
16 Int. J. Simulation and Process Modelling, Vol. 12, No. 1, 2017

Copyright © 2017 Inderscience Enterprises Ltd.

Application of mobile devices within distributed
simulation-based decision making

Josef Brozek* and Martin Jakes
Department of Software Technologies,
University of Pardubice, Czech Republic
Email: mail@jobro.cz
Email: jakesmar@gmail.com
*Corresponding author

Abstract: As a consequence of the development of the market with information technology,
where users are increasingly inclined towards mobile devices at the expense of conventional
stand-alone device; increasing user literacy in the use of smartphones and tablets; and the
increasing computing performance of mobile devices; a study has been created that addresses the
potential of using mobile devices in a distributed simulation. The study also focuses on the
possibility of applying the various technologies and architectures in context of using mobile
devices in simulation. This article provides overview information about the case study itself, but
it strongly focuses on technologies and paradigms that were identified as highly perspective. The
paper also explains fundamental themes so that the readers could also apply the information in
their home environment. Part of the work itself is an extensive case study carried out in
collaboration with a commercial entity.

Keywords: simulation; tablet; smartphone; mobile device; distributed simulation; heterogenic
simulation; high level architecture; HLA; simulation-based decision making; decision making.

Reference to this paper should be made as follows: Brozek, J. and Jakes, M. (2017) ‘Application
of mobile devices within distributed simulation-based decision making’, Int. J. Simulation and
Process Modelling, Vol. 12, No. 1, pp.16–28.

Biographical notes: Josef Brozek is a postgraduate student at the University of Pardubice.
Because he focuses on the topic of different computing complexities in his Masters, his research
is now on the border of simulation and system engineering. Under Prof. Antonin Kavicka
(University of Pardubice, CZ), he focuses on complex programing techniques and their
applications, and due to his internship with Prof. Stephan Bhakti Onggo (LUMS, UK), he focuses
on HLA and its application.

Martin Jakes focuses on the implementation in different kinds of segments. He specialised in
mobile devices during his Masters studies. Now, during his postgraduate study at the University
of Pardubice, he is focused on running simulation on non-standard devices. Since his Masters
study, he has cooperated under supervision of Josef Brozek and Prof. Antonin Kavicka.

This paper is a revised and expanded version of a paper entitled ‘Using tablets in distributed
simulation’ presented at the 26th European Modeling and Simulation Symposium, EMSS 2014,
Bordeaux, France, 10–12 September 2014.

1 Introduction
Originality of our solution is based on cooperation
with chemical company and on used technologies – mobile
devices. But there are no publications which focus on
similarly themes. Application of mobile devices to this kind
of problems is a new topic, which has been researched at
University of Pardubice for last three years.

The nearest, with their focus, are publications from
Reda et al. (2014), Letizia et al. (2015) and Marina et al.
(2013). Application of high level architecture (HLA) to
simulators can be found in Letizia et al. (2014) or Bruzzone
et al. (2010). Or it is possible to see research in healthcare in
Cimler et al. (2014).

1.1 Motivation based on global market
When creating simulation systems of some classes, we need
to take into account user preferences – this is especially true
for simulation applications of the simulator (trainer) type, or
decision-making simulators. This condition is particularly
important for simulators, which are earmarked for the end
users, who are not experts in the field of simulation. For this
type of applications it is assumed that the user efficiently
handles the control device which serves only as an
input-output device for him.

By generalising this principle, we achieve a thesis
which says that for a simulation control/operation to be

 Application of mobile devices within distributed simulation-based decision making 17

effective, the user environment must be user friendly
as much as possible. At present, however, in the field of
user-friendliness, methods of software engineering and
software design are ceasing to play the first fiddle. The
same applies for the focus on the hardware device that is to
serve for operation.

The current development in the information technology
market, especially the one focused on the end user, shows
that there is a dramatic increase in the sales of tablets at the
expense of standard computers and laptops. At the same
time, it should be noted that most modern mobile phones
sold work on the same principle as tablets. Most of the
information in the following text implicitly assumes that
when a tablet is used, it can be generalised and applied also
to other mobile devices (for example: prototype testing and
verification of most of the principles mentioned in the text
were, in addition to the tablets, tested at the same time on
the mobile phone Samsung Galaxy.).

In general, however, we can draw a conclusion that the
end users are increasingly becoming experienced in devices
control by the touchscreen. To illustrate the issue, Figure 1
shows the development of the market in each period.

Figure 1 Development of the computer market (see online
version for colours)

2 Verification of hardware possibilities
If we want to seriously consider using tablets as primary
runtime components for distributed simulation, we need to
realise the fundamental differences and define the problems
that may arise. For more information you can look to Schön
(2013), Kovac (2012), Ku (2012), Mocny (2009) or The
Simulation Interoperability Standards Organization (2001).

2.1 Performance comparison
The first characteristic that we naturally focus on is the
performance aspect of individual devices. It is certainly a
legitimate requirement, but it is important to realise that
applies only for a certain class of tasks. A tablet, computer
or IBM PC is not a device that we choose for simulations
for their brute force effectiveness, but for the user
friendliness. Therefore, this article takes into account that
the class of simulation tasks requiring enormous computing
performance will run directly on a cluster, or a cloud.

A bit more specifically to the performance, performance
of a standard PC processor is about 80 GFLOPS1, in
contrast to tablets, where the standard performance is about
80 MFLOPS. At first glance, the absolute value says that
the performance of the tablet should be approximately 1,000
times lower, compared to PC. At this point, it should be
stressed that both architectures use completely different
processors. A standard IBM PC uses the x86 architecture
processors that may appear to be considerably ineffective
[information on the very principle of CISC, internal RISC
structure and the resulting information can be obtained from
Schön (2013)]. On the contrary, the ARM processors
(for more information, see Kovac, 2012) used in tablet PCs
have better transfer of computing performance to
instructions applicable in programs.

