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Abstract. Intuitionistic fuzzy inference systems (IFISs) incorporate imprecision 

in the construction of membership functions present in fuzzy inference systems. 

In this paper we design intuitionistic neuro-fuzzy networks to adapt the anteced-

ent and consequent parameters of IFISs. We also propose a mean of maximum 

defuzzification method for a class of Takagi-Sugeno IFISs and this method is 

compared with the basic defuzzification distribution operator. On both real-life 

credit scoring data and seven benchmark regression datasets we show that the 

intuitionistic neuro-fuzzy network trained with particle swarm optimization out-

performs traditional ANFIS methods (hybrid and backpropagation) and ANFIS 

trained with evolutionary algorithms (genetic algorithm and particle swarm opti-

mization), respectively. A set of nonparametric tests for multiple datasets is per-

formed to demonstrate statistical differences between the algorithms. In the task 

of adapting the intuitionistic neuro-fuzzy network, we show that particle swarm 

optimization provides a higher prediction accuracy compared with traditional al-

gorithms based on gradient descent or least-squares estimation. 

Keywords: ANFIS, intuitionistic fuzzy sets, intuitionistic fuzzy inference sys-

tems of Takagi-Sugeno type, intuitionistic neuro-fuzzy network, defuzzification 

method, particle swarm optimization. 

1 Introduction 

Fuzzy inference systems (FISs) are one of the most widely used tools to model highly 

nonlinear systems with uncertainty. By incorporating imprecision into the models, FISs 

have provided good generalization performance in various applications. In addition, 

using linguistic terms makes the models descriptive and interpretable in their respective 

domains. However, determining the precise membership functions (both in antecedents 

and consequents of if-then rules) is problematic due to uncertainties associated with 

linguistic terms, disagreement among experts, or noise in the data (Liang and Mendel 

2000; Hagras and Wagner 2012). Therefore, researchers and practitioners call for addi-

tional freedom in the design of membership functions, making it possible to minimize 

the effects of the mentioned uncertainties (Zarandi et al. 2009). As a result, two main 

categories of FIS generalizations have been proposed, interval-valued FISs (Mendel 

2006) and intuitionistic FISs (Olej and Hájek 2010; Olej and Hájek 2011; Hájek and 
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Olej 2012; Hájek and Olej 2014). Currently, algorithms are being developed to optimize 

additional uncertainty in FISs’ parameters. 

Neuro-fuzzy networks have shown the ability to model non-linear systems at high 

accuracy, representing an implementation of FIS to adaptive networks for developing 

fuzzy if-then rules with suitable membership functions (Kasabov 2015; Demertzis et 

al. 2016). For example, ANFIS (Shing and Jang 1993; Loganathan and Girija 2013) 

identifies a set of parameters through several learning rules: gradient descent algorithm, 

hybrid algorithm (combining back-propagation gradient descent and least-squares 

method), and Kalman filter.  

The concept of intuitionistic fuzzy sets (IF-sets) (Atanassov 1986; Atanassov 1999) 

was developed as an alternative approach to define a fuzzy set in cases where available 

information is not sufficient for the definition of an imprecise concept by means of a 

conventional fuzzy set, but the concept can be more naturally approached by separately 

envisaging positive and negative instances (Dubois and Prade 2005). As a result, 

loosely related membership and non-membership functions can be defined in intuition-

istic FISs (IFISs). This approach has been preferred in various application domains such 

as control (Akram et al. 2014), time series analysis (Castilo et al. 2007), air pollution 

prediction (Olej and Hájek 2010), or bankruptcy forecasting (Hájek and Olej 2014). 

However, these applications raised several questions regarding the adaptation of IFISs, 

most noticeably (1) which algorithms are effective for setting and fine-tuning the pa-

rameters of the IFISs and (2) how to defuzzify the IF-sets. This paper seeks to address 

the questions in the following way: (1) an intuitionistic neuro-fuzzy network (INFN) 

with evolutionary adaptation is developed to optimize the antecedent and consequent 

parameters of the IFIS, and (2) the mean of maximum (MOM) defuzzification method 

is proposed for a class of Takagi-Sugeno IFISs. The antecedent and consequent param-

eters of the IFIS are adapted using particle swarm optimization (PSO) as evolutionary 

algorithms have shown promising results in FIS adaptation (Angelov 2012; Maciel et 

al. 2012; Henzgen et al. 2014). 

As an application, we first investigate whether INFNs with evolutionary adaptation 

can be effectively employed in credit scoring. Credit scoring has become an important 

application domain of soft computing because it is based on a group of expert decision 

makers and, moreover, the determinants of credit scoring and their weight are associ-

ated with a high degree of uncertainty (Hájek 2012). In the second set of experiments, 

we investigate the effectiveness of the INFNs with evolutionary adaptation on several 

benchmark regression datasets. We also perform statistical analyses of the results to 

show the dominance of the proposed method over the ANFIS trained with traditional 

algorithms. 

