flow becomes smaller. In 
the last case (Fig. 6.8c) the deceleration and braking force are not constant, but 
vary as the individual slots are successively closed. In the following paragraph the  

              

      a )           b )   c ) 

Fig. 6.8.  Hydraulic shock absorbers with constant deceleration.  
a) variable size of the opening in the wall,  b) a needle with variable 
diameter, c) series of slots of various distances in the wall.  
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arrangement according Figure 6.8a will be addressed.  

Continuous closing of the throttling opening 

If the throttling opening is short (e.g. in the bottom of the cylinder), turbulent flow 
arises here, and the pressure difference and also the pressure on the piston, is [13]: 

 
2

2
kv

p


  ;            (6.26) 

vk – flow velocity, 

 –  density of the liquid, 

 – loss factor; it depends on the viscosity, shape of the opening, flow rate and 
other factors. It is approximately constant for certain shock absorber. 

The velocity vk of the liquid in Eq. (6.26) can be expressed by piston velocity v as 

 vk = v Sp/S  ;             (6.27)  

Sp is the effective piston area, and S is the cross section area of the throttling 
opening. Considering that the piston velocity, cross section area of the opening, 
and also the pressure p can depend on the piston position x, one obtains  
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If the deceleration should be constant, ab = const., it must – with respect to formula  
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hold for the piston velocity:  

)/(12)( 0
2

0 bb xxvxavxv   ,        (6.30)  

where v0 is the velocity at the beginning of braking, and xb is the braking path. 

After expressing the braking force Fb by means of mass m and deceleration ab of 
the body, and pressure p of the liquid and the piston area Sp, 

 Fb = m ab = – p Sp  ,           (6.31) 

one obtains, after combination of Eqs (6.27) – (6.31), the following relationship of 
the cross section area of the opening and the piston position x [14, 15]: 
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where  

 mxSS bp /3
0             (6.33) 

is the total cross section of the opening at the beginning of braking. (The course of 
relative change of the cross section area, S(x)/S0, expressed by means of relative 
path of braking, x/xb, is the same for every damper with constant deceleration!) 

Equations (6.27) – (6.33), together with detailed analysis, reveal the following 
features of this kind of dampers: 

1. A body of mass m and initial velocity v0 will be stopped on the path xb at 
constant deceleration 
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the braking force is given by Eq. (6.31). Energy dissipated during braking is 

 
2

2
0mv

W    .            (6.35) 

2. If the actual mass m´ of the decelerated body is higher than that assumed mass 
m, the shock damper is not able to decelerate this mass sufficiently. The velocity 
decreases more slowly, so that the actual velocity at certain place is higher than the 
assumed one, and the braking force is also higher. The relative increase of the 
braking force grows during braking. On the other hand, with relatively small mass 
the velocity decreases faster, and the braking force is lower than initially assumed; 
however, the duration of stopping increases. The influence of changes of the mass 
can be eliminated by the change of the cross section of the throttling opening so as 
the equations (6.32) and (6.33) are fulfilled. 

3. If the actual initial velocity v0´ of the stopped body is higher than the initially  
assumed, v0, the course of velocity during braking will be similar, and the actual 
velocities will be all the time higher in the ratio v0´/v0; the duration of stopping will 
be shorter in the same ratio. The deceleration and braking forces will be higher in 
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the ratio (v0´/v0)
2. The influence of the change of initial velocity can be eliminated 

by the change of braking path so that the relationship (6.30) is retained. 

Hydraulic shock absorbers can be used repeatedly. Therefore they are used in 
various machines or appliances for manipulation, especially if the motion of heavy 
objects should be damped, for example the moulds in glass forming machines. In 
such cases it is necessary to monitor the dissipated power and check whether the 
generated heat can be transferred away in a natural way, or to propose suitable 
cooling of the working liquid. The mean power of the damper is calculated as    

 
durationcycle

cycleworkoneindissipatedenergy
Pstř                (6.36) 

The theory of hydraulic impact absorbers with constant deceleration is described in 
more detail in [14, 15], and also the absorber with a series of slots in the cylinder 
wall, which are gradually closed by the piston. Information on some commercial 
hydraulic shock absorbers can be found, for example, in [16, 17]. 

Further commercial impact dampers and energy obsorbers are described in [18]  
[20]. Today, computer simulations of demanding problems are used more and 
more. For example, information on programs for simulations of collisions (e.g. at 

crash tests) can be found in [21  23], some videosimulations are in [24  26]. (All 
these cases correspond to the situation on the web as of May 2018.)   
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7. Vibrations and mitigation of their effects  

Rotational and other periodical movements are sources of parasitic loads in motors, 
machines and other devices. In imperfectly balanced equipment it is manifested by 
vibrations and forces transmitted to the foundations or adjacent bodies. Here it will 
be shown what these vibrations and forces depend on and how they can be 
mitigated. At first, basic concepts will be reminded; more details can be found in [1 

 7]. Vibration of bodies is possible thanks to two properties: elasticity and inertia. 
If an elastic body is loaded, it is deformed. After the load is released, it returns to 
the initial state. Due to inertia, overshooting in the opposite direction usually 

follows, again a return, etc.  the body starts vibrating. If no external forces act, 
one speaks of free vibrations. However, such movement is usually damped and 
ceases after a while. Without damping, oscillatory movement would continue 

without any limitations. Often, the vibrations are forced  for example by a motor 
or by movement of the equipment. 

In this chapter, free undamped and damped vibrations will be discussed first 
(Chapters 7.1 and 7.2). Chapter 7.3 is devoted to forced vibrations, and Chapter 7.4 
deals with the transmission of forces from the vibrating body to the foundations. 
Then, kinematic excitation will be explained, which sometimes appears in transport 
means. Chapters 7.6, 7.7 and 7.8 are devoted to the transverse vibrations of beams 
and shafts, circular vibrations, and to the case where the centre of gravity lies not at 
the axis of rotation, but has some eccentricity. Problems of balancing are also 
mentioned briefly. Chapter 7.9 is devoted to energies in vibrating systems, chapter 
7.10 explains the function of dynamic absorbers of vibrations, and chapter 7.11 
explains briefly vibrations in systems with several degrees of freedom.    

7.1  Free vibration without damping 

The simplest case is represented by a body joined with a spring (Fig. 7.1). The 
word spring denotes here any elastic body, which starts vibrating after being 
deflected from undeformed state and released. Various beams and shafts belong to 
this category. The vibration is called free if no external force acts on the body.      
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Figure 7.1.  Free vibration. 

If the body is small compared to the spring dimensions, and its mass is big, we can 
speak of a mass point. The corresponding motion equation is:  

 m  + kx = 0  ;              (7.1) 

m is the mass of the body (kg), x is its path (m), and k is the spring stiffness, 
expressing the force needed for unit deformation (N/m). The dot above the symbol 
denotes the derivative with respect to time, dx/dt, two dots mean the second 
derivative, d2x/dt2. Division of Eq. (7.1) by the mass m gives differential equation:  

  + 2x = 0  ;              (7.2) 

 is the natural circular frequency (angular velocity) of the vibrating movement 

(s1), determined as   

m

k
  ,              (7.3) 

and related with the frequency of vibrations f as follows  

  = 2f  .              (7.4) 

The solution of Equation (7.2) is: 

 x(t) = A sin(t) + B cos (t) ,   resp.   x(t) = C sin(t + 0) .        (7.5) 

A and B, or C and 0 are constants that can be determined from initial conditions. C 

means the amplitude of vibrations, and 0 is the angle corresponding to the position 
of the material point at time t = 0. 