The possibility of an illustrative comparison is presented
in Figure 2.

Figure 2 Various theoretical performances (see online version
for colours)

The comparison clearly shows that tablets are not
appropriate means for the class of tasks requiring brute
force (on the other hand, below, the reader will be
acquainted with the fact that even this problem is solvable
with relatively easy approaches).

2.2 Comparison with regard to peripherals
Although this directly begs comparison of the physical
peripherals and input-output devices, motivation for
comparing peripherals is a bit different. Therefore, let’s
move from the intuitive comparison of user input-output
devices to the network communication technologies.

A standard PC network connection is carried out
through a cable line, which has a (relatively) high level of
reliability. In contrast, a standard tablet will be most often
connected during the calculation through a wireless
connection, which has a high quality only under ideal
conditions – otherwise, there is an increase in latency, or
loss of parts of the data. Therefore, the creation of models
for tablets is more challenging (on the other hand, it is about
as challenging as creating models that are synchronised in,
for example, the internet, via web services, etc.).

Wireless communication (either Wi-Fi or Bluetooth, at
worst, GSM) has its own metrics, which is the portability of
the device.

18 J. Brozek and M. Jakes

2.3 Physical comparison
Since the comparison is very intuitive, just a few words
about a strength that we can advantageously use.

Easy portability of tablets allows using them outdoor in
support of ad-hoc decision-making (which is the topic of the
practical application presented in this article). The risk is the
limited battery operating time, but this problem is gradually
eliminated. In addition, certain classes of tasks do not
require a long-lasting battery life.

The physical portability implies another major
advantage and that is localisation – because if we have an
active Wi-Fi or GSM receiver, using certain principles
(detailed in Ku, 2012) we are able to perform accurate
localisation of the device (this is possible even with GPS,
but not in enclosed spaces).

A result of the portability and localisation is, for
example, that if we create online simulation of factory
operation, the tablet will automatically visualise only the
part of the plant near to our current location, i.e., the one
where a malfunction is being dealt with, for example.
Likewise, these principles can be used to collect data from
relevant sensors (as the tablet can also serve as a central
point for the collection of values collected with the
Bluetooth technology and external sensors that support this
technology).

2.4 Practical programmer’s perspective
This section is rather intended for software engineers, so it
may not be interesting for other professionals engaged in the
simulation. It can be skipped without losing the context of
the entire thesis of the article.

For the purpose of implementation, we need to take into
account several important criteria, such as the demands of
development (particularly in terms of the programming
language support), the existence of libraries, support, and
size of the community engaged in the development.

In order to discuss these issues, it is important to realise
that there are (essentially) two main representatives of
tablets, namely tablet PC (with the most common operating
system being Android, followed by Windows) and the
Apple platform – i.e., iPad and iPhone (running on iOS).

2.4.1 Development for Android
First, let us focus on (at least in Europe) the most
widespread variant, devices that run on Android. The
programming language that is used for programming is, de
facto, the programming language Java; we just need to use
different libraries. The development itself is relatively
trivial. Part of external libraries, written in the Java
programming language and designed for standard
computers, are also applicable in the solutions for Android.

The community of general programmers is relatively
broad and focuses mainly on the graphical environment
issue, which cannot be considered a problem as most
architectural problems are the same as in the standard Java.

However, a major disadvantage and a great risk in
creating applications for Android is the issue of operating
system versions. It is because it happens very often that the
things that worked with ten different versions in a standard
and predictable way will fail to run with an eleventh
version. Therefore, with every new update of the operating
system we should re-verify the functionality of the solution.
The actual verification is performed though verifying the
functionality of each module. It does not happen that the
application would not work and return invalid results. The
need for testing a new version is still a major inconvenience.

2.4.2 Development for iOS
Even for the actual development for iOS it is necessary to
have the relevant physical device – emulation is very
difficult, practically impossible.

Another major disadvantage is the programming
language. It is the Apple company’s own language, which is
a certain mutation and an extension of the programming
language C, it is called Objective-C. For programmers
accustomed to standard programming languages (Java, C#,
C++), the actual syntax is relatively counterintuitive and we
need some time to get accustomed to the language (as well
as to the paradigms that the programming follows in that
language).

The community is relatively large, but the collective
problem solving takes place only to a limited extent. This is
probably due to the fact that currently there is a transition to
another programming language, so the community is
slightly fragmented.

Another major problem is the non-existence of libraries
that could be correctly linked to the program that will run on
iOS devices, so it would be necessary to create the runtime
environment for the simulation virtually from scratch.

2.4.3 Development for Windows
A brief mention should also be given to the development for
tablets running on the Microsoft Windows operating
system. The development is performed in a standard way
that developers are used to, so it will not be discussed in the
article, for more information you can go to Mocny (2009).

A moderate risk of this solution is the fact that it is not
that easy to disseminate applications or to network owing to
the intricate settings and security policies in this operating
system. Thus, even though the programming is simpler, we
can often encounter various types of runtime problems
caused by the settings.

2.5 Recommendation
The computing efficiency and parietal possibilities support
are enough for all devices. The primary differences are
defined by programming performances.

The results of our work show that it is preferable for the
simulation to use devices that run on Android OS or
Windows. With the experience, we cannot recommend
creating simulators for iOS.

