

1

Empirical Study on Effects of Compression

Algorithms in Web Environment

Lukáš Čegan1
1University of Pardubice, Faculty of Electrical Engineering and Informatics,

Department of Information Technology, Pardubice, Czech Republic

Web resource compression is one of the most useful tools, which is utilized to accelerate website performance. Compressed

resources take less time to transfer from server to client. This leads to faster rendering of web page content resulting in a

positive impact on the user experience. However, content compression is time consuming and also brings extra demands on

system resources. For these reasons, it is necessary to know how to choose a suitable algorithm in relation to particular web

content. In this paper we present an empirical study on effects of the compression algorithms which are used in web

environment. This study covers Gzip, Zopfi and Brotli compression algorithms and provides their performance comparison.

Keywords: Compression, Website, Gzip, Zopfi, Brotli.

1. INTRODUCTION

Today’s web users are not very patient. They expected
delivery content from web servers to their devices in a flash.
Therefore, web developers, UX designers, software
architects, network experts and many others care about
many optimization technics and appropriate solutions that
help them to delivery whole web content to the client as
fast as a possible. One of these optimization techniques is
appropriate usage of compression algorithms to compress
web page resources. Compressing resources is a very
effective way of reducing their size which is a very
significant help in reducing time needed to transfer these
resources between server and user’s web browser.
Unfortunately, every optimization solution has its pros and
cons. The cons of compression consist in resource
consumption, like CPU and memory, that are used during
data processing. In the web environment are a number of
different algorithm and many of them are very effective at
quickly processing and compressing files. But not all of
them are suitable for the various data formats that are in the
WWW world.

*Email Address: Lukas.cegan@upce.cz
Some of them are ideal for frequently changing files which
are encoded on-the-fly, because these algorithms are very
fast. But these algorithms have not such a big compression
ratio as others which are useful for static files such as
images, CSSs, JavaScripts. These others algorithms have a

big compression ratio, but they are slow. However, it may
not be a hindrance for static content, because it can be
easily preprocessed and deployed to the web server. But
this practice is definitely inapplicable for dynamic
generated content because it is created on-the-fly, on the
server side. For this reasons it is necessary to have a deep
knowledge of the performance data of different algorithms
in different kinds of deployment. In this paper an empirical
study on effects of different compression algorithms is
performed, that brings performance results for mutual
comparison.
 The paper is organized as follows. After introducing the
objective of this paper, the compression algorithms are
presented in Section II. The Section III described the
practical experiments and benchmark settings. The results
of the experimental analysis are discussed in section IV.
Finally, the last section gives conclusions and future
research opportunities followed by references at the end.

2

2. BACKGOUND OF COMMPRESSION

ALGORITHS

Compression algorithms are used in the digital world

everywhere. Music is compressed by MP3, video by

MPEG4, images by GIF, etc. In general, compression

algorithms can be divided into two different group. The

first group are lossless algorithms, which can reconstruct

the original data exactly from the compressed data. These

algorithms are mainly used to compress text information.

The second group are lossy algorithms, which can only

reconstruct an approximation of the original data. These

algorithms are useful, for example, to compress audio,

video and image data. The modern web browser can work

with both groups of algorithm. For efficient

communication between server and client it is especially

important to compress text files such as source code of

websites (HTML, CSS, JavaScripts, etc.). The web server

mainly use compression formats such as Gzip, DEFLATE,

Zlib and new one Zopfi or Brotli.

Gzip, DEFLATE, Zlib

Gzip (GNU zip) file format is based on the DEFLATE

algorithm that is combination of the LZ77 (Lempel–Ziv,

1977) dictionary-based algorithm and Huffman coding.

DEFLATE provides very good compression on a wide

variety of data with minimal use of system resources. It

was created as a free software replacement for LZW and

other patent-encumbered data compression algorithms.

The first version of algorithm was released in 1993. Zlib

is a software library used for lossless data compressing and

it is an abstraction of the DEFLATE compression

algorithm [1]. Zlib was developed by Jean-loup Gailly

(compression) and Mark Adler (decompression) and the

initial version of Zlib was released in 1995 as free software

under the Zlib license.