REMARK. The spring was considered as immaterial. In fact, it has also some 
mass, which influences the natural frequency of the system.  This influence can be 
considered (in the determination of natural frequency) by adding certain part of this 
mass to the mass of the vibrating body; for example one third for a helical spring.  
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7.2  Free vibration with damping 

Motion is often hindered by some resistance, for example by friction or viscous 
damping. Here we shall look at vibrating movement with damping force 
proportional to the velocity (Figure 7.2), as usuall with hydraulic dampers. The 
motion equation is    

 m  + b  + kx = 0 .             (7.6) 

Constant b (Ns/m) expresses the resistence corresponding to unit velocity. Division 
of Eq. (7.6) by the mass m gives the equation  

  + 2N  + 2x = 0 ;             (7.7) 

 is the circular frequency, defined in Equation (7.3), and  

 b/(2m)               (7.8) 

is the coeficient of damping (s1). Number 2 in the denominator is for formal 
reason. 

       

 

x, x´,x´´ 

m k 

b 

 

   Figure 7.2. Free vibration with damping. 

The form of solution of differential equation (7.6) depends on the magnitude of 
constants m, b and k, and thus also on the damping. The solutions of this equation 
for three various cases were described in Chapter (4.2). Here, undercritical 
damping will be discussed first, where the movement can be described as follows  

x(t) = C eN t sin (1t + 0) .             (7.9)  

It is also oscillatory movement, but with the amplitude decreasing in exponential 
way (Fig. 7.3). Circular frequency of the damped system is 
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 1  = 222 1   N ,         (7.10) 

where 

     


 N
               (7.11) 

is damping ratio (relative damping). Vibration for  < 1 is thus somewhat slower 

than undamped vibration for the same parameters m and k, more for higher ratio . 

The case  = 1 corresponds to critical damping, where the deflected body returns 

only to the initial position.  > 1 pertains to overdamping, also without vibration, 
but with faster attenuation. 

 

t

x
x = Ce-Nt sin( 1t)

 

   Figure  7.3. Free vibration with damping. 

7.3  Forced vibration 

This is a very common case. The pricipal features will be shown on an elastic, or 

elastically supported body, exposed to the action of harmonic force F0 sin(t). 
Also damping proportional to the velocity is present (Fig. 7.4).  is the circular 
frequency of the driving force (= excitation frequency). The motion equation is 

m  + b  + kx = F0 sin(t).          (7.12) 

Its division by the mass m yields the following equation for the displacement:   

 + 2N + 2x = ap sin(t + p) ,         (7.13) 

where  
ap = F0/m            (7.14) 
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is the amplitude of acceleration in forced vibrations, and  is the natural circular 
frequency  of the  free undamped vibrations,  given by Equation  (7.3).  Differential  

     

 

x, x´,x´´ 

m k 

b 
F sin(t) 

 

            Figure 7.4.  Forced vibration.  

Equation (7.13) is nonhomogeneous (with right side). Its solution is obtained as a 
sum of the solution xh of homogeneous equation (7.7) without right side, and the 
so-called particular integral xp: 

 x = xh + xp .            (7.15) 

The solution of homogeneous equation is the same as for free vibration.  For  <1,  

xh(t) = C eN t sin (t + 0) .          (7.16)  

Particular integral xp is a function that conforms to Eq. (7.13). A suitable 
expression is  

xp(t) = r sin(t + p) .            (7.17)  

After inserting Equation (7.17) and its derivatives into (7.13) one obtains [1]: 

       
22222222 )2()1(

1

)2()(

1

 
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N
ar  ,        (7.18) 

 
2




mk

b
arctgp    .          (7.19) 

In these expressions, damping ratio , defined by Eq. (7.11), is used and also 

tuning factor , defined as the ratio of exciting frequency to the natural frequency 
of the undamped system:    

   = /            (7.20) 
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If the exciting frequency  is the same as natural frequency , the system is in 
resonance.  

The resultant complete solution of Equation (7.13) is    

   x(t) = C eNt sin (t + 0) +  r sin(t + p)  ,         (7.21) 

where C is a constant. Regardless the intensity of damping, the first component 

(with the term eN t), representing transient phenomena, disappears during some 
time. Then, only the stationary component remains   

 x(t) = r sin(t + p) ,            (7.22) 

which describes the forced stationary vibrations. These are usually decisive for 

behaviour of machinery appliances. Amplitude r and phase shift p of stationary 
component are important for the evaluation of forced vibrations. It is useful to 

introduce the relative amplitude  as the ratio of the amplitude r and static 
deformation rst corresponding to the amplitude F0 of exciting force: 

  = r/rst  , kde   rst = F0/k .          (7.23)  

It can be proven that 

 
222 )2()1(

1





  ,                 (7.24)  

where  is relative damping. Another useful quantity is phase shift  expressing 
the delay between the exciting force and the deflection of the vibrating mass: 

   = P – x =  arctg
21

2





 .          (7.25) 

Both quantities,  and , are functions of tuning  and relative damping . Their 
courses are depicted in Figures 7.5 and 7.6. The dependence of the amplitude of 
forced vibrations on frequency, Fig. 7.5, is called amplitude charakteristics or 

resonance curve, and the dependence of phase shift on , Fig. 7.6, is called phase 
charakteristics. Both diagrams illustrate well the importance of resonant 
frequency. We see that if the exciting frequency approaches to the resonant 

frequency (  , resp.  1), the amplitude of non-damped vibration ( = 0) 
grows to infinity. Equation (7.24), adapted for non-damped vibration, changes to: 
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   = 1/(1 – 2) ,           tg  = 0  (pro  1)        (7.26) 

0

1

2

3

4

0 0,5 1 1,5 2


  = 0 

0,5 

0,2 

0,7 

  = 1 



 

    Figure 7.5.   Resonance curve (relative amplitude  of forced vibration as   

    a function of the ratio   of exciting  frequency  and natural frequency ). 

 – relat.ampl.(= r/rs,),  – tuning factor (= /), – relative damping (= N/). 

With  = 1, resp. at   , one speaks of resonancy, and  ∞. However, 
infinitely large amplitude is only a hypothetical case. In reality, beginning from 
certain magnitude, deviations from linear dependency of deflection on force 
appear. On the other hand, intensive vibrations can make a proper operation of the 
object impossible, or even cause its damage or destruction, tearing-off of the 
foundation and other damages. They are thus very dangerous, and effort must be 
made so that the operation revolutions or frequency of a machine are sufficiently 
far from the resonant ones. Fortunately, even if the true revolutions were at certain 
instant the same as the resonant ones, the destruction does not occur 
instantaneously. If Equation (7.13) is adapted for non-damped case, that is  

 + 2x = ap sin(t + p) ,          (7.27) 

the particular integral for  =   has the shape  

 xp(t) = r t sin(t + x) ,            (7.28) 

where  
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 r = ap/(2) ,   x = p – /2 .          (7.29) 

 

       Figure  7.6.  Phase characteristics (phase shift  of forced vibration as the 

       function of the ratio   of exciting  frequency  and natural frequency ). 