 Application of mobile devices within distributed simulation-based decision making 19

3 Choice of software platform
If hardware is selected, it is necessary to specify optimal
software layer – platform, architecture or at least paradigms.
During development of the simulator we have tested
concrete approaches:

3.1 Java RMI
“Remote method invocation allows Java
developers to invoke object methods, and
have execute them on remote Java virtual
machines (JVMs). Under RMI, entire objects
can be passed and returned as parameters,
unlike many remote procedure call-based
mechanisms which require parameters to
be either primitive data types, or structures
composed of primitive data types. That means
that any Java object can be passed as a
parameter – even new objects whose class has
never been encountered before by the remote
virtual machine.” Reilly (2006)

Although the Java RMI is very interesting technology, it has
major drawbacks, in particular:

• it is relatively complicated to use, especially for large
distributed simulations

• implementation of heterogeneous simulations is quite
difficult (sometimes impossible).

Although it has these weaknesses, there are a few benefits
that arise from the Java programming language, or directly
from the principle of RMI, which overcome the
disadvantages. RMI is possible to recommend for small
projects, for experimental purposes and for teaching. But for
a larger solution is desirable to use a different technology.

3.2 CORBA
“Common object request broker architecture
(CORBA) is a competing distributed systems
technology that offers greater portability than
remote method invocation. Unlike RMI,
CORBA isn’t tied to one language, and as
such, can integrate with legacy systems of the
past written in older languages, as well as
future languages that include support for
CORBA. CORBA isn’t tied to a single
platform (a property shared by RMI), and
shows great potential for use in the future.
That said, for Java developers, CORBA offers
less flexibility, because it doesn’t allow
executable code to be sent to remote systems.

CORBA services are described by an interface,
written in the Interface Definition Language
(IDL). IDL mappings to most popular
languages are available, and mappings can be
written for languages written in the future that
require CORBA support. CORBA allows
objects to make requests of remote objects
(invoking methods), and allows data to be
passed between two remote systems. Remote
method invocation, on the other hand, allows
Java objects to be passed and returned as

parameters. This allows new classes to be
passed across virtual machines for execution
(mobile code). CORBA only allows primitive
data types, and structures to be passed – not
actual code.” Reilly (2006)

Solutions using CORBA is very interesting. With it would
be possible to create heterogeneous distributed simulator.
The computational performances depend on implementation
of the simulators themselves – here are not major losses
caused by staging. Its major disadvantage is the complexity
of the required of implementation works. In any case, if the
HLA testing would failed, CORBA would be good choice
for create own prototype. Simultaneously CORBA is good
choice in situations where you cannot, or would not like to,
use HLA.

3.3 Manual programming
Brief mention is also deserved for experiments with low-
level programming through direct memory access (i.e., own
bookings and initialisation of ports, the transfer data to
binary streams and use communication via streams).

Despite the very low-level data handling the solutions
did not show significantly better computing performance.
This was most likely caused by programming in Java. The
problem has caused overhead of own Java application
(JVM, garbage collector, etc.).

This implementation was the most complex of all tested
solutions. It is possible say that this approach is not ideal for
use in distributed simulation (not only for decision-making,
but generally).

3.4 DIS
The possibility of using DIS was rejected already at
retrieval activities – so it is the only solution that was not
implemented. But for completeness, it is mentioned.

DIS itself is defined as the standard (IEEE 1278). This
works at a relatively low level and retains all control of the
distributed simulation in the hands of an architect.

Although the DIS can be used for any type of distributed
simulation, the original purpose is to join different types of
interactive simulators together.

The complexity of standard binding with the method
definition and high programming complexity are significant
disadvantages. Because at the same time the retrieval
operations were conducted with HLA testing, and it was
described as very good solution, DIS tests were stopped.

However, for an overview, it is desirable to know the
DIS, and the reader may learn more from Manling (2009).

3.5 HLA
One of the tested technologies is HLA. Because it has got
best results, we used it in our solution. It is explain more in
next section.

20 J. Brozek and M. Jakes

4 HLA basis
HLA is designed especially for the development of
distributed simulation models. It is a comprehensive
architecture. This may discourage users at first glance, but
the basic principles are very simple. Because HLA was
chosen for its properties as an ideal candidate for our own
implementation, below are provided more details about it.

HLA is a standard for the creation and operation of
distributed computer simulation systems. The standard does
not limit the application domain and simulation modelling
method. Hence, HLA has been applied to domains such as
military, healthcare, supply chain and many more. HLA has
also been used to link models developed using various
simulation modelling methods such as discrete-event and
agent-based. At a lower level, the standard specifies the
method of communication between the simulators (called
federates) of a distributed simulation. The standard sets the
requirements for the actual transmission format using XML.
This enables us to link simulation models written using
different programming languages or simulation software. It
also enables us to write a wrapper for legacy simulation
models (non-HLA compliant) by converting the input-
output data into an XML format.

The openness, flexibility and many functionalities of the
standard may overwhelm novice users or users who are not
familiar with distributed computer programming. One of
contributions of this paper is to propose a framework that
helps users to develop HLA-compliant models more easily
so that they can use the full potential of HLA with minimal
effort (at the cost of moderate restrictions which will be
discussed later). This research is partly motivated by the
lack of adoption of HLA in the Czech Republic. We hope
this work may attract more people to develop HLA-
compliant models.

The explanation is based on Fujimoto (2000), Kuhl et al.
(2000), Rabelo et al. (2013) and standards IEEE1516:2010
(The Institute of Electrical and Electronics Engineers, Inc.,
2010a, 2010b, 2010c, 2010d).

4.1 Terminology of the HLA
HLA standard, in order to maintain high level of
abstraction, uses some very specific terms. For example,
instead of the concept of a logical process, an agent, a
decomposed part of the logical process, it uses common
term a federate. With federate it is possible to work
regardless of its internal structure or architecture.

4.2 Federation
A federation in HLA refers to an entire distributed
simulation (or a complex distributed simulation model).
There is one federation during one distributed simulation
experiment.