The remainder of this paper has been organized in the following way. Section 2 pre-

sents the design of INFN which is based on the IFIS of a first-order Takagi-Sugeno 

type. Section 3 provides an overview of defuzzification methods for this class of sys-

tems. Section 4 presents methods for adapting the parameters of INFNs. Section 5 de-

scribes the credit scoring dataset and the preprocessing of input textual data. In this 

section, we also briefly introduce the benchmark datasets used for the comparative sta-

tistical analysis of prediction performance. Section 6 presents the results of experiments 

in terms of RMSE, comparing the performance of the INFN and ANFIS adapted with 
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various learning algorithms and defuzzification methods. Section 7 concludes the paper 

and discusses possible future research directions. 

2 Intuitionistic Neuro-Fuzzy Network 

Let a set X be a non-empty set. An IF-set A in X is an object having the form 

A{x,(x),(x)xX}, where the function :X[0,1] defines the degree of mem-

bership function (x) and the function :X[0,1] defines the degree of non-mem-

bership function (x), respectively, of the element xX to the set A, AX. For every 

xX, 0(x)(x)xX must hold (Atanassov 1986; Atanassov 1999). The 

amount (x)((x)(x)) is called the hesitation part (intuitionistic index, IF-

index) and represents a measure of non-determinacy. 

In the IFIS of a first-order Takagi-Sugeno type (Olej and Hájek 2011), the k-th if-

then rule Rk, k=1,2, ... ,N, is defined as follows 

Rk: if x1 is A1,k AND x2 is A2,k
 AND ... AND xi is Ai,k AND ... AND xn is An,k 

then yk=f(x1,x2, ... ,xn)=a0,k+a1,kx1+a2,kx2+ ... +ai,kxi+ ... +an,kxn, (1) 

where A1,k,A2,k, ... ,Ai,k, ... ,An,k represent IF-sets and yk is the output of the k-th rule 

represented by a linear combination of inputs x1,x2, ... ,xn. The firing weight of each if-

then rule is obtained using the application of t-norm operators, see (Hájek and Olej 2012) 

for an overview. The final defuzzified output is usually calculated as the weighted aver-

age of each if-then rule’s output. 

The design of INFN is based on the ANFIS model. Typically, there exist six layers 

in this model (Fig. I). 
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Fig. I INFN model 

Layer 1: This first layer is the input layer of the INFN. Neurons in this layer transmit the 

external crisp input to the next layer. Namely, x1,x2, ... ,xn are the inputs and y1
1,y1

2, … 

,y1
n are the outputs of the neurons in the first layer. 

 

Layer 2: Neurons in the second layer represent antecedent IF-sets of if-then rules. Here, 

a fuzzification neuron receives an input and determines the degree to which this signal 

belongs to the neuron’s IF-set. In this case, linguistic variables A
1,k,A

2,k, ... ,A
i,k, ... 

,A
n,k and A

1,k,A
2,k, ... ,A

i,k, ... ,A
n,k determine membership functions x1x2, … 

,xn and non-membership functions x1x2, … ,xn respectively, where for ex-

ample x1x1(x1), and x1x1(x1). 

If we have xi
2

 be the input and yi
2
 be the output signal of neuron i in the second layer, 

then we have yi
2= f2(xi

2), yi
2= f2(xi

2), where f2 represents the activation function of 

neuron i, and is set to certain membership function x) and non-membership function 

(x), usually Gaussian, bell, triangular, or trapezoidal. For example, Gaussian member-

ship and non-membership functions can be defined as follows 

xaxexbxxbxaxe (2) 
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where  =(xb222 and a(x) is the IF-index of center, and b(x) is the IF-index of 

variance. Parameters b, , a(x), and b(x) are premise parameters. 

 

Layer 3: Each neuron in the third layer corresponds to an if-then rule of the first-order 

Takagi-Sugeno type IFIS. An if-then rule neuron receives signals from the fuzzification 

neurons (involved in the antecedents of the if-then rule) and computes the firing weight 

of the if-then rule in the following way. Let w
k and w

k be firing weights which are 

computed using Gödel t-norm (Klement et al. 2004; Deschrijver et al. 2004; Barrenchea 

2009) 

w
k 

Nk 1,2,...,
MIN


x1x2xn, w
k 

Nk 1,2,...,
MAX


x1x2xn. (3) 

Then, if we have xi
3

 be the input and yi
3
 be the output signal of neuron i in the third 

layer, then we have yi
3=f3(xi

3), yi
3= f3(xi

3), where f3 represents the MAX (MIN) op-

erators of neuron i, and we obtain yi
3=(w1

,w2
, … ,wN

) and yi
3=(w1

,w2
, … ,wN

). 

 

Layer 4: Neuron i in the fourth layer calculates the ratio of the i-th firing weight to the 

sum of all rules’ firing weights. For convenience, the outputs of this layer are so-called 

normalized firing weights of the corresponding if-then rule.  

If we have xi
4 be the input and yi

4 be the output signal of neuron i in the fourth layer, 

then we have yi
4=f4(xi

4) and yi
4= f4(xi

4), where f4 represents the normalized function 

of neuron i. Then, yi
4=(



1w ,


2w , … ,


Nw ) and yi
4= (


1w ,


2w , … , 


Nw ) are nor-

malized values. 

 

Layer 5: The fifth layer, the fourth hidden layer, represents consequent parameters. 