  – phase shift (o),  – tuning factor, – relative damping 

Euqation (7.28) says that in the resonance and with zero damping the amplitude 
increases proportionally with time t (Fig. 7.7). The operation revolutions or 
frequencies are often higher than the resonance ones. During the start of the 
machine in such case it is necessary to pass through the resonant speed as quickly 
as possible, so that the amplitude has not enough time to attain dangerous 
magnitude.    

REMARK. Everybody, who has observed an electric table grinder, has surely 
noticed that at certain instant after being switched-off, the grinding machine 
vibrates strongly for a short while. This is just when passing through the resonant 
frequency. After a while this behaviour ends, as the revolutions have dropped 
sufficiently away from the resonance.   

During resonance of an appliance without damping also the phase of vibrations 
changes suddenly in an ideal case (Fig. 7.6). This is obvious from Eq. (7.25). The 

angle  is positive for  < 1, but negative for  > 1. The relative amplitude  for    

 > 1 thus should be plotted in the negative half-plane, i.e. below the horizontal 
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axis. Because of a uniform way of plotting undamped and damped vibrations, also 

this case  is usually plotted in the positive half-plane. 

           

     Figure 7.7.  Gradual growth of vibrations at resonance. 

If damping is present in a body excited by a harmonic force, the amplitude during 
resonance will have only limited magnitude, and no change of phase occurs. With 
increasing damping, the amplitude becomes smaller, and the resonance occurs at 
lower exciting frequency, as it is obvious from Figure 7.5. The position of the peak 

of resonance curve can be found from the condition d/d = 0. If Equation (7.24) is 

differentiated with respect to  and the obtained expression is put equal zero, the 
following value of the tuning factor is obtained 

  p = 221  .           (7.30) 

Subscript „p“ means that it corresponds to the peak of the resonance curve. It 

follows from Eq. (7.30) that for relative damping  = 1/2 it holds p = 0, which 

means that the maximum lies in the origin of the coordinate system ( = 0). With 

more intensive damping ( > 1/2 = 0.7071), the resonance curve has no 
maximum, and the relative amplitude decreases continuously with increasing 

velocity. It holds that for  > 1/2 the amplitude of forced vibrations is always 
smaller than the deflection caused by static force of the same magnitude.  

The maximum relative deflection is  

 max = 1/[2(1 – 2)]  ,          (7.31) 
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which can be expressed for small damping approximately as 

 max  1/(2) .            (7.32) 

If the movement is damped in some way, the phase angle  between the exciting 

force and deflection is smaller than 180° for any frequency (Fig. 7.6). For  < 1 it 

is < /2, for >1 it is > /2. At resonance,  = /2.  

Let us look at one important thing in Fig. 7.5. The relative amplitude  below 

resonance for undamped movement ( = 0) is always larger than 1. Above the 

resonance,  > 1 only for the tuning factor  < 2. The absolute value of the 

relative amplitude for  > 2 is always lower than 1; this means that dynamic 
deflections will be smaller than the static ones. This is used in practice for 
reduction of deflections of vibrating bodies – it is sufficient if the operation 
revolutions of the machine are significantly higher than the resonant ones. The 
damping is not decisive in this case. However, damping helps to make the dynamic 
deflections smaller – but only them. It does not pertain to the transmission of forces 
to other parts, where its influence is negative, as it will be shown in the next part.  

7.4  Forces transmitted from the vibrating body to the frame or foundations                    

It is obvious from Figure 7.2 that the forces of the spring (S) and the damper (D) 
are transmitted to the foundations:  

 R  =  S + D  =  kx(t) + b (t)  .          (7.33) 

Both components vary with time. Considering only the stationary case, one obtains 

 x(t) = r sin(t + x)  , (t) =  r cos(t + x) .       (7.34) 

The total force, transmitted into the foundation, is  

 R(t) = R0 sin(t + R) ,           (7.35) 

where  

 R0 = r 222  bk , R = arctg (c/k) = arctg (2) .      (7.36) 

The amplitude of force transmitted into the frame or foundation can be rewritten as  
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The ratio of amplitude of the force transmitted to the frame and the excitation force 

is called transmission coefficient or transmission ratio R,  

 R =  R0/F0  ,            (7.38) 

and can be written as follows: 

 R = 
222
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
.          (7.39) 

The dependence of the transmission coefficient on the excitation frequency or 
tuning coefficient is shown in Figure 7.8. All curves pass through the coordinates 

R = 1,  = 2, regardless the magnitude  of damping. It is obvious from the 
picture that the elastic mounting of the vibrating mass reduces the force transmitted 
into the frame or foundation only if the exciting frequency is sufficiently high 

above the resonant frequency, that is for   > 2. We also see that for > 2 the 
damping makes the situaton worse, more for stronger damping. If the equipment 
will work sufficiently far from resonance, the best solution is without any damping.  
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Figure 7.8. Transmission coefficient R (= R0/F0) as function of exciting  

 frequency.  – tuning coefficient (= /),  – relative damping (=N/). 
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A practical conclusion from this section is: 

Minimisation of forces transmitted from a periodically working appliance into 
a frame or foundations is best if the exciting frequency is significantly higher 
than the natural frequency of this equipment.  

However, also a different solution exists, namely dynamic absorber of vibrations, 
which will be explained in Chapter 7.10.  

7.5  Vibration caused by kinematic excitation 

Until now, we assumed that vibrations are caused by harmonic force acting on an 
elastically supported body. However, a case can exist where a body is hanged on a 
spring, and periodic movement is enforced to the opposite end of this spring. 
Vehicles, going on a wavy road, belong to this category. Figure 7.9 shows the 
situation for a vehicle part pertaining to one wheel. The mass m rests on a spring, 
whose lower end is connected with a wheel (of zero mass, for simplicity), which 
goes on a wavy road. The mass had a tendency to vibrate by its own frequency f, 
but it is enforced to vibrate by the excitation frequency of the road. If the waviness 
has sinus-like course, the wheel makes (after the attenuation of transient 
phenomena) harmonic movement in vertical direction       

 y1 = a sin (t)  ;           (7.40)  

a is the height of a half-wave, t is time, and  is the angular velocity, related to the 
velocity v of the ride by the relationship   

  =  v / L ;            (7.41) 

L is the length of the half-wave of the unevenness (Fig. 7.9). The spring acts on the  

          
             Figure 7.9.  Kinematic exciting. A vehicle going on a wavy road. 
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body m by the force proportional to its compression y – y1, where y is vertical 
displacement of the body from equilibrium position. The motion equation of the 
body m (with respect to the absolute space x, y) is  

  m  + k(y – y1) = 0 .           (7.42)  

If y1 is expressed from Eq. (7.40), one obtains 

  + 2y = 2a sin (t) ;           (7.43) 

2 = k/m is the square of circular frequency of natural vibrations of the mass m on 
the spring k. Equation (7.43) is similar to Equation (7.27) and also has a similar 
solution. The magnitude of deflection of the mass from equilibrium position is  
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         (7.44) 

y0 is the amplitude of vertical movement in the absolute space.  

Equation (7.44) says that for very low velocities of a ride, and thus for low ratios of  

/, the motion of the mass m copies the road unevennesses. For exciting 

frequency , approaching the natural frequency of the body on a spring (= 

resonancy), the body will vibrate significantly. At high velocities, i.e. at >> , 
the amplitude of vibrations will approach to zero. The body is unable to react to 
quick changes and goes on the road relatively smoothly. However, it vibrates in the 
opposite phase to the exciting force. An example for illustration follows.  