4bits
CM

4bits
CINFO

8bits
FLG

32bits
DICT

compressed data
32bits
ADLER

1bit
(final)

2bits
(type)

block of compressed data
(stored block, fixed Huffman, dynamic Huffman)

couple of blocks

Fig.1. Zlib data structure

Zopfli

The Zopfli is a compression algorithm that is
compatible with the DEFLATE algorithm used in Zlib. The
algorithm was developed by the Google corporation and
got its name from a Swiss bread recipe. The initial release
of the algorithm was introduced in February 2013. The
reference implementation of the Zopfli compression
algorithm from Google is programmed in C language. It is
an open source and it is distributed under the Apache
License, Version 2.0 [2]. The performance of this algorithm
is very good. It reduces files to sizes 3.7–8.3 percent
smaller than other similar algorithms, but data processing

is slow and consumes two to three times the CPU power of
its competition [3]. For this reason, this algorithm is best
suited for applications where data is compressed once, and
then used many times, like static content for the web.

Brotli

Brotli compressed data format is a lossless
compressed data format that compresses data using a
combination of the LZ77 algorithm and Huffman coding.
Development of this algorithm was initiated in Google labs
and now it is distributed as open-sourced code under the
MIT License. The Brotli specification is published in
RFC7932 [4]. One of the main advantages of this algorithm
is much faster decompression than common LZMA [5]
implementations. The Brotli offers approximately the same
speed of compression, but results of compression are
denser. Brotli is currently used by several web browsers
such as WOFF2 font compression [6]. The results of
WOFF 2.0 Compression on Google Fonts, from a study,
shows a significant reduction of the data size. The
maximum improvement with WOFF 2.0 comes up to 61%.
The average improvement reaches 26% [7]. Brotli is
currently only supported in a few web browsers – Chrome,
Opera, Firefox, Android browser, Chrome for Android [8].

3. EXPERIMENT DESIGN

Most modern browsers support web content

decompression. They inform web servers about supporting

algorithms by header “Accept-Encoding” in the HTTP

request. Currently, most modern web browsers support

GZIP and DEFLATE decompression. Other compression

algorithms have only partial support in a small group of

web browsers and very often they are supported only for

experimental purpose. A web server informs a browser

about the type of compressed algorithm which was used for

compression content of a HTTP response via the header

“Content-Encoding”. The possible values are:

 gzip - a format using the Lempel-Ziv coding with

a 32-bit CRC,

 compress - a format using the Lempel-Ziv-Welch

algorithm,

 deflate - using the zlib structure with the deflate

compression algorithm,

 identity - indicates the identity function (no

compression),

 br - a format using the Brotli algorithm.

Compression is a CPU and memory consumed

process, with higher compression levels resulting in

smaller files at the expense of CPU and memory. For this

reason, it is always necessary to choose the best ratio

among many parameters like compression density, the time

needed for processing and consumption of system

resources. Furthermore, the right processing method must

be selected: pro-compression or compression on-the-fly.

The performance impact of these parameters on the overall

user experience is considerable and therefore we provided

an empirical evaluation of the degree of impact. The

evaluation was performed on Apache web servers with.

3

Testbed platform

A testbed platform consists of the physical machine

Dell Latitude E6440, Intel(R) Core(TM) i5-4310M, 2.70

GHz, 8GB RAM, Windows 10 64 bit. and virtualization

platform VMware Workstation 12. The virtual machine

host server provides computing resources, such as

processing power, memory, disk and network I/O, and so

on. The guest is a completely separate and independent

instance of the operating system. The virtual machine host

represents the desktop client with web browser Chrome 53.

The guest represents the server side with operation system

Debian 8.6 and the web server Apache 2.4.10. The Apache

server was configured with module: mod_deflate and

apache-mod-brotli (see source code below).