Each neuron in this layer is connected to the if-then rule neurons in the fourth layer. A 

neuron in the fifth layer computes the weighted consequent value of a given rule in the 

following way 

yi
5=xi

5(x1,x2, ... ,xn)= xi
5(a0,k + a1,kx1 + a2,kx2 + ... + ai,kxi + ... + an,kxn), (4) 

where xi
5 is the input and yi

5
 is the output signal of neuron i in the fourth layer and 

a0,k,a1,k,a2,k, ... ,an,k, is a set of consequent parameters. 

 

Layer 6: The sixth layer is both the output layer and the defuzzification layer. There is 

only one neuron in the layer, which calculates the weighted average of outputs of all 

neurons in the fifth layer and consequently produces the defuzzified output yIF_WA.  

3 Defuzzification Methods in Intuitionistic Neuro-Fuzzy 

Network 

In related literature, several defuzzification methods have been proposed for Mamdani 

type IFIS (Angelov 1995; Angelov 2001; Hájek and Olej 2014) such as center of area 

(IF_COA), basic defuzzification distribution operator (IF_BADD), and mean of maxi-

mum (IF_MOM). IF_COA and IF_BADD have recently been adjusted to Takagi-
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Sugeno type IFISs (Hájek and Olej 2014). Here, we present an overview of the defuzz-

ification methods and, in addition, we propose the IF_MOM method based on the 

weighted average and weighted sum defined by Angelov (1995). 

Let w
k and w

k be firing weights which are computed using Gödel t-norm (Klement 

et al. 2004; Deschrijver 2004; Barrenchea 2009). Then, when wk = w
kw

k, the 

weighted average IFWA1 and the weighted sum IFWS1 can be expressed as 

,
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kk ww . (5) 

For these operators it holds that yIFWA1yWA1 and yIFWS1yWS1 for w
k0. In that 

case, they can be defined as traditional weighted averages (WAs) or weighted sums 

(WSs) of all N if-then rules Rk as follows 
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The defuzzification methods IFWA1 and IFWS1 are defined based on the difference 

between the firing weights w
k and w

k, which have to be positive. The methods are 

analogical to the defuzzification method IF_COA proposed by Angelov (1995), as they 

provide all possible solutions in which the degree of acceptance is higher than the de-

gree of non-acceptance w
k > w

k. Analogically to IF_COA, they may average good and 

poor solutions since only the difference between the firing weights w
k and w

k matter. 

Further, IFWA2 and IFWS2 are defined by analogy to IF_BADD (Angelov 1995) 

as follows 
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kk ww . (7) 

For these operators it holds that yIFWA2 = yWA1 and yIFWS2 = yWS1 for w
k0, and 

yIFWA2 = yIFWA1 and yIFWS2 = yIFWS1 for α  For α the defuzzified outputs yIFWA2 

and yIFWS2 can be expressed in the following way 

N

y

y

N

k
k

 1
IFWA2 , 




N

k
kyy

1
IFWS2   (8) 
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Alternatively, the defuzzified outputs can be defined as the WA (WS) of if-then rules 

Rk maximizing the difference between w
k and w

k. Thus, the defuzzification methods 

can be defined by analogy to IF_MOM method proposed by Angelov (1995) as follows 

,
2

1
IFWA3

L

y

y

L
l

k

k

 




L

l
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k

yy

1
IFWS3 for α→∞,  

)}(max|{

kk

k
ll

l

k wwwwyy   .  (9) 

Hereinafter, we refer to IFWA1, IFWA2 and IFWA3 as COA, BADD and MOM, 

respectively. 

4 Methods for Adaptation in Intuitionistic Neuro-Fuzzy 

Network 

In the process of IFIS initialization, cluster centers are found to construct the num-

ber N of if-then rules and the antecedents of the if-then rules. This can be carried out 

automatically using a subtractive clustering algorithm (SCA) (Chiu 1994). In that case, 

the number of clusters c is equal to the number of membership (non-membership) func-

tions and, at the same time, to the number N of if-then rules. In the SCA, the potential 

Pk of data instance xk is defined as follows 




n

j
k

jk
eP

1

xx
, (10) 

where α=4/ra
2 and ra denotes the radius of influence. The radius of influence of a cluster 

is considered the most important parameter in establishing the number of cluster centers 

(and if-then rules). A large ra results in fewer clusters, whereas a small ra generates a 

large number of clusters and, thus, can lead to model over-fitting. The instance with the 

highest potential represents the cluster center of the first cluster. Then, an amount of 

potential from each data instance is subtracted as a function of its distance from the first 

cluster center 

,
*

1

2
*
1xx 


k

ePPP kk


 

(11) 

where x1
* is the center of the first cluster, P1

* is the potential of x1
*, and β=4/rb

2. The 

positive constant rb represents the radius defining the neighbourhood that will have 

measurable reductions in potential Pk. 

In accordance with (Shing and Jang 1993), the adaptation of INFN (premise and con-

sequent parameters) can be carried out, for example, using the following algorithms: (1) 

recursive LSE, where INFN is linearized w.r.t. the premise parameters, and extended 

Kalman filter is used to adapt all parameters (Jang 1991; Ramaswamy et al 1993; Wang 

1998, Simon 2002); (2) Kaczmarz algorithm (Kaczmarz 1993; Strohmer and Vershynin 
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2007); (3) gradient descent algorithm with one pass of least-squares estimate (LSE), 

where LSE is applied to obtain the initial values of the consequent parameters, (Chiu 

1994); and (4) PSO (Kennedy and Eberhart 1995; Shi and Eberhart 1998).  