4.3 Federate
A federate is an HLA-compliant application that can
participate in a distributed simulation experiment. A
federate may be in a form of a simulation model, software
application, software agent of any type, an input sensor or
panel, a display unit, a system for retrieving historical data,
etc.

4.4 Objects
An object is the information to be exchanged during a
distributed simulation experiment. In HLA, an object
represents an entity with persistent states.

4.5 Attributes
An object has a set of attributes that are relevant to an entity
represented by the object. An attribute is basically a data
field of a defined data type. Basic data types and attributes
are defined in the object model template (OMT). We will
explain OMT in Section 4.7.

4.6 Interactions
An interaction represents an event that may be of interest to
two or more federates. Similar to objects, interactions must
be pre-defined. Each interaction can have a set of
parameters. Interaction can be performed directly through
interaction classes, e.g., passing an object to another
federate, etc.

Federates cannot send interactions to each other directly,
but they must make a request to RTI (runtime infrastructure)
as shown in Figure 3. We will explain RTI in Section 4.8.

Figure 3 Interactions in HLA

4.7 Object model template
Objects and their attributes as well as interactions and their
parameters need to be defined for the whole federation
based on the standard set in the OMT (IEEE1516.2:2010).
The definitions for objects and interactions must be
provided in a federation object model (FOM) or simulation
object model (SOM). Both are XML documents and are
relatively easy to read. In practice, FOM is often built from
one or more SOMs.

4.8 RTI
Run-time infrastructure (RTI) is a middleware that provides
communication services to all federates in a federation. It is
defined directly by the standard (IEEE1516.3:2010),
independent of the platform and language. RTI provides
APIs that can be called to perform certain functions such as

 Application of mobile devices within distributed simulation-based decision making 21

creating a federation, creating a federate, connecting a
federate to the federation, etc. RTI needs FOM to
understand the objects and interactions that will be
exchanged between federates. Common terminology and the
logic of RTI are shown in Figure 4.

Figure 4 HLA RTI diagram

A number of vendors have implemented RTI products, for
example Pitch RTI, MAK RTI, OpenHLA and many more.
In principle, the implementation approach is almost the
same as the one shown in Figure 5. A federate usually runs
on one computing node (but one node can be shared by
multiple federates). For each federate, we need to include
the local RTI component. It is a library that needs to be
linked to the actual software solution (federates) or to the
application wrapper (for legacy or non-compliant software).
This component actively manages communication between
a federate and a central RTI component. The central RTI
component is the busiest part in a federation2. It is
responsible for managing the communication within a
federation, for example, connecting a federate to a
federation, managing objects, etc.

More information (especially about pRTI) and original
pictures may be found at Pitch technologies websites.

Figure 5 RTI physical implementation

4.9 Major benefits of using the HLA
After this introduction to HLA, it is possible to say why this
seems like the best solution for creating of distributed
simulation in combination with mobile devices.

4.9.1 Platform independent
Because it is possible to create simulators regardless
of platform and programming language, and because
communication between federates runs through RTI
(in XML), HLA is an appropriate solution. Hereby HLA
easily allows the connection of tablets (which run programs,
e.g., in Java) with other devices (without dependency on a
programming language).

4.9.2 Centralisation
The existence of RTI as an active element for the
connection of mobile devices is very convenient. It is
unsuitable only when the entire solution and all distributed
calculations are performed only on tablets – which is
extremely unlikely, in the context of a decision-making
support system.

Conversely, the combination of mobile devices and
other computers (PC, cluster or cloud) provides the perfect
environment for running RTI. If RTI is started on the
strongest computational component, excellent results are
achieved. Actual existence of RTI as separate software (and
thus existence of a central component of distributed
simulation) does not adversely affect a simulation run; it is
not significantly degraded by high overhead.

4.9.3 Other benefits of HLA
Standard advantages resulting from the use of HLA are:

• there is no need to implement synchronisation,
or low-level operations – just use the services of HLA

• the entire run is transparent and can be monitored
visually on RTI – which greatly facilitates validation
and verification

• reusability of individual simulators is very high

• there is a strong community with which it is possible to
consult the issue

• nowadays it is possible to use some libraries and
frameworks, particularly the simplistic framework for
HLA (Brozek et al., 2014)

• the entire distributed simulator can easily meet the
standards (IEEE 1516:2010) and its extension to other
simulators or by other workers, or on another
workplace is easy.

5 Methodologies for using mobile devices
The actual tablet can be used in simulations in several
different ways, some of which are very intuitive, while
some on the contrary deserve more attention (for example,
owing to their considerable development potential).

In the following text are the mobile devices (tablets,
smartphones) mainly seen as a small mobile computer.
Expected operations relate mainly to the calculations, and
the provision of user inputs or provision of outputs
visualisation. It is necessary to say, that the potential of
tablets is far higher. If we would like to focus on one
example: through use of those devices in the simulation we
can determine the position – with using GPS or Wi-Fi
networks. It is ideal for simulations of movement (an army
can use them in simulated combat).

22 J. Brozek and M. Jakes

5.1 Used to run the monolithic simulation
Currently, this method of use is purely a marginal issue. The
performance is still insufficient and, even with calculations
running on graphics accelerators, tablets experience
memory issues. Therefore, the simulation thus triggered
would be relatively undemanding and it would be rather a
trivial demonstration without much practical use.

On the other hand, it can be expected that with the
increasing computer performance of tablets and
modifications in the architecture of processors (number of
kernels, higher parallelisms on graphics accelerators), even
this approach will be broadly applied in the future.

5.2 Distributed simulations on tablets
Distributed simulations solely on tablets can be run in two
different modes, namely:

5.2.1 Based on the sharing of performance
If we have a certain amount of tablet users who have access
to the network and enabled a specific application, it is
possible to run a computationally oriented simulation with a
part of distributed computing running in the background of
each tablet (even more logical processes in one tablet).