Example. 
A wheel goes on a wavy horizontal road by constant velocity v (Fig. 7.9). 
Determine the amplitude of vertical vibrations of a body joined elastically with the 
axle at the velocity: a) v = 5 m/s, b) v = 20 m/s. 

The parameters are: mass of the body m = 100 kg, spring stiffness k = 19620 N/m 
(it corresponds to static deformation of the spring by the mass: ystat = mg/k = 
100×9.81/19620 = 0.050 m). The waviness of the road can be approximated by 
sinus function with amplitude a = 20 mm and the pitch of waves 2L = 2,0 m. 

Solution. Circular frequency of free oscillation  =(k/m) = (19620/100) = 14.01 

s1; the corresponding natural frequency of movement is f =  /(2) = 14.01/(2) = 
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2.229 Hz. Circular frequency of forced oscillation in the case (a) with velocity v = 

5.0 m/s is  =  v/L = ×5.0/1.0 = 15.708 s1. The corresponding frequency of 
vertical component of the movement is fv = 2.5 Hz. Inserting these values into Eq.  
(7.44) gives   
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ay = 0.078 m = 78 mm. 

In the case (b), with v = 20.0 m/s, the circular frequency of excitation will be  = 

62.83 s1, and amplitude of vertical vibration drops to y0 = 0,001 m = 1 mm. 

The exciting circular frequency  in both cases was higher than the natural circular 

frequency of free vibrations , so that the calculated values were negative. During 
slower ride the exciting frequency was near to the natural frequency, and the 
vibration amplitude was nearly four times larger than the amplitude of road waves. 
At higher velocity, the exciting frequency was four-and-half times higher than the 
natural one, and the amplitude of vertical oscillation dropped to a fraction of road 
waves amplitude. 
 

7.6  Transverse vibration of beams  

The situation can be illustrated on a thin elastic beam with an attached body, whose 
mass m is much higher than the mass of the beam (Fig. 7.10). The situation is thus 
similar to the material point on an immaterial spring according to Figure 7.1, and 
similarly, also Equation (7.3) holds, where 

 k = F / y            (7.45) 

is now bending stiffness of the beam, which corresponds to the force pertaining  

   

        Figure 7.10. Transverse vibration of a beam with a mass.  
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to the deflection of unit magnitude. For example, the deflection of a beam with the 
load in the middle of the span is [8]: 

 y = Fl3/(48EJ) ;            (7.46) 
l is the beam length, E is modulus of elasticity, and J is the moment of inertia of the 
cross section. Comparison of equations (7.45) and (7.46) gives 

 k = 48EJ /l3 ,            (7.47) 

so that the determination of the natural frequency is easy. Circular frequency of 

free vibrations  is given by Equation (7.3). If harmonic force 

 F(t) = F0 sin (t)            (7.48) 

acts permanently at the beam centre ( is its circular frequency), the beam, after 

attenuation of transient phenomena, will oscillate with circular frequency  and 
amplitude  

 y0 = F0 l
3/(48EJ)  .           (7.49) 

Angular velocity  is related to the frequency f of forced vibration as follows: 

  = 2f .            (7.50) 

The relationship of deflection and the excitation frequency can be seen in Equation 
(7.18) and Figure 7.5. The force transmission to the supports is given by Eq. (7.37) 
and Figure 7.8.  

Real beams have always some mass, which influences the natural frequency of 
vibrations of the system „beam + load“, as it was shown in the remark in Chapter 
7.2. As an example, a pedestrian bridge across the Thames in London (Millenium 
Bridge) can be named, which was brought to vibrations by pedestrian walking [14]. 
The problem became obvious after the footbridge was put into operation. The 
installation of additional dampers increased the total costs by 30%. 

The problems of beam vibration in complex cases, as well as vibration of other 
bodies go beyond the scope of this book, and the reader is adviced to special 

literature, e.g. [1  3]. Demanding technical problems (natural frequencies and 
normal modes of vibration of various bodies) are usually solved by the finite 
element method and the relevant software, mentioned at the end of Chapter 7.12.   
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7.7  Circular vibrations 

Let us investigate a rotating immaterial shaft with a disc of mass m in the middle of 
the span. The centre of gravity lies exactly on the axis connecting both bearings. If 
we shortly deflect the shaft (Fig. 7.11), centrifugal force Fo will act on the mass,  

 Fo = my2 ;            (7.51) 

y is the deflection, and  is angular velocity of rotation. This force is held by the 
bearings. If the rotor is in the middle of the span, each bearing transmits the force  
Fo/2. The deflection of the shaft is resisted by its bending stiffness k, expressed by 
Equation (7.47). Transverse force, needed for causing the deflection y, is 

 Fr = y k .       (7.52) 

             

 

L/2

m

L/2

y

 
Figure 7.11.  Circular vibration 

This force increases in direct proportion with the deflection y, while the centrifugal 
force grows with the square of angular velocity. At low velocities, the force for 
causing deflection y is higher than the centrifugal force, so that after passing the 
impulse that caused the deflection, the shaft becomes straight again. At some 
velocity, the centrifugal force is in equilibrium with the reaction force, the 
deflection is retained, and the shaft with the disc m rotates along a circle of radius 

yc. The corresponding angular velocity c, obtained from the equation of force 
equilibrium, Fo = Fr,c, is 

 c mk /  .             (7.53) 

This velocity is the same as the angular velocity  of free transverse vibration of a 
shaft with the load m. The deflected beam with the disc moves around the axis 
connecting both bearings. A circular vibration has arisen, which is stable at this 


F0 
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velocity. If the revolutions increase for some reason, the centrifugal force will be 
higher than the reaction force, the deflection starts increasing (and so also the 
centrifugal force), and this can lead to an accident.     

7.8  Rotation of a shaft with eccentric load 

The situation is depicted in Figure 7.12. At rest (Fig. A), the centroid of the body is 
at the distance e from the line connecting both bearings. If the shaft starts rotating, 

the body generates the centrifugal force, which causes the shaft deflection by . 

The centroid is at a distance y = e +  from the axis, so that the centrifugal force is  

 Fo = m(e + )2 .           (7.54) 

  

            
 
 
 
 
 
 
 
 
    Figure 7.12. Circular vibration of a beam with eccentric load. 
      A – at rest, B – at high velocities above the resonance. T - centre of gravity 

This force must have the same magnitude as the force needed to cause the 

deflection , that is Fr = kFrom their equality, 

 m e2 =  (k  m2) ,           (7.55) 

the following expression for the deflection follows:  
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It is obvious that rotation causes no deflection for zero eccentricity (e = 0). Now, 

we shall see how the deflection (for e  0) varies with the velocity of shaft rotation. 

If the angular frequency  of rotation is lower than the natural frequency  of 
transverse vibration of a shaft with a load, the deflection increases with increasing 
velocity, and for  →  it would grow above all limits. However, as soon as the 

velocity of rotation gets above this dangerous region,  > , the sign in Equation 
(7.56) is changed, and the deflection gets smaller with increasing velocity. For very 

high revolutions (Fig. 12B) the deflection approaches to e. The centre of gravity 
of the system is now nearer to the axis, connecting both bearings, than at rest. This 
is so-called self-centering of a shaft with a load.    