Let each input vector xk
* be decomposed into two component vectors yk

* and yk
*, 

where yk
* contains first n elements of xk

* (input data) and yk
* contains the output com-

ponent. The output y is represented by a weighted average (weighted sum) of the output 

of each rule. Each cluster center xk
* is considered an if-then rule. For the IFIS of Takagi-

Sugeno type of the first order, i.e. f(x1,x2, ... ,xm) is a linear function, the yk
* can be 

calculated as follows 

yk
*=Gkyk+hk, (12) 

where Gk is a constant vector and hk is a constant. The estimation of the parameters of 

the given model can be understood as LSE in the form AX=B, where B is a matrix of 

output values, A is a constant matrix, and X is a matrix of parameters to be estimated. 

Let P be the set of linear parameters and X be an unknown vector whose elements 

are parameters in P. Then, we seek the optimal solution of X using a LSE X*. In this 

process, the squared error ||AX–B||2 is minimized. Recursive LSE can be used to com-

pute X* effectively in the case of a low number of linear parameters (Jang 1993). Let 

ai
T be the i-th input vector of matrix A and bi

T be the i-th element of B. Then X can be 

calculated as follows 

Xi+1=Xi+Si+1ai+1(bT
i+1–aT

i+1Xi), Si+1=1/λ[Si–(Siai+1aT
i+1Si)/(λ+aT

i+1Siai+1)], (13) 

where Si is the covariance matrix, λ is the forgetting factor (effect of old data decay), 

and X*=Xn. The initial conditions are X0=0 and S0=γI, where γ is a positive large num-

ber and I is the identity matrix. The LSE of X can be interpreted as the Kalman filter 

for the process (Jang 1991) 

X(k+1)=X(k), Y(k)=A(k)X(k)+e, (14) 

where e is noise, X(k)=Xk, Y(k)=bk and A(k)=ak. Therefore, the recursive LSE pre-

sented above is referred to as the Kalman filter algorithm. Another method used to 

compute the LSE X* is the Kaczmarz algorithm (Kaczmarz 1993) defined as follows 

k

k

T

k

T

kkk
kk a

aa

Xab
XX


1

. 
(15) 

Another possibility to adapt an IFIS is represented by gradient algorithms. Let the i-

th error be defined as Ei=(yi–oi)2, where yi is the actual output and oi is the predicted 

output. Then, the total error E is given as E=ΣEi. The derivative of the overall error 

measure E with respect to a generic parameter α is 











n

i

iEE

1 
. 

(16) 

The update formula for the generic parameter α is defined as 
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E

h
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(17) 

where η is the learning rate, h is the step size and the length of each gradient transition 

in the parameter space. The value of h can be changed to vary the speed of convergence. 

Some practical difficulties associated with gradient descent are slow convergence and 

ineffectiveness at finding a good solution (Simon 2002). To overcome these limitations, 

PSO can be used to optimize both the antecedent and consequent parameters of the 

INFN.  

PSO is a population based stochastic optimization method introduced by Kennedy 

and Eberhart (1995). Similar to other evolutionary computation methods like genetic 

algorithm (GA), the PSO is initialized with a population of random solutions (particles) 

in the search space. The PSO algorithm finds the global best solution (fitness) by ad-

justing the trajectory (velocity and position) of individual particle towards its best lo-

cation and towards the best particle of the entire population. In other words, all the 

population is taken as the topological neighbors of the individual particle, which thus 

reflects information obtained from all the particles in the swarm (Shi and Eberhart 

1998). 

For a particle moving in a multidimensional search space, let xi(t) denotes the posi-

tion of a particle i in search space, v i ( t )  denotes the velocity, and j is the dimension 

(the number of parameters to be optimized). Then the velocity and position of particle 

i can be calculated as 

)]()([)]()([)()1( ,,,22,,,11,, txtprctxtprctvtv jijgjjijijjiiji   , (18) 

)1()()1( ,,,  tvtxtx jijiji , (19) 

where ωi is the inertia weight for the i-th particle, c1 and c2 are constants (acceleration 

coefficients) used to scale the contribution of the cognitive and social components re-

spectively, r1,j and r2,j are uniformly distributed random numbers in the range [0,1], 

pi,j(t) is the best position of the i-th particle remembered, and pg,j(t) is the best swarm 

position. Inertia weight ωi provides a balance between global and local exploration and 

exploitation (Shi and Eberhart 1998). Linearly varying inertia weight ωi over the gen-

erations has performed well in previous studies owing to faster convergence. We there-

fore used a linearly decreasing varying inertia weight ωi(t+1)=δωi(t), where δ is the 

inertia weight damping ratio. The particle velocity at any instant is usually limited to 

vmax. 

In this study, we adopted the Pittsburgh approach known in the context of GA-based 

FISs, where each particle represents a full solution to the problem. In other words, each 

particle encodes a set of N if-then rules. The PSO was used to tune the parameters of 

both membership (non-membership) functions in the antecedent and the parameters of 

the linear functions in the consequent of the if-then rules. As a result, the dimension of 

a particle depends on both the problem’s domain (the length of if-then rules) and on the 
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number N of if-then rules, this is dimension d=N(4n+(n+1)). Fig. II depicts the encoding 

of if-then rules into a particle.  