This solution is especially useful for calculations with a
high degree of parallelism and it is an alternative to the
solution in the cloud. The advantage, however, is advanced
debugging options of the application.

5.2.2 Standard distributed simulation
In the case of this mode, there is just one logical process
running on each tablet, in the foreground of the simulation.
Most commonly the method is used in an application of the
simulator/trainer type. Each tablet thus serves not only
as a computational node for the simulator, but also as an
input-output device, which can be used to parameterise the
simulation calculation directly during its run.

5.3 Heterogeneous simulation
It is the combined (according to some sources, hybrid)
methods of the operation of distributed simulation that
currently have the greatest potential for practical use.
Specific usable solutions are listed below.

What all solutions have in common is that part
of the distributed computation is performed on standard
computers, servers, or even in the cloud (it is with the cloud
solution that it achieves the best results). The combination
of the computing performance of more robust computers
with the advantages of tablets (portability, intuitiveness) is
also used in the demonstrator presented in this paper.

Only four basic methodologies are listed, which can be
combined.

5.3.1 Tablet used as a visualiser
Simple using the tablet as a visualiser is beneficial for those
classes of problems where it is desirable to animate the
simulation calculation. This has practical applications rather
for presentations of the simulation process to a customer
and for validation of processes, where a simulation
specialist consults realism of the established processes with
an expert from the modelled field.

5.3.2 Tablet used as a driver
If we want to use the tablet as a distributed simulation
driver, we just need to create such a simulator that will be
able to parameterise the conditions prior to the start of the
simulation, and then also the conditions for termination of
the simulation run.

The solution is useful in situations where it is necessary
to parameterise the simulation according to the information
that can be obtained only in the field, i.e., beyond the
standard stationary device running the simulation.

The ideal is to use this principle in decision support
systems, where we can relatively easily parameterise the
simulator, without being limited by our physical location.

5.3.3 Tablet used as an output device
The next possibility is to use a tablet as an output device.
Since it is not necessary to perform stable synchronisation
as in the case of online animation (3.3.1), this solution is
relatively trivial. Like the previous approach, this solution is
advantageous for decision support systems. Users are often
not interested in the simulation, but only in the result.

5.3.4 Tablet used as an input for trainer
The most demanding method of using the tablet occurs
when there is a request to implement the distributed
interactive simulation (DIS) methods (IEEE1278, more in
The Institute of Electrical and Electronics Engineers, Inc.,
2010a, 2010b, 2010c, 2010d).

It is especially challenging to secure such transmission
problems in the network in order to make sure that all
interactive interventions have been performed correctly and
at the right time. Synchronisation methodology is equally
challenging. It should be noted, however, that despite some
complications in the development we can achieve excellent
results due to the high user-friendliness of such simulators.

5.4 Tablet used as a preprocessor for data
processing

Being a portable computer that has a number of wireless
connections (Bluetooth and Wi-Fi), the tablet can be
advantageously used as a preprocessor for data processing.
It is thus possible to obtain relatively cheaply a complex
measuring station. If we have a number of sensors or limit
sensors that support the Bluetooth technology, it is possible
to retrieve data from these sensors through the tablet and

 Application of mobile devices within distributed simulation-based decision making 23

process it into such a form that is required for distributed
simulation. The actual distributed simulation is then
connected to this node. Custom node behaviour with respect
to distributed simulation purely depends on an architect
(software engineer) of the simulation. It is possible to
determine whether the mobile device will be part of a
distributed simulation; or it will act only as an online sensor
for simulation; or it will be completely transparent for
simulation).

6 Mobile devices in decision making simulations
As mentioned above, the actual solution implementation is
very suitable for uses of HLA. The following principles will
be explained with the assumption that HLA is used.
However, all of the principles are possible very easy to
generalise and use in systems that do not use HLA.

6.1 Basic scheme and principle of specialisation
Connecting of a mobile device to decision making
distributed simulation is the best, if it is realised by using
the tablets only as input/output devices.

Pattern, which was proposed in the work, divides
problem into four categories, each according to their
specialisation. There may exist such decision-making
simulation, which will not implement the solution of all four
classes.

Figure 6 Architecture of simulation model

Our actual scheme of decision-making simulation is
distributed and usually uses four types of nodes (Figure 6):

• the computing node is located on a powerful computer
that is designed just for this single activity

• the node for parameterising, defining scenarios,
launching the simulation and displaying the results is
running on the tablet so that the operator can use any
device in any production hall, without having to go
back to the service centre once a malfunction has been
detected

• the node for data collection is connected to the main
automation computer and receives online data from the
production

• the node for obtaining historical data is placed in the
company’s data warehouse and is used to collect
historical data on production processes, repairs, etc.

Individual nodes can run in the simulation in a larger
number (e.g., two independent nodes for parameterisation
running in tablets are a natural part of the solution).

6.2 Computational core
The computing core is responsible for the implementation
of all complex calculations. The actual core can be further
distributed (split into more logical process/computers).
However, it is preferable when it is used heavy-horse,
cluster, or when the task runs in the cloud service.

For the SW implementation it is not necessary to
follow special programmer’s procedures, the standard
software engineer’s knowledge is enough. When you are
choosing a programming language it is desirable to take into
account the fact that this part of the solution is strongly
computationally oriented.

To increase efficiency of whole solution it is desirable
that the same physical machine runs the RTI.

6.3 Database connector
Database connector serves as a portion of a distributed
simulation, which is mainly responsible for:

• acquiring historical data from the database at the
request of the simulator

• if it is necessary it generates the data (usually on the
basis of the any kind of regression from data obtained
from the database) at the request of the simulator

• enter data into the database for later processing, or for
future needs by self-learning algorithms.