7.9 Balancing of rotating objects  

Different situation pertains to the case with a relatively stiff shaft. Electromotors, 
turbines, wheels of transport means and numerous machines for machining or 
processing. Even in home washing machines additional forces arise that load the 
bearings. The main source is the centrifugal force that arises if the centre of gravity 
of the rotating body does not lie exactly at the axis of rotation. This was discussed 
in the preceding section. Moreover, if the rotating mass is not distributed uniformly 
along this axis, higher reaction forces can appear due to additonal moments. If 
unfavourable forces should not appear, two conditions must be fulfilled:     

1. Centre of gravity must lie on the axis of rotation,  
2. Principal axis of inertia must coincide with the axis of rotation. 

Also it can be said that the static mass moments to the axis of rotation must equal 
zero, as well as the product moments of inertia to two planes formed by the axis of 
rotation and perpendicular one.   

These conditions are fulfilled if the body is balanced: 1) statically, and 2) 
dynamically. In fact, it is impossible to manufacture a perfectly balanced rotational 
body. Therefore, the bodies that should rotate by high velocity, must be balanced. 
(Note that dynamic effects increase with the square of angular velocity.) In 
balancing, a small mass is added (e.g. by welding or screwing) to the body which 
should be balanced, or, on the contrary, it is taken away (by grinding or drilling). 
Static balancing is easier. It can be done, for example, by laying the rotation body 
on two parallel horizontal bars („rules“) and observing its behaviour. Statically 
balanced body stops at any position. If it is not balanced, it starts rolling and stops 
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if its centroid is exactly below the rotation axis. Balancing is achieved by gradual 
removing material here, or adding some mass on the opposite side. However, even 
this is not always sufficient for avoiding additional forces in operation. For their 
complete elimination the body must also be balanced dynamically, so that its 
principal axis of inertia coincides with the axis of rotation. The purpose of 
dynamic balancing is the removal of moments caused by any unbalance. In this 
case material is added or taken away in two distant planes perpendicular to the axis 
of rotation so that the vibrations during the rotation of the body on elastic mounting 
are minimal. Dynamic balancing needs that the body rotates. If it is balanced 
dynamically, it is also balanced statically.             

Various equipment is used for balancing. The apparatus measures amplitudes and 
phases of vibration of a rotating body, or dynamic reactions. A suitable computer 

program evaluates the measurement and shows the unbalance (mr) corresponding 
to the centrifugal force at unit angular velocity, or it shows the necessary size of the 
additional mass and place for its fixing.  

A special way of balancing is used in spinning of modern home washing machines. 
They have acceleration sensor built in the drum bearing. The filled drum is first set 
turning at lower speed. If the measured unbalance is too high, the machine tries, 
using very slow rotation forward or back, to achieve better distribution of the 
washed things (without any external help). Usually one or several attempts are 
successful, and then the drum is accelerated to the full spinning velocity.  

More about balancing can be found, for example, in [9]. Information on some 

balancing machines are available on web pages of manufacturers, e.g. [10  13]. 

7.10  Energy in vibrating systems with damping 

If damping is present, achieved by friction or by flow of a viscous liquid, the 
supplemented energy is dissipated and changed into heat. In contrast to purely 
elastic vibration, where the response is practically instantaneous, so that the force 
and displacement are in phase, the displacement y during vibration with damping is 
delayed behind the force F (Figure 7.13). This is called hysteresis. 

We can assume sinus course of force F and displacement: 

 F(t) = F0 sin(t) ,           (7.57) 

x(t) = x0 sin(t –) .           (7.58) 
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             Figure 7.13.  Vibration with damping (hysteresis). 

The differential of work is 

 dW = F dx = F0 sin(t) x0  cos(t –) dt  ,        (7.59) 

and the work done during one period T = 2/ is 

 W =  F0 x0  sin(t) cos(t –) dt =  F0 x0 sin        (7.60) 

This work changes into heat. If the path is in phase with the force (purely elastic 

vibration, i.e.  = 0), sin  = 0 and no work is dissipated during one cycle.  

A good idea on the energy consumption in a loading cycle is obtained from the 
diagram in coordinate system „force – path“. In our case it is an ellipse with 
inclined axes (Fig. 7.14). The work done in one cycle is proportional to the area of 

this ellipse. If the path is in phase with the force ( = 0), the ellipse degenerates to 
an oblique line, and the work done in one cycle equals zero. The most energy is 

dissipated if the path is delayed behind the force by 90°, as sin  =1 in Eq.  (7.60). 

        

           Figure  7.14.   Hysteresis loop. 
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7.11  Dynamic absorber of vibrations 

Until now we investigated the situations where harmonic force acts on a resiliently 
mounted body. We have seen that if the frequency of the exciting force approaches 
to the resonant frequency of the system, the motion amplitude grows, and this 
could cause damage or destruction of the appliance. We have also shown three 
ways how to avoid this: 1) change of the exciting frequency (this is not always 
possible), 2) change of the stiffness of the mounting so that the natural frequency 
of the system is sufficiently far from the exciting frequency, or 3) addition of an 
additional damper, for example friction or hydraulic one. Here, the fourth solution 
using a dynamic absorber of vibrations will be shown. The basic idea is that a 
further body is attached elastically to the body, whose vibrations should be 
reduced. The exciting force acts on the first body. With suitable tuning only the 
second, attached body will vibrate, while the first one remains at rest. The theoretic 

explanation of this behaviour follows [1  3].         

The situation is depicted in Figure 7.15. The body, whose vibration should be 
eliminated, has subscript 1, and the dynamic absorber has subscript 2. This system 
has two degrees of freedom. For simplicity, we shall investigate a system without 
damping, formed only by inertial masses and forces of springs. The motion 
equations for both bodies are 

 m1 1 + k1x1 + k2(x1  x2) = F0 sin(t + p1)        (7.61) 

 m2 2 + k2(x2  x1) = 0           (7.62)  

This is a system of two differential equations. Equation (7.62), with zero on right 
side, is homogeneous, while Equation (7.61), with nonzero right side, is 
nonhomogeneous. The general solution is the sum of the solution of homogeneous 
equation and particular solution of the equation with right side. Here, we shall look  

       

 

m1 
k1 

F0 sin(t) 

m2 
k2 m1 

 

           Figure 7.15.  Dynamic absorber of vibrations. 
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at the particular solution, as only it corresponds to the steady state. This solution 
can be assumed in the form    

 x1 = A1 sin(t + p1) ,   x2 = A2 sin(t + p1) .        (7.63) 

After expressing x1 and x2 in equations (7.61) a (7.62) by means of expressions 

(7.63) and their derivatives, and after dividing the expressions by sin(t + p1) and 
considering that the second derivative of sinus is minus sinus, we get the following 
linear equations: 

A12m1 + k1A1 + k2(A1  A2)  F0 = 0         (7.64) 

A22m2 + k2(A2  A1)  = 0          (7.65) 

The solution of this system is 
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 A2 =  
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           (7.67) 

Let us look at the first expression. If the numerator of the fraction (7.66) equals 
zero, then the amplitude A1 equals zero. This means that body 1 will not vibrate at 
all ! This occurs, if 

 k2 / m2  =  2 ,    resp.    = (k2/m2) .         (7.68) 

In this case, the added mass 2 acts on mass 1 by the same force as the external 
exciting force, but in the opposite direction. The external force F and spring force 

k2(x1  x2) therefore eliminate mutually, and the movement x1 of mass 1 is zero. 
(However, body 2 vibrates!) Should this be achieved, the resonant frequency of 
free vibration of body 2 must be the same as the exciting frequency of force F0. 
This can be achieved by suitable choice of the mass m2 of body 2 and stiffness of 
spring k2.  