 

 

Fig. II Coding if-then rules into a particle 

 

The position of each particle in the multidimensional search space changes depend-

ing on the particle’s fitness values and the fitness value of its neighbours. Here, the 

fitness function used to evaluate a particle was RMSE. 

Recently, PSO has been successfully applied to adapt FISs and their generalizations 

(Castillo and Melin 2012; Castillo et al. 2012; Chakravarty and Dash 2012) mainly due 

to its ability to quickly converge to an optimal solution and simplicity in adjusting PSO 

parameters.  

5 Datasets 

5.1 Credit Scoring Dataset 

Credit scoring reduces information asymmetry between borrowers (issuers) and lenders 

(investors) by providing assessment of the credit risk of the borrowers. As output credit 

scores, we used the ratings provided by Standard and Poor’s rating agency in 2011. We 

collected the ratings for 613 U.S. companies. The ratings AAA, AA+, AA, … ,C were 

transformed to credit scores 1,2,3, … ,21 (see Fig. III for their frequencies).  

Recently, it has been demonstrated that credit scoring prediction can be performed 

based on textual analysis of documents related to assessed companies (Hájek and Olej 

2013). Therefore, we first preprocessed textual data to obtain inputs to INFN and then 

we trained INFN to accurately predict the corresponding credit score. As a source of 

input data, we used the annual reports of the companies, which are freely available on 

the U.S. Securities and Exchange Commission EDGAR System (www.sec.gov/edgar. 

shtml). Specifically, we used only the Management Discussion and Analysis section of 

the annual reports, where management discusses past and present corporate perfor-

mance. The textual part of the annual reports is considered as an important indicator of 

future financial performance (Hájek and Olej 2013). 

http://www.sec.gov/edgar
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Fig. III Frequencies of corporate credit scores in the dataset 

First, we preprocessed the documents using tokenization and lemmatization. Thus, 

potential term candidates were obtained. Second, the term candidates were compared 

with the positive (354 terms) and negative terms (2349 terms) developed specifically 

for financial domain (Loughran and McDonald 2011). Third, the tf.idf (term frequency–

inverse document frequency) term weighting scheme was applied to calculate the im-

portance of the terms obtained in the previous step. Fourth, the data were randomly 

divided into a training and testing set (4:1). This process was repeated five times. Fifth, 

a feature selection was performed using a correlation-based filter (Hall 1999). Note that 

feature selection was conducted after data division in order to prevent feature subset 

selection bias. On average, 29 terms were selected in training data sets. Table I shows 

all terms that were selected at least once. 

 

 

Table I. A set of input attributes 

Cate-

gory 

Terms 

Positive abl, adequ, advantag, benefici, boom, compliment, construct, favor, good, 

charit, ideal, inventor, leadership, loyal, plenti, prestigi, progress, pros-

per, rebound, satisfi, solv, stabl, strength, success, win 

Nega-

tive 

abolish, acquiesc, alien, anticompetit, bribe, catastroph, confront, deeper, 

deleteri, demis, deter, disagr, disclos, dishonest, disincent, divert, drastic, 
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embargo, erron, exculp, exoner, expos, feloni, grossli, harsh, impair, 

imped, impound, inabl, incapacit, incompet, incomplet, inconclus, indict, 

insurrect, know, limit, malfunct, miscalcul, misdemeanor, nonpay, non-

renew, object, obstacl, overdu, overestim, press, prevent, question, reck-

less, refin, riskier, stagnant, stoppag, uncorrect, unfeas, unlicens, unreli, 

unremedi, unresolv, unsold, unwant, vulner, weak, worst, wrongdo  

 

5.2 Benchmark Datasets 

The following regression datasets were selected for the prediction using evolutionary 

INFN: Friedman benchmark function, Abalone, Auto MPG dataset, EDAT_1_1661, 

Forest fires, Machine CPU and Mortgage, for details see Table II. All datasets were 

obtained from the Keel datasets repository (Alcala-Fdez et al. 2011). 

Table II. Description of benchmark regression datasets 

 Friedman Abalone AutoMPG EDAT_1_1661 

Origin Artificial Real-world Real-world Real-world 

Input variables 5 8 5 4 

Real/integer 5/0 7/1 2/3 4/0 

Instances 1200 4174 392 1655 

 Forest fires machineCPU Mortgage  

Origin Real-world Real-world Real-world  

Input variables 12 6 15  

Real/integer 7/5 0/6 15/0  

Instances 517 209 1049  

 

Friedman dataset is a synthetic benchmark dataset where the instances are generated 

using the following method. Generate the values of n=5 input variables, x1,x2, ... ,x5 

independently each of which uniformly distributed over [0.0, 1.0]. Obtain the value of 

the target variable y using the equation y=10(sin(π)x1x2)+20(x3–0.5)2+10x4+5x5+e, 

where e is a Gaussian random noise N(0,1). In the Abalone dataset, the age of abalone 

is predicted from physical measurements. The age of abalone is determined by cutting 

the shell through the cone, staining it, and counting the number of rings through. Other 

measurements are used to predict the age. The AutoMPG dataset concerns city-cycle 

fuel consumption in miles per gallon (Mpg), to be predicted in terms of 1 multi-valued 

discrete and 5 continuous attributes (two multi-valued discrete attributes (Cylinders and 