1 # BROTLI

2 <IfModule mod_brotli.c>

3 LoadModule brotli_module

modules/mod_brotli.so

4 BrotliCompressionLevel 11

5 BrotliWindowSize 22

6 BrotliFilterNote Input brotli_in

7 BrotliFilterNote Output brotli_out

8 BrotliFilterNote Ratio brotli_ratio

9 LogFormat ‘”%r” %{Brotli_out}n/%{Brotli_in}n

(%{Brotli_ratio}n)’ brotli

10 AddOutputFilterByType BROTLI text/htm

text/html text/plain text/xml text/css image/gif

image/png image/jpeg application/x-javascript

application/javascript

11 </IfModule>

12

13 # DEFLATE

14 <IfModule mod_deflate.c>

15 DeflateCompressionLevel 9

16 AddOutputFilterByType DEFLATE text/htm

text/html text/plain text/xml text/css image/gif

image/png image/jpeg application/x-javascript

application/javascript

17 </IfModule>

Experiment methodology

The impact of each compression algorithm was

conducted on commonly used JavaScript library jQuery

3.1.0, on the very popular CSS framework Boostrap 3.3.7

and Foundation 6.2.3. Each of these libraries has been

compressed with Gzip, Zopfli and Brotli with different

levels of compression quality. In each measurement were

monitored:

 Compress ratio – the ratio between the

uncompressed and compressed data

 Time – the time required for data compression,

measured by Linux utility Time

 CPU usage – CPU needed to compress data,

measured by Valgrind tool.

The second part of the experiment was aimed at

evaluating the impact of compression from the user's

perspective. The impact of each compression algorithm

was conducted on widely used CMS WordPress 4.6.1 and

Joomla 3.6.2. Each algorithm was tested with several

different parameters (if allowed). Individual measurements

were made in three different simulated network

environments: (A) Fiber – unlimited Mbit/s bandwidth and

50ms latency, (B) LTE – 10 Mbit/s and 50ms latency and

(C) 3G – 1 Mbit/s bandwidth and 300ms latency. For

creating a simulation environment Linux tool Netem

(Network Emulator) was used which provides

functionality for variable delay, loss, duplication and re-

ordering with combination of traffic shaper tool TBF

(Token Bucket Filter), which allows the slowing down of

transmitted traffic, to the specified rate. For the impact of

each compression algorithm, tests were performed

repeatedly under HTTP/1.1 + SSL. In each scenario we

measured:

 Compress ratio – the ratio between the

uncompressed and compressed data

 PLT – page load time, measured by our own

JavaScript application based on Navigation

Timing API [13] which obtain performance data

(DNS lookup, TCP connection, DOM loading, etc.)

of every request in the browser.

All tests were performed with a cleaned cache.

4 EXPERIMENTAL RESULT AND DISCUSSION

Table 1 showed a compression density of the jQuery

library, which is just one file in minification version.

Further, Table 1 shows compression density of the

framework Booststrap, which covers: bootstrap.min.css,

bootstrap-theme.min.css, boot-strap.min.js, glyphicons-

halflings-regular.svg files, and framework Foundation,

which covers: foundation.min.css, app.js,

foundation.min.js files.

Table.1. Compression density [B]

 jQuery Bootstrap Foundation

Uncompressed 86351 290392 185299

Gzip1 35010 73716 47349

Gzip5 30148 60291 37923

Gzip9 29885 58620 37257

Zopfli1 29040 55431 35792

Zopfli50 29013 55103 35642

Zopfli1000 29013 55076 35604

Brotli1 35982 70311 47331

Brotli5 29474 55470 35370

Brotli9 29147 54058 34560

4

Comparison of the compression density is shown in the

following chart. Compression density is expressed as

total_size_of_all_files_after_compression / total_size_of-

_all_files_before_compression * 100%. As the graph

shows, the best result was achieved by a Brotli with

compression level 9 (see Figure 2).

Fig.2. Compression density [%]

Table 2 shows the compression rate. The speed value
is specified in bytes per millisecond. As results show,
Zopfli is really slow.

Table.2. Compression speed [ms]

 jQuery Bootstrap Foundation

Gzip1 0.003 0.006 0.004

Gzip5 0.005 0.010 0.006

Gzip9 0.006 0.023 0.010

Zopfli1 0.103 0.609 0.405

Zopfli50 1.038 4.660 3.284

Zopfli1000 14.139 83.227 59.112

Brotli1 0.003 0.007 0.005

Brotli5 0.017 0.017 0.011

Brotli9 0.458 0.073 0.396

The next measured parameter was CPU usage. Table

3 shows the amount of CPU time spent in user-mode code
(outside the kernel) and sys-mode (inside the kernel)
within the process. Time is given in milliseconds. Again,
the worst result was achieved by Zopfli.