However, the situation is more complex. Dynamic absorber works well only at a 
certain frequency. Vibrations of body 1 are fully eliminated if the circular 
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frequency of excitation equals . The situation for other frequencies is worse. As it 
follows from a detailed analysis [2], two new regions of resonance appear, with 
pronounced vibrations, though significantly weaker than the vibrations of body 1 
without damping. If various exciting frequencies can appear in operation, an 
additional damping should be used, or the vibration absorber created as tunable.   

Dynamic absorbers of vibration are used not only in machines, but also in very 
small appliances or in very large structures. Two extreme examples can be named. 
The first one is vibrating hand shaver [4]. The other is the skyscraper  Taipei 101 in 
Taiwan; the vibration absorber is created as a steel ball of diameter over 5 m and 
mass 660 t (!), hanged on four thick steel ropes inside the skyscraper on the 88th 
floor [15]. This arrangement acts as a pendulum, which that has its own frequency.  

7.12  Vibration of systems with several degrees of freedom 

With the exception of dynamic absorbers, we have dealt with the behaviour of one 
body on a spring. Its position was described by one coordinate, and its motion in 
time by one differential equation. In such case one speaks of vibration with one 
degree of freedom. If two elastic bodies are somehow connected, their vibration is 
more complex. We have seen it at the dynamic absorber (Fig. 7.15), whose 
vibrations were described by two differential equations, (7.61) and (7.62); two 
resonance regions existed here and two natural (own) frequencies of free vibration. 
This was the case with two degrees of freedom. Here, the solution according to [2] 
will be shown, and then it will be generalised for more degrees of freedom. 

Euqations (7.61) and (7.62) have the folloving form for free vibration: 

m1 1 + k1x1 + k2(x1  x2) = 0          (7.69) 

 m2 2 + k2(x2  x1) = 0           (7.70)  

Now, we can introduce auxiliar constants a, b, c in the following way: 

 a = (k1+k2)/m1  ,  b =  k2/m1 ,  c = k2/m2 ,         (7.71) 

Equations (7.69) and (7.70) change with these constants to the following form 

 1 + ax1  bx2 = 0           (7.72) 

 2  cx1 + cx2 = 0           (7.73) 
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If we assume their solutions in the form     

 x1 = A1 sin(t + ) , x2 = A2 sin(t + ) ,        (7.74) 

and insert them with their second time-derivatives into (7.72) a (7.73), we obtain 
after a rearrangement  

    A1(a  2)    A2b       = 0          (7.75) 

 A1c  +  A2(c  2)  = 0          (7.76) 

This is a system of two equations with zero right side. The solution with non-zero 
amplitudes A1, A2 exists only if the determinant of the system equals zero, that is if   

 (a  2)( c  2)  bc = 0 ,          (7.77) 
or  

4  (a + c)2 + c(a  b) = 0 .           (7.78) 

This is equation of the fourth degree, but it can also be understood as a quadratic 

equation of the unknown 2. The roots of this equation are two: 
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The system with two degrees of freedom has two own circular frequencies, 1, 2. 
Similarly, cases with three and more degrees of freedom can exist, for example in 
vibration of beams, shafts and many other bodies, so that more natural frequencies 
can exist. (Generally: the number of eigenfrequencies is identical with the number 
of degrees of freedom of the system.) If cases with more degrees of freedom should 
be solved, writing of the individual equations according to the system (7.64) and 
(7.65) would be too complicated, and matrix algebra is used instead. A matrix is a 
set of numbers, arranged in certain way into rows and columns. Similar operations 
can be made with matrices as with numbers, for example addition or multiplication 
using formal rules of matrix algebra. The advantage is very simple and illustrative 
writing. For example, matrix form of Equations (7.61) and (7.62) is as follows: 

  m  + k y = F(t)  .           (7.80) 

This is similar to Equation (7.12) for one-dimensional case with a material point on 
a spring, without damping. The only difference is that now m represents the mass 
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matrix, y is the matrix of displacements, and  is the matrix of their second 

derivatives, k is the stiffness matrix, and F is the matrix of exciting forces. If 
damping is present, Equation (7.80) will contain also the matrix of damping b and 
matrix of velocities y´, similarly to Equation (7.12). The arrangement of the 
individual values in the matrices, and work with them, is a matter of particular 
computer program. The solution of vibrations with more degrees of freedom needs 
a computer and suitable software. Also the solution of equations in matrix form is a 
matter of software, and a common user does not need to know all details.    
If a body vibrates in diferent resonant frequencies, its characteristic shapes are 
different, and one speaks of the own (natural) shapes. Example of the first three 
own shapes of a beam on two supports is given in Figure 7.16.    

 
Figure 7.16. Beam on two supports, and three first own shapes   

Analysis of deformations or vibrations of bodies of complex shape is made today 
by the finite element method, FEM [16, 17]. With this method, the investigated 
body is divided into many simpler bodies, called finite elements, which are 
connected at nodes. An element can have form of a bar, beam, a small simple plate, 
shell, tetrahedron, or a brick, and they all together form a mesh. The unknown 
quantities are the displacements of the individual nodes. The components of 
displacements, forces and stresses at the individual points are expressed by means 
of matrices. The physical principle if solution is search of such values of node 
displacement, which correspond to the minimum total energy of the system, 
consisting of the strain energy of the body and the potential energy of all loads. In 
the final form, the problem is converted to the solution of very large systems of 
equations (from hundreds to millions). For this purpose, very powerful commercial 
FEM programs have been created for the analysis of various structures, including 
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the determination of stresses and deformations, as well as solution of dynamic 

problems and finding own frequencies and shapes. For more, see [18  21]. 

Information on commercial shock absorbers can be found in leaflets and brochures 
of manufacturers, such as [22, 23]. 
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8. Dimensional Analysis and Theory 
of Similarity  

In design of structures, machines and various appliances, including those for 
impact mitigation, dimensional analysis and theory of similarity are very useful, as 
they simplify experiments, spare experimental work and make the results more 
general. (This also holds for experiments performed via computers.) This chapter, 

based on works [1  4], shows various kinds of similarity and gives examples of 
non-dimensional quantities and instructions for their creation. 

8.1  Dimensional analysis  

Every physical quantity is described by a numerical value accompanied by a unit. 
The numerical value says how many times the considered quantity is larger than its 
unit. An example of length is 5.3 m, example of force is 25 N, of time is 15.6 ms. 
In addition to the fundamental units (meter, kilogram, second…), defined in the 
Système International (SI), also various derived units are used, as well as prefixes 

(, m, k, M…), denoting the order. 