Origin) from the original dataset are removed). EDAT_1_1661 is a set of measurements 

of the light curve (time variation of the intensity) of the variable white dwarf star 

PG1159-035 during March 1989. A polynomial was used to normalize the signal to 

remove changes due to varying extinction (light absorption) and differing telescope 

properties. In the Forest fires dataset, the aim is to predict the burned area of forest fires, 

in the northeast region of Portugal, by using meteorological and other data. The aim of 

the machineCPU problem is to approximate the published relative performance of the 
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CPU using the following attributes: machine cycle time, minimum main memory, max-

imum main memory, cache memory, minimum channels in units and maximum chan-

nels in units. The Mortgage dataset contains the U.S. economic data from 01/04/1980 

to 02/04/2000 on a weekly basis. The goal is to predict the 30 Year-Conventional Mort-

gage Rate using attributes such as maturity rates, money stock, savings deposits, etc.  

6 Experimental Results 

6.1 Credit Scoring using Text Information 

As mentioned above, the identification of INFNs was carried out in two steps. In the 

first step, cluster centers were found using the SCA. Note that by using this algorithm, 

the number of cluster centers c is equal to the number of if-then rules N, c=N. Therefore, 

the radius of influence of a cluster ra largely determines both the number of membership 

(non-membership) functions and the number of if-then rules. To control the complexity 

of the INFN (and the potential over-fitting risk), we examined the radiuses varying from 

the set ra={0.50,0.55, … ,0.95}. As a result, we obtained on average c=N=5.00±0.63 

if-then rules (and membership and non-membership functions) for the five training sets. 

In the second step, the premise and consequent parameters of the INFN were optimized 

using (1) extended Kalman filter, (2) gradient descent with one pass of LSE, (3) Kacz-

marz algorithm, and (4) PSO. The learning parameters of these algorithms were set as 

follows. The parameters of the Kalman filter were data forgetting factor (set to λ=0.99) 

and increasing factor of data forgetting factor (set to 0.99). The gradient algorithm was 

trained with the maximum number of epochs equal to 100, step size was set to h=0.01, 

step increasing rate to 1.1, and step decreasing rate to 0.9. The Kaczmarz algorithm was 

trained with the maximum number of sweeps set to 10. For the PSO, the setting of the 

parameters is presented in Table III. 

The quality of prediction was measured by RMSE on testing data owing to the or-

dinal character of the credit scores. We conducted the experiments in Matlab Fuzzy 

Logic Toolbox. 

 

 

 

 

 

 

 

Table III. Characteristics of the PSO parameters used in experiments 

parameter value 

population 25 

number of iterations 500 

inertia weight ωi 1 

inertia weight damping ratio δ 0.99 
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personal learning coefficient c1 1 

global learning coefficient c2 2 

maximum particle velocity 

vm a x  5 

 

In the first set of experiments, we compared the defuzzification methods used in the 

INFNs, BADD (α=2) and MOM. Fig. IV shows that the MOM performed better than 

BADD in case of the Kalman learning algorithm. In contrast, BADD was an effective 

defuzzification method for the Kaczmarz learning algorithm. Overall, these findings 

suggest that the most accurate weighted consequent values were calculated using the 

functions with the maximum difference between w
k and w

k firing weights using PSO 

algorithm, in particular. 

 
Fig. IV RMSE on testing data – comparison between INFN defuzzification methods. 

Median, lower, and upper quartile, and minimum and maximum RMSE are depicted in 

boxplots. 

 

In the second set of experiments, we used the best results from the first set of ex-

periments and compared them with traditional ANFIS algorithms, hybrid (combining 

LSE and backpropagation) and backpropagation. Hybrid and backpropagation algo-

rithms are two commonly used algorithms to train ANFIS. The number of epochs was 

set to 10 for the hybrid algorithm and to 100 for the backpropagation algorithm. In ad-

dition, we trained the ANFIS using two evolutionary algorithms, GA and PSO. The 

setting of the PSO was the same as in the first set of experiments. The learning param-

eters of the GA were set as follows: population=25, epochs=500, crossover percent-

age=0.4, mutation percentage=0.7, mutation rate=0.15, and roulette wheel procedure 

was used for selection. 
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For the ANFIS, the initial setting of FIS was also determined using the SCA with 

the same procedure as for the INFN. Fig. V shows that the INFN trained with the Kal-

man, gradient and PSO algorithms performed better than ANFIS irrespective of the al-

gorithm used.  

 

Fig. V RMSE on testing data – comparison between ANFIS and INFN. Median, lower, 

and upper quartile, and minimum and maximum RMSE are depicted in boxplots. 

To test the significance of the results, we employed Student’s paired t-tests (Table 

IV and Table V). The results show that INFN-PSO using the MOM as the defuzzifica-

tion method performed statistically significantly better than both the ANFIS and INFN 

trained with other methods (Table V). On the other hand, the INFN-PSO (BADD) and 

INFN-Gradient (MOM) performed statistically similar as the INFN-PSO (MOM). 