DB connector principle is very simple. If simulation
requires data, it can very easily request them. Because the
database is accepted as very fast storage (especially if the
data must be searched or sorted, etc.), it is the ideal solution
for the case with dynamic setting of simulator, which is
characteristic of large demands on data.

Although, DB connector principle is very simple, it is
more complex during implementations.

The first step is to determine how to realise the entire
solution. It is necessary to consider whether the database is
available only for the purpose of simulation studies, or
whether it is a database that is active and is achievable
during normal operation. According to the destination
database, must select the correct programmatic approaches.
Thus, the maximum use of the database engine and database
languages if the database is reserved only for simulation. In
the latter case it is necessary to minimise work with
databases, in which case it is necessary to implement own
robust application. This will collect data from the database,
process them, and transfer them into the simulation.

24 J. Brozek and M. Jakes

6.4 Real-time data miner
In the event that you would like to implement, in the online
decision-making simulation, trips into the future, it is
necessary that the whole solution contains a real-time data
miner.

The actual form is difficult to describe, because it is
very different according to the field to which the simulator
is directed. Generally, however, it can be said that most of
the system from which data will be required (to identify
their real condition in real system), has this monitoring
already implemented.

The implementation itself only involves linking the
existing system for scanning into a distributed simulator.

Because not all real systems have a centralised
collection of data on the computer, on which it would be
possible to run a standard application that will work in the
simulator, is here greatest variability of practically used
programming languages.

6.5 Using of mobile devices
Mobile devices are in a system of this type used as
input/output devices. A user can parameterise future
simulation and calculation, and on the basis of visualised
data gets the results. Implementation of input/output device
also would be implemented on standard stand-alone
computer, but for some problems it is not as effective as
using mobile devices. The advantage of using a mobile
device has the mobility rights – there are classes of
problems (one of them is described in the case study), for
which is the decision ‘on the spot’ invaluable.

The actual mobile device can use two different ways,
namely:

• using in passive mode

• using in interactive mode.

It is true that the possibility of using a mobile device for
parameterisation of simulator, its start and its shutdown, is
common for both solutions.

The principles mentioned below are therefore usable
also for stationary input output devices.

6.5.1 Using in passive mode
Using passive mode, thus only as a ‘driver’ for the
simulation, it is suitable for simpler calculations and
simulation processing.

However, the fact is that reading of all the required data
(online and historical) and creating of scenario would be
very time consuming, hence the second principle is more
often used.

6.5.2 Using in interactive mode
Using the interactive mode allows the simulation to run
almost continuously. State space of the simulator constantly
corresponds to the real state of affairs (or is able to return to
this state).

Now will be described technically simplest (though not
ideal) solution, which is done within the distributed
simulation.

In the event that the simulation is required to predict the
future, the current fingerprint is created by simulation. This
is followed by split into two independent simulation
calculations (every run on a separate thread). The first
calculation still illustrates the current real situation. The
second calculation may increase speed of the virtual time.
The computing core starts reckoning, and mobile device
starts to illustrate the expected development of the future.
The situation can further affect interactive interventions (by
changes parameter of the simulator during its run). Using
simulation is so easy to determine how the system state will
change after a certain period of time. In the event that
instead of one simulation several calculations with different
parameters are performed, users are given high-quality data
to support its decisions on what actions to perform in a real
situation.

The actual method of control and simulation of forecasts
in future has many forms and is usually adjusted according
to the used hardware. On a cluster or in the cloud it is
worthwhile to perform parallel calculations of several
threads. On the contrary, a very powerful single-processor
computer system is preferable to use for calculations and
returns only a single thread.

SW implementation is thus dependent on the hardware
used.

7 Demonstration solutions
The demonstration example is a great example of how a
distributed simulation using tablets can effectively support
decision making and thus improve the efficiency of
industrial production.

7.1 Description of the problem
The chemical metal coating plant is characterised by several
facts. The whole plant is automated (human labour is only at
the beginning of the process to place the products to be
coated on hooks and then during the storage process).

The high degree of automation allows the factory to
process a large number of products (you can see example of
one process at Figure 7). The factory itself contains
several lines for different types of chemical metal coating
(bluing, electrolytic and galvanic lines), while the actual
chemical bath is subject to change. It is also true that
one chemical bath can be used for a number of metal
coating lines (i.e., if the chemical bath has a size of
20 × 4 × 2 metres, it can be used for four metal coating lines
and each line can process different types of products with
the same surface finish).

 Application of mobile devices within distributed simulation-based decision making 25

Figure 7 Chemical plant line diagram

The problem of the plant, however, is that due to the
chemicals and enormous currents (thousands of amps at
3–5 V) there are frequent malfunctions on the lines. The
chance that a fault occurs in one line, in any shift is up to
7% (up to 14% with lines fully loaded). If the factory has 40
lines, it is a relatively high number. But there is no chance
to get more reliable devices due extreme chemical
conditions in the company. Hall structure and data flow can
be seen at Figure 8.

Figure 8 Physical situation in company

For the increase of security of application the principle
defined in Cimler et al. (2015) can be used, but in
manufactory it is not needed.

7.2 Motivation for solving simulations
If there is a malfunction, is it better to stop the operation and
remove the error, is it advisable to have the production
completed, or is it ideal to switch the production to another
line? And what happens with the products? Will there not
be unreasonable queues? Will there not be a plethora of
rejects? Alternatively, will the products degrade that have
gone through the preparatory process and are still waiting
for a galvanic bath?

For such complex problems analytical methods are
stretched to their limits, and better way is to use simulation,
as is noted by Manling (2009).

At present, all the problems that do not require acute
repair are postponed until the production is completed and
only then they are dealt with. However, the problem is that
some of these errors reduce the efficiency of the process
(such as restrictions of the functionality of some pumps for
mixing the baths) when it is necessary to slow the
production by about 20% and there is an increased risk of
poorly metallised parts.