Every equation, describing a physical phenomenon, must be dimensionally 
homogeneous: its left side must have the same dimension as the right side. The 
check of homogeneity should always be done before the first use of a newly 
derived formula. Such check also helps in formulating a correct relationship among 
the variables. Consider, for example, a formula for the deflection y of an elastic 
beam loaded by a force F. It is known from mechanics of materials that y will be 
directly proportional to F and indirectly proportional to the bending stiffness of the 
beam, defined as E×J, where E is the Young modulus of the material and J is the 
moment of inertia of the cross section. The deflection will also be proportional to 
some power S of the beam length L. Now, imagine that we do not know the 
exponent S. In such case we can write the basic form of the formula: 

 y = C×F×LS/(E×J) ;                          (8.1) 
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C is a non-dimensional constant. Replacement of the individual quantities in Eq. 
(8.1) by their units gives  

m = 1 × N × mS/(Nm2 × m4)  

The dimension of the right side must be the same as that of the left side, i.e. meter, 

or, generally, m1. The product of all terms containing m is mS×m2×m4 = mS+24 = 

mS2. Comparison of the exponents on the left and right side of the equation gives 1 

= S  2. From this it follows S = 3, so that y = C×F×L3/(EJ), a formula well known 
from mechanics. 

If one side of an equation is created by a sum of several terms, they all must have 
the same dimension. For example, vertical movement y of a body falling in 
gravitational field is described as 

y = y0 + v0t + ½ gt2              (8.2)  

t is time, y0 and v0 are the position and velocity of the body at t = 0, and g is the 
acceleration of gravity. The dimensional homogeneity demands that the individual 
quantities cannot exist in the physical equation independently, but only in groups 
of the same dimension. If Equation (8.2) is divided by one of the terms, for 
example y0, it changes to non-dimensional form 

 y/y0 = 1 + v0t/y0 + ½ gt2/y0                          (8.3)    

with normalised quantities y/y0, v0t/y0 and gt2/y0. 

Nearly every physical equation can be transformed to non-dimensional form. The 
use of normalised quantities has many advantages. Physical equations, expressed 
by means of non-dimensional variables, are more general than if they are expressed 
by dimensional quantities. The relative displacement, y/y0, does not depend simply 
on v0, t and y0, but only on their certain combinations, shown in Eq. (8.3). 
Dimensionless quantities thus enable one to combine the results of experiments 
made with specimens of various initial velocity and position, the only condition 
being their proper combination. (In the above case of a beam, combination of its 
size and material play a role.) Therefore, more data and a wider range of 
parameters can be used for the formulation of a certain law. The results expressed 
in non-dimensional form are also more universal, valid for the whole class of 
similar objects, with similar geometry or physical properties. Moreover – and this 
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is very important – the use of non-dimensional quantities can spare experimental 
work, because 

The relationship of N quantities, whose dimensions can be expressed by means 
of D basic dimensions, may usually be replaced by a relationship of only  

P  = N – D                           (8.4) 

dimensionless parameters  

According to this Buckingham theorem, the determination of fewer regression 
constants needs fewer experiments. The reduction of experimental work is 
significant especially if the investigated relationship contains many quantities and 
if the number of variables, N, is close to the number of basic dimensions, D. This 
can be illustrated on the previous example of a falling body. Equation (8.2) 
represents a relationship of 5 quantities: y, y0, v0, g and t; that is N = 5. These 
quantities can be expressed by means of two basic dimensions: meter and second; 
thus D = 2. According to Eq. (8.4), the number of non-dimensional parameters 

should be P = N  D = 5 – 2 = 3. And really, Equation (8.3) is the relationship of 3 
dimensionless parameters: y/y0, v0t/y0 and gt2/y0. The advantage of non-dimensional 
form will be more obvious from the next example. If the influence of six factors 
should be investigated, each on two levels (low and high), the number of necessary 
experiments would be 26 = 64. If the number of dimensionless factors were only 4, 
the number of necessary experiments drops to 24 = 16, i.e. to 25%! 

8.2  Similarity  

The use of non-dimensional quantities is also of prime importance in the study of 
behaviour of real objects by means of models. For example, building of a new large 
ship or a bridge is accompanied by many uncertainties, and the potential losses due 
to wrong design would be very high. Therefore, usually a smaller model is built 
first and tested. However, if the model should adequately reflect the behaviour of 
the actual structure, similarity between them must exist. There are various kinds of 
similarity, for example: 

Geometric similarity, which means identity of shape, equality of corresponding 
angles, and a constant proportionality between the corresponding dimensions (so-
called scale factor). The following relation holds: 

     Model dimension = Scale factor × Dimension of the real object 
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For example, a model of a building, made in the scale 1:20, has all dimensions 20-
times smaller than the real building.  

Static similarity means that the relative deformations of a model under constant 
stress are in the same proportion as the corresponding deformations of the object. 

Kinematic similarity is based on the ratio of the time proportionality between 
corresponding events in the model and the object. 

Dynamic similarity exists if the forces acting at corresponding times and locations 
in the model and object are in a fixed ratio. 

The theory of similarity works with so-called similarity numbers. Those, who 
have attended a college course of physics, know, for example, the Reynolds 
number (Re), which helps in assessing whether a flow of a liquid is laminar or 
turbulent. More examples are given at the end of this chapter. The similarity 
numbers are dimensionless. In fact, every non-dimensional quantity can serve as a 
similarity number. 

Dimensionless variables can be created in various ways. The simplest case is the 

ratio of some quantity to its characteristic value, for example x/x0 or x/x0 for 
distance or displacement. Well known in mechanics are: strain, defined as relative 

elongation ( = L/L), Poisson number  (the ratio of relative shortening in 
transverse direction to the relative elongation in the direction of stress action), or 
coefficient of friction f, defined as the ratio of the force, needed to slide a body 
along another body, and the normal force pressing both bodies together. Another 
example is the relative position of a point in a body, for example 

   = (x – xmin)/(xmax – xmin)                    (8.5) 

x, xmax and xmin represent the coordinates. Similarly it is possible to express time. 

Non-dimensional temperature,  = (T – T∞)/(T0 – T∞), is used for universal 
description of processes of heat transfer (T0 is the initial temperature and T∞ is the 
final temperature).  In this case also the position of the investigated place and the 
time can be in non-dimensional form. Formal procedures can be found in [1 – 4].  

Dimensionless must also be the arguments in mathematical functions of type sin, 
cos, log, exp. Otherwise any change of the units would change the numerical value 
of the result. Non-dimensional are also the arguments in probability distributions. 

For example, normal distribution uses the argument {½[(x – )/]2}, where  and 
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 are the mean value and standard deviation, respectively. However, the term in 
square brackets is nothing else than standardised variable, which expresses the 

distance of x from the mean value  as the multiple of standard deviation .  

NOTE: Non–dimensional quantities are used more often than we realise!  

8.3 Further recommendations 

1) Sometimes the form of a non-dimensional parameter does not correspond to our 
intentions or experimental possibilities. Generally, it is possible to create new 
parameters (or similarity numbers) by making a product or ratio of the original 
ones, or to change them by making their reciprocal or some power. As they are 
dimensionless, the new parameters obtained by such transformations will be 
dimensionless, too.   

2) If several quantities of the same dimension appear in one problem, it is also 
possible to create non-dimensional parameters directly as their ratios. This can 
reduce the number of arguments. This will be illustrated on an example of the 
deflection y of a beam with rectangular cross section (w × h) and length L loaded 
by a point force F. The modulus of elasticity is E. The variables and their 
dimensions are: y(m), w(m), h(m), L(m), F(N), E(Nm–2); that is 6 variables with 2 
dimensions. The number of non-dimensional parameters needed for the description 
of the problem is F = N – D = 6 – 2 = 4. We can immediately create three 

parameters 1 = y/h, 2 = b/h and 3 = L/h. Two quantities remain (F and E), 
which must be contained in the fourth parameter. With respect to their dimensions 
and the condition of non-dimensionality also one geometric quantity must be 

included in 4, for example h or its power. We obtain this parameter as 4 = 
F/(Eh2). The studied relationship can thus be written in the following non-
dimensional form: 

 y/h = f [F/(Eh2), L/h, w/h]                         (8.6) 

One should remember that not the individual quantities L or F, etc. are important 
for the study of relative deflection y/h, but their ratios.  