 

Table IV. Descriptive statistics of results for defuzzification methods and p-values for 

Student’s paired t-tests vs. INFN-PSO (MOM) 

 Mean±St.Dev. p-value 

INFN-Kalman (BADD) 3.753±0.424 0.071 

INFN-Kalman (MOM) 3.435±0.176 0.068 

INFN-Gradient (BADD) 3.609±0.291 0.045 

INFN-Gradient (MOM) 3.770±0.580 0.172 

INFN-Kaczmarz (BADD) 4.454±0.887 0.053 

INFN-Kaczmarz (MOM) 4.538±0.616 0.010 
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INFN-PSO (BADD) 3.513±0.245 0.208 

INFN-PSO (MOM) 3.402±0.154 - 

Table V. Descriptive statistics of results for ANFIS vs. INFN and p-values for Stu-

dent’s paired t-tests vs. INFN-PSO 

 Mean±St.Dev. p-value 

ANFIS-hybrid  4.203±0.504 0.013 

ANFIS-BP 4.397±0.773 0.036 

ANFIS-GA 4.444±0.820 0.038 

ANFIS-PSO 4.144±0.506 0.028 

INFN-Kalman 3.435±0.176 0.068 

INFN-Gradient 3.609±0.291 0.045 

INFN-Kaczmarz 4.454±0.887 0.053 

INFN-PSO 3.402±0.154 - 

 

6.2 Benchmark Datasets 

The benchmark regression datasets were randomly divided into training and testing data 

in relation 4:1 and again this division was realized five times. To evaluate the prediction 

performance of the INFN-PSO, we compared it with the following algorithms: (1) 

ANFIS-hybrid, (2) ANFIS-BP (backpropagation), (3) ANFIS-GA, and (4) ANFIS-

PSO. Hereinafter we report only the best results obtained either using BADD or MOM 

defuzzification method for the INFN-PSO. The quality of regression was measured by 

RMSE on testing data. 

Again, the initial setting of the FISs and IFISs was conducted using SCA. Two sets 

of experiments were performed for the different numbers of if-then rules (and the num-

bers of membership and non-membership functions at the same time), N=3 and N=5, to 

demonstrate the effect of the complexity of FIS and IFIS learning parameters. We used 

Gaussian membership (and non-membership) functions for the FISs and IFISs, respec-

tively. For the FISs, the minimum t-norm was selected. 

In our experiments, we used the following settings of adaptation methods. The 

ANFIS-hybrid and ANFIS-BP algorithms were trained with the number of epochs set 

to 10 (and 500 for the BP), with step size h=0.01, step increasing rate set to 1.1, and 

step decreasing rate set to 0.9. The parameters of the ANFIS-GA were population (set 

to 25), epochs (500), crossover percentage (0.4), mutation percentage (0.7), and muta-

tion rate (0.15). Again, roulette wheel selection was applied to choose individuals for 

crossover and mutation. In the training of the ANFIS-PSO, the parameters of the PSO 

was set as presented in Table III. 

Tables VI and VII report the mean RMSE for the seven benchmark datasets, high-

lighting the best performing algorithm in italics.  In general, the performances of the 
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evaluated algorithms improved with an increasing number of if-then rules for two da-

tasets, Friedman and ForestFires, suggesting higher complexity of these two tasks. In 

both cases, the INFN-PSO performed best for N=5.  

In case of N=3 rules, the INFN-PSO performed best for the Friedman, Abalone, 

Auto-MPG and MachineCPU. Although the INFN-PSO showed generally promising 

results on all the datasets, the ANFIS-hybrid method performed better on the Mortgage 

dataset, suggesting that the PSO adaptation method may be ineffective for higher di-

mensional search spaces. An increase in the size of population may address this issue 

(Chen et al., 2015). 

Table VI. Performance (mean RMSE ± St.Dev.) on benchmark datasets for N=3 rules 

Dataset ANFIS-hybrid ANFIS-BP ANFIS-GA ANFIS-PSO INFN-PSO 

Friedman 1.865±0.329 1.722±0.251 2.305±0.188 1.650±0.120 1.499±0.140 

Abalone 2.146±0.070 2.155±0.107 2.334±0.184 2.189±0.098 2.139±0.080 

Auto-MPG 2.842±0.234 13.952±3.238 3.391±0.352 2.896±0.290 2.817±0.287 

EDAT 0.056±0.003 4.375±2.239 0.056±0.003 0.057±0.003 0.057±0.003 

ForestFires 65.29±28.00 63.57±28.25 57.09±30.93 57.75±32.99 58.35±32.99 

MachineCPU 81.45±33.82 139.43±33.42 327.46±472.60 75.98±16.96 66.17±21.17 

Mortgage 0.083±0.006 19.712±2.717 0.212±0.068 0.149±0.023 0.091±0.004 

 