By applying online simulation (i.e., simulation that uses
actual operating data – statuses of the input queues,
warehouse and individual lines – but from the start, the
simulation runs with a time base much faster than the real
time) it is possible to evaluate the best solution method
immediately after detecting a problem.

If we know the malfunction, owing to the frequent
repetition of identical malfunctions, we know the time
needed for the repair. Based on the parameters of the line
(temperature, type, degree of metal coating, input queue,
availability of other lines), the simulation can then be used
to create an ideal scenario for the repair (so far, service
engineers have usually not been able to evaluate all
parameters only by expert judgment, as there are many
variable parameters).

The simulation then can recommend redirecting the
production to another line for the time needed for repair
(this solution minimises the loss of unprocessed elements
that have already undergone preparatory processes),
suspending the line production and repairing (there will be
an increase in the line capacity, if there are large input
queues), or recommend continuing the production without
any repair (with small input queues, or expected change in
the production).

By including the simulation model to support decision
making in the work of service engineers, we can increase
efficiency of the total production under standard conditions
by up to 2% to 5% (in excess of orders and with busy input
warehouses and all lines, it is possible to increase efficiency
and production throughput 7% to 10%).

Business process model, which illustrates repair
sequences, can be found at Figure 9.

26 J. Brozek and M. Jakes

Figure 9 BPM designed for this solution (see online version
for colours)

7.3 Real example A
One of four automatisation lines from the chemical bath has
shut down. The serviceman comes to it, and finds the
problem – oxidised conductor belt at the main panel. He
knows that he has three solutions. He can ignore it and
transfer production to other three serial lines. Also he can

shut-down all serial lines passing towards the bath and take
one hour to repair it. And on the last, he can call his
colleague from home, then they can repair it in ten minutes,
if they stop the line.

After he starts the decision-making simulation (after he
set parameters of problem), he is informed that there are last
1,000 pieces which need to proceed to chemical bath. Then
simulation tells him, that if he will wait for two hours, he
will be able to repair problem without any losses.

7.4 Real example B
Sometimes there are minor accidents, such as problem,
which decrease average temperature of a chemical bath.
Serviceman identifies the problem as in thermostat, but to
change it he needs to stop all line moving through chemical
bath. If this problem is repaired, the time for plating
increases about 10%.

After serviceman runs the decision-making simulation,
he is informed that there are full input storages and if he
does not repair it, then in about one hour there will be big
congestion on the automatic lines. He tried to run simulator
with second scenario – what if he repairs it. The simulation
shows a bigger problem than before, because the congestion
starts in 30 minutes. After serviceman starts the simulation
with third scenario – impregnation of neighbouring
chemical bath and redirection of production, the simulator
tells him, that is the best solution.

Both of the examples are little bit simplified, but are
enough illustrative to explain the benefits of our solution.

7.5 Physical simulation
Simulation is solved with use of all principles introduced in
this article. Simulation is built on HLA, using conservative
synchronisation provided by HLA.

Simulation has eight federates. Three of them are mobile
simulation stations (tablets) with I/O. There is also one
database connector, which uses data from warehouse. There
is one compute federate, which runs on computer with RTI.
The other federates are connected with sensors and other
online systems of company. There is very interesting fact,
that the bridge between online system of company and the
simulation is solved by tablets. But these tablets are
stationary and their only task is to adapt signal which comes
to their USB ports, store it and use it, if it is necessary.

7.6 Software solution
Since it is a distributed solution that is to run on
heterogeneous hardware platforms and it was assumed that
it would be necessary to program various parts of the
system in various programming languages (e.g., the tablet
requires the Java language, the data acquisition system in
the automation computer requires the C programming
language coding), the use of HLA seemed to be ideal as it
has its internal processes adapted to all these contingencies.

 Application of mobile devices within distributed simulation-based decision making 27

8 Potential of future development
Currently, the prototype works only for a limited class of
malfunctions – the article seeks to present an idea that the
systems can deal with using of mobile devices. It is the first
thing which needs improvement.

It is desirable to extend the system itself with the
capability of automatic detection and conjecture of
malfunctions. Ideally also with neural networks to deliver
the learning ability so that the system is able to better work
with various malfunctions, their diagnostics and solutions,
and be able to create scenarios for malfunctions of a new
type.

On the request of servicemen, we are preparing
improvements, which will be able autonomously to predict
the errors. There are a few signals which indicate that a
device will crash. For example, if consumption of electrical
energy at chemical bath slowly, but constantly rises, there is
a strong chance that in two hours occurs to overheating or
rupture of anodes.

In general it may be said that further development is
rather a low-level issue, and it does not change anything
significant on the very ideas and principles of using
combined simulations and tablets for decision support.

9 Conclusions
The article is focused on illustrating the benefits of using
tablets in simulation-based decision making. Studies have
made for three years, and finish in a practical application for
chemical industry. Major problem has been created by
non-existing community or methodology for using mobile
devices in distributed simulation. As a result, we need to
test a large number of alternatives.

The article presents many possibilities how to use
tablets in monolithic or distributed simulation. A few
alternatives are not efficient. But, as our our own software
demonstrates, there are solutions that should be used to
make distributed simulation-based decision very efficient.
Case study shows that facilitating control of simulator can
lead to its application. Consequently it leads to dramatic
economies at corporate owner side.

Authors are expecting great potential in connecting of
mobile devices to simulations, because it is one of the
simplest ways to access simulators to its users.

References
Brozek, J., Onggo, B.S. and Kavicka, A. (2014) ‘High level

architecture virtual assistant framework’, EMSS Proceedings,
University of Bordeaux, Pardubice, ISBN 978-889799932-4.