3) In some problems always non-dimensional quantities appear. Examples are 

coefficient of friction, Poisson number  for lateral contraction, or angle  (rad). 
These quantities automatically become arguments in the dimensionless 
relationships.     
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4) When creating dimensionless parameters, one can use the existing knowledge on 
the investigated or similar problem. For example, we may know that the deflection 
of an elastic beam is directly proportional to the load and indirectly to the modulus 
of elasticity. Sometimes, analytical solution is known for very small or very large 
values of certain variable. This can help in searching for a proper form of the 
arguments. Sometimes it is known that some quantities must appear in certain 
combination. This combination can be considered as a new variable, which can 
enable reduction of the total number of variables. Consider, for example, force 
acting in the contact area of two bodies. If friction should be investigated, the force 
F (N) and contact area A (m2) can be replaced by contact pressure p = F/A (N/m2). 

5) When an experiment should be prepared, it is necessary to include all quantities, 
which can play a role. Otherwise wrong and misleading results can be obtained. It 
is less dangerous to include a quantity, whose importance is uncertain (and, 
perhaps, it appears later that it may be omitted), than to omit a quantity, which 
could later be found as important. The use of dimensional analysis sometimes 
reveals serious shortcomings. For example, if some dimension appears only at one 
quantity, this quantity falls out and will not be included in any non-dimensional 
parameter. However, if this quantity is obviously necessary for the description of 
the investigated phenomenon, it is necessary to add another quantity having the 
same dimension. This can be illustrated on a study of wear rate of a brake pad. The 
quantities playing a role are: wear rate w (m/s), velocity of mutual sliding v (m/s), 
and the pressure in the contact area p (N/m2). The non-dimensional parameter can 
be searched in general form 

 = wx1 xx2 px3.              (8.7)  

This expression can be rewritten by means of the dimensions of the individual 
quantities (m, s, N): 

[m]0 [s]0 [N]0 = [m×s–1]x1 × [m×s–1]x2 × [N×m–2]x3                    (8.8) 

The left side corresponds to non-dimensional notation. It follows from the 
condition of equality of exponents at the same base, N0 = Nx3, that x3 = 0. But it is 
well known from experiments that the wear rate does depend on the contact 
pressure p, so that x3 cannot equal 0. It is thus necessary to include one further 
quantity, which would also have the dimension Nm– 2. This could be, for example, 
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hardness H (Nm– 2), which characterises the resistance of the material. Now, the 
general form of the non-dimensional parameter is 

 = wx1 vx2 px3 H x4                      (8.9) 

From this expression, we can easily formulate the appropriate relationship of 
dimensionless parameters as w/v = f(p/H), and perform a series of experiments in 
order to find the appropriate form of the function f.   

8.4 Limitations of similarity principle 

The principle of similarity holds only under some conditions, and outside them it 
loses its validity. A good example is the transition from elastic to elastic-plastic 
deformations in components from ductile materials. If the stresses are lower than 
the yield strength, the deformations are elastic; linear relationship exists between 
stresses and strains, and the deformations and stresses caused by several loads can 
be calculated as the sum of deformations or stresses caused by the individual loads. 
However, the laws for elastic-plastic deforming are nonlinear and the situation in 
the particular case must be solved for all loads acting simultaneously. Another case 
is the strength dependence of brittle components on the size of loaded area or 
volume. Brittle fracture usually starts at a pre-existing weak point. Smaller size of 
the loaded area or volume means a lower probability of occurrence of a larger 
defect. A smaller defect can act as a starting point only at higher stress level. 
Therefore, very small objects are stronger. For similar reasons, also the fatigue 
limit of metal components increases with their decreasing size.  

Sometimes, the studied problem can simultaneously contain quantities that depend 
on different powers of another quantity. For example, the energy dissipated during 
fracture, is proportional to the fracture area (m2), while strain energy, accumulated 
in the body, is proportional to its volume (m3). If mitigation of impacts should be 
investigated on a model of different size, we must consider what is the main 
mechanism of the energy dissipation, consider whether both components are 
equally important, and – if possible – to neglect one of them.   

The processes during fast plastic deforming sometimes depend on strain rate. If we 
want to study the effect of impact load on a model of smaller dimensions (Lm) than 
the actual object (Lp), we must not forget that if the same strain rate should exist in 
both cases, different velocities of impact should be used, so that it holds 
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 v0m/v0p = Lm/Lp  ;           (8.10) 

the subscripts m and p denote the model and prototype. 
One must also have in mind that sometimes the investigated quantity changes with 
the changes of a certain parameter relatively slowly, but from its certain level it can 
change very quickly. The relationship, describing some behaviour or process, is 
often valid only within certain range of parameters. If the pertinent process is 
described by means of non-dimensional quantities, the conditions for a transition 
from one mode to another are characterised by a critical value of some of these 
quantities. A well-known example is the change from laminar to turbulent flow at 
the critical value of Reynolds number. One must therefore always consider all 
possible influences, and reduce their number only after a thorough analysis. 

8.5 Examples of dimensionless quantities 

Material properties 

E1/E2, H1/H2 ratio of elastic moduli or hardness; subscripts denote the     
components  

E(x)/E0, H(x)/H0  ratios as above, subscript 0 denotes the characteristic     
value  

H/Y, E/Y, E/H  ratio of hardness and yield strength or elastic modulus 

/Y, /u, Y/u  ratio of stress to yield strength Y or ultimate strength u   

Geometry 

x/d x – distance, deformation  

l/L relative displacement or elongation, L – basic length 

Forces and stresses 

F/F0 ratio of load F and characteristic force 

m ratio of the stress   to the mean stress or pressure m  

Time 

t/t0 t0 – characteristic time (t. of load increase, stopping, etc.). 
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8.6 Examples of similarity numbers   

Important similarity numbers were given names of prominent scientists, and are 
denoted by the first two letters of the pertinent name. Some examples follow. 

Euler  Eu = p / ru2  ; p – pressure difference,  – density, u – 
characteristic velocity 

Fourier Fo = a/d2 ;   a – thermal diffusivity,  – time, d – characteristic 
dimension 

Froude Fr = u2/gd  ; u – characteristic velocity, g – acceleration of gravity, 
d – characteristic dimension  

Galilei Ga = gd3/2  ;  g – acceleration of gravity, d – characteristic 

dimension, – kinematic viscosity 

Nusselt Nu = d/ ;   – coefficient of heat transfer, d – characteristic 

dimension,  – coefficient of thermal conductivity of the 
surrounding medium  

Péclet  Pe = ud/a ;   u – velocity, d – characteristic dimension, a – thermal 
diffusivity 

Prandtl  Pr =  /a  ;  – kinematic viscosity, a  – thermal diffusivity 

Reynolds Re = ud  = ud/ ;   u – characteristic velocity, d – characteristic 

dimension,  – density of the liquid,  – dynamic viscosity, 

/= kinematic viscosity 

Stokes  Stk = ut /d ;  u – velocity, t – relaxation time, d – characteristic 
dimension 
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