Table VII. Performance (mean RMSE ± St.Dev.) on benchmark datasets for N=5 rules 

Dataset ANFIS-hybrid ANFIS-BP ANFIS-GA ANFIS-PSO INFN-PSO 

Friedman 1.602±0.095 1.450±0.050 2.090±0.109 1.506±0.130 1.395±0.054 

Abalone 2.193±0.170 2.220±0.171 2.381±0.367 2.160±0.109 2.112±0.071 

Auto-MPG 2.865±0.227 11.906±1.206 3.125±0.337 2.750±0.304 2.932±0.214 

EDAT 0.062±0.011 2.680±2.137 0.059±0.006 0.059±0.007 0.058±0.004 

ForestFires 553.77±951.91 675.13±761.31 59.17±31.54 55.22±32.14 55.18±31.92 

MachineCPU 429.17±723.33 647.78±1088.47 88.38±39.63 91.59±46.90 72.60±22.44 

Mortgage 0.080±0.005 18.402±3.100 0.329±0.174 0.120±0.035 0.087±0.004 

 

Fig. VI illustrates the convergence of the INFN-PSO for two problems with a dif-

ferent complexity, Friedman dataset with n=5 and Mortgage dataset with n=15 input 

variables. To demonstrate the effect of particle complexity, we show the results for both 

N=3 and N=5 rules. We report average fitness values over the five training datasets. 

The INFN-PSO converges faster for the less complex Friedman dataset. However, the 

effect of N is limited, mainly due to the low number of rules (N=3 and N=5 rules, re-

spectively). As indicated in Tables VI and VII, the population converges on a poor local 

optimum in case of the Mortgage dataset. Note also that the computation complexity of 

PSO increases exponentially as the dimensionality of the search space increases. 
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Fig. VI Convergence of INFN-PSO for Mortgage and Friedman datasets, N=3 and N=5 

rules 

To detect statistical differences in the prediction performance of the used methods, 

we performed nonparametric Friedman test because we could not guarantee the relia-

bility of parametric tests. The Friedman test enables ranking of the algorithms accord-

ing to the Friedman statistic. This test is a nonparametric analogue of the parametric 

two-way analysis of variance. The original results (RMSE) were converted to ranks. 

Average ranks were calculated in case of ties. The null hypothesis was tested which 

states that all the algorithms perform similarly (their ranks should be equal). The Fried-

man p-values obtained in Tables VIII and IX indicate the existence of significant dif-

ferences between the evaluated algorithms. The lowest average ranking was achieved 

by the INFN-PSO for both tests, N=3 and N=5.  

In the second step, we therefore used the INFN-PSO as a control algorithm in post-

hoc procedures to determine which algorithms perform significantly worse. Specifi-

cally, we used the Holm and Finner post-hoc procedures which adjust the level of sig-

nificance in a step-down manner (for details, see García et al. 2010). The results (p-

values) are reported in Tables VIII a IX. Significant differences at p<0.05 are high-

lighted in bold.  

The results of the post-hoc tests indicated that the INFN-PSO significantly outper-

formed most of the evaluated algorithms. In the case of less complex tasks (for N=3 

rules and membership functions), only the ANFIS-hybrid did not perform significantly 

worse (Table VIII), whereas for N=5 all evaluated algorithms were outperformed by 

the INFN-PSO (Table IX). 
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Table VIII. Results of nonparametric tests (Friedman, Holm and Finner) for N=3 rules 

N=3 Aver. ranking Holm p-value Finner p-value 

ANFIS-hybrid 2.3429 0.0500 0.0500 

ANFIS-BP 3.9429 0.0125 0.0127 

ANFIS-GA 3.5429 0.0167 0.0253 

ANFIS-PSO 2.9714 0.0250 0.0377 

INFN-PSO 2.2000 - - 

Friedman p-value <10-5   

Table IX. Results of nonparametric tests (Friedman, Holm and Finner) for N=5 rules 

N=5 Aver. ranking Holm p-value Finner p-value 

ANFIS-hybrid 2.9143 0.0250 0.0377 

ANFIS-BP 4.1714 0.0125 0.0127 

ANFIS-GA 3.7286 0.0167 0.0253 

ANFIS-PSO 2.2000 0.0500 0.0500 

INFN-PSO 1.9857 - - 

Friedman p-value <10-5   

 

7 Conclusion 

Taken together, we have demonstrated that INFNs trained by PSO algorithm may sig-

nificantly outperform ANFIS. In the case study of credit scoring using text information, 

hybrid and backpropagation algorithms were employed as two common algorithms to 

train ANFIS. The MOM defuzzification method, proposed in this study, has also shown 

promising results for use in the output layer of the INFN.  

This class of INFNs adapted by PSO appears to provide better performance especially 

in the cases where high uncertainty and imprecision have to be captured in membership 

functions’ design. Financial prediction seems to be a suitable application domain. Pre-

vious evidence with type-2 FISs supports this finding (Huarng and Yu 2005; Zarandi et 

al. 2009; Bernardo et al. 2013).  

Consistent with previous studies, we show that the introduction of hesitation part 

may improve the prediction performance of FISs. However, substantially more experi-

ments should be conducted to generalize our findings, particularly on higher dimen-

sional prediction problems. Future research should also concentrate on the optimization 

of the base of if-then rules. Alternative implementations of the PSO algorithm should 

also be considered like, for example, the PSO with a leader and followers (Wang and 

Wang, 2008). Finally, we recommend further extensions of INFNs corresponding to 

recent development in IF-sets, for instance temporal IF-sets (Chen and Tu 2015). 
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The experiments in this study were carried out in Fuzzy Logic Toolbox, Matlab 2010b 

using the MS Windows 7 operation system. 
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