Bruzzone, A.G., Fadda, P., Fancello, G., D’Errico, G., Bocca, E.
and Massei, M. (2010) ‘Virtual world and biometrics as
strongholds for the development of innovative port
interoperable simulators for supporting both training and
R&D’, International Journal of Simulation and Process
Modeling, Vol. 6, No. 1, pp.89–102.

Cimler, R., Matyska, J., Balik, L., Horalek, J. and Sobeslav, V.
(2015) ‘Security issues of mobile application using cloud
computing’, Advances in Intelligent Systems and Computing,
Vol. 334, No. 334, pp.347–357, DOI: 10.1007/978-3-319-
13572-4_29.

Cimler, R., Matyska, J., Balik, L., Horalek, J. and Sobeslav, V.
(2014) ‘Security aspects of cloud based mobile health care
application’, Lecture Notes of the Institute for Computer
Sciences Social Informatics and Telecommunications
Engineering, Vol. 144, No. 144, pp.202–211, DOI:
10.1007/978-3-319-13572-4_29.

Fujimoto, R.M. (2000) Parallel and Distributed Simulation
Systems, John Wiley & Sons, New York, ISBN 04-711-8383-
0.

Kovac, P. (2012) Reflection: Where are We Going Tablets?
[online] http://www.svethardware.cz/uvaha-kam-smeruji-
tablety/34506-3 (accessed 15 July 2014).

Ku, A. (2012) Lenovo’s ThinkPad X230T Tablet PC,
Tested and Reviewed [online]
http://www.tomshardware.com/reviews/thinkpad-x230t-
review-benchmark,3229-2.html (accessed 15 July 2014).

Kuhl, F., Dahmann, J. and Weatherly, R. (2000) Creating
Computer Simulation Systems: An Introduction to the High
Level Architecture, Upper Saddle River, NJ; Prentice Hall
PTR, ISBN 01-302-2511-8.

Letizia, N., Alessandro, C. and Francisco, S. (2015) ‘Advanced
interoperable simulators for training in car terminals’,
International Journal of Simulation and Process
Modelling, Fall, Vol. 10, No. 2, pp.132–143, DOI:
10.1504/ijspm.2015.070482.

Letizia, N., Alessandro, C., Charlos, A. and Alessando, D. (2014)
‘Hybrid approach for container terminals performances
evaluation and analysis’, International Journal of Simulation
and Process Modelling, Fall, Vol. 9, Nos. 1/2, pp.104–112,
DOI: 10.1504/ijspm.2014.

Manlig, F. (1999) Computer Simulation of Discrete Events [online]
http://www2.humusoft.cz/www/archived/pub/witness/9910/m
anlig.htm (accessed 15 July 2014).

Marina, M., Alberto, T., Simonluca, P. and Letizia, N. (2013)
‘HLA-based real time distributed simulation of a
marine port for training purposes’, International Journal
of Simulation and Process Modelling, Fall, Vol. 8, No. 1,
pp.42–51, DOI: 10.1504/ijspm.2013.055206.

Mocny, O. (2009) Real-time Physics Simulation for Mobile
Device, Bachelor thesis, Charles University.

Rabelo, L., Sala-Diakanda, S., Pastrana, J., Marin, M., Bhide, S.,
Joledo, O. and Bardina, J. (2013) Simulation Modeling of
Space Missions using the High Level Architecture [online]
http://www.hindawi.com/journals/mse/2013/967483/
(accessed 15 July 2014).

Reda, T., Elhaq, S.L. and Ahmed, R. (2014) ‘Modelling
methodology for the simulation of the manufacturing
systems’, International Journal of Simulation and Process
Modelling, Fall, DOI: 10.1504/ijspm.2014.066372.

Reilly, D. (2006) ‘Java RMI & CORBA – a comparison of
competing technologies’, in Java Coffee Break
(cit. 2015-01-20) [online]
http://www.javacoffeebreak.com/articles/rmi_corba/.

Schön, O. (2013) How Powerful is Your PC? New 3DMark Test
Measures the Ability of PC and Tablets and Phones [online]
http://tech.ihned.cz/hry/c1-59252020-3dmark-pro-pc-i-
iphone-a-android (accessed 15 July 2014).

28 J. Brozek and M. Jakes

The Institute of Electrical and Electronics Engineers, Inc. (2010a)
IEEE1516:2010: IEEE Standard for Modeling
and Simulation (M&S) High Level Architecture
(HLA) – Framework and Rules, IEEE, New York,
ISBN 978-0-7381-6251-5.

The Institute of Electrical and Electronics Engineers, Inc.
(2010b) IEEE1516:2010: IEEE Standard for Modeling and
Simulation (M&S) High Level Architecture (HLA) – Object
Model Template (OMT) Specifications, IEEE, New York,
ISBN 978-0-7381-6249-2.

The Institute of Electrical and Electronics Engineers, Inc.
(2010c) IEEE1516:2010: IEEE Standard for Modeling and
Simulation (M&S) High Level Architecture (HLA) – Federate
Interface Specification, IEEE, New York,
ISBN 978-0-7381-6247-8.

The Institute of Electrical and Electronics Engineers,
Inc. (2010d) IEEE Standard for Distributed Interactive
Simulation Application Protocols, IEEE, New York,
ISBN 07-381-0992-4.

The Simulation Interoperability Standards Organization
(2001) Independent Throughput and Latency Benchmarking
for the Evaluation of RTI Implementations, Fall, Orlando,
Florida, USA, DOI: SISO-01F-SIW-03.

Notes
1 Flops are a measure of computer performance, indicating a

count of basic floating-point operations per second.
2 However, it is necessary to note that it is possible to create

other than simply linear non-hierarchical simulation models,
which makes it possible to use a number of central RTI
components in a single simulation.