The second part of the empirical study has focused on
the evaluation of compression algorithms from the user
experience perspective, which is also very important. The
effectiveness of the compression algorithms has been
investigated in three network scenarios: FIBER, LTE, 3G,
and each scenario was tested on two websites based on
Wordpress and Joomla CSM.

Table.3. CPU usage [ms]

 jQuery Bootstrap Foundation

Gzip1 0.000 0.004 0.004

Gzip5 0.004 0.008 0.004

Gzip9 0.004 0.020 0.008

Zopfli1 0.092 0.596 0.392

Zopfli50 0.888 4,636 3.264

Zopfli1000 14.084 82.964 56.914

Brotli1 0.000 0.004 0.000

Brotli5 0.004 0.008 0.012

Brotli9 0.132 0.052 0.072

The total size of each website is shown in Table 4. The

uncompressed size of tested web pages is from 2.7 to 3.4,

which is, according to available statistics, a common size

of web pages today.

Table.4. Size of website [Mb]

 WordPress Joomla

Uncompressed 3.4 2.7

Gzip1 2.9 2.1

Gzip9 2.9 2.1

Brotli1 2.9 2.1

Brotli11 2.8 2.0

Table.5. Page load time [s]

 WordPress Joomla

LTE

Uncompressed 1.422 1.357

Gzip1 1.262 1.230

Gzip9 1.221 1.259

Brotli1 1.282 1.311

Brotli9 1.189 1.282

3G

Uncompressed 32.243 26.376

Gzip1 27.125 22.052

Gzip9 28.012 21.297

Brotli1 27.237 21.998

Brotli9 28.068 22.138

FIBER

Uncompressed 3.674 3.478

Gzip1 3.543 3.286

Gzip9 3.571 3.287

Brotli1 3.552 3.129

Brotli9 3.491 2.933

0 10 20 30 40 50

Gzip1

Gzip5

Gzip9

Zopfli1

Zopfli50

Zopfli1000

Brotli1

Brotli5

Brotli9

Foundation Bootstrap jQuery

5

Table 5 shows page load time for each scenario and

each website, which expresses the time required to fully

display the content of a specific page.

5. CONCLUSIONS

This paper presents an empirical study on effects of
compression algorithms in the web environment.
Assessment of the algorithms were divided into two
branches: static and dynamic web content. The
demonstrated results in the static web branch show, that
commonly used Gzip is very fast and has a small CPU
footprint. Zopfi is better than Gzip in compressing, but it is
much slower. However, for a static web it is not a
disadvantage, because all web resources are pre-
compressed and stored in the web server for use. From this
perspective, Zopfi is the most appropriate tool for the static
web. In the dynamic web branch, the situation is different.
Zopfi is very slow, therefore it is totally inappropriate for
dynamically generated content. The results demonstrate
that Brotli offers a significantly better compression ratio
while keeping decompressing speed relatively close to
Gzip. From the user perspective, even this small
improvement can mean a significantly faster rendering of
a web page with large files, which leads to the achievement
of better user experience. Brotli has potential to become
the most commonly used compression algorithm in WWW
for on-the-fly compression. Unfortunately, the
disadvantage of Brotli is incompatibility with the current
most widely used format DEFLATE, which can lead to a
slower expansion of support in major browsers.

ACKNOWLEDGMENTS

This work is published thanks to the financial support

Faculty of Electrical Engineering and Informatics,

University of Pardubice under grant TG02010058

“Podpora aktivit proof-of-concept na Univerzitě Pardu-

bice”.

REFERENCES

[1] P. DEUTSCH and J-L. GAILLY, ZLIB Compressed Data Format

Specification version 3.3, In: Internet Engineering Task Force

(IETF) [cit. 2016-09-17]. Received: https://tools.ietf.org/html/

rfc1950

[2] Zopfli Compression Algorithm [online]. [cit. 2016-09-17].

Received: https://github.com/google/zopfli

[3] JYRKI ALAKUIJALA a LODE VANDEVENNE. Data

compression using Zopfli. [online]. [cit. 2016-09-17]. Received:

https://ru.scribd.com/document/319797551/Data-compression-

using-Zopfli-pdf.

[4] Z. SZABADKA a J. ALAKUIJALA. Brotli Compressed Data

Format [online]. In: Internet Engineering Task Force (IETF) [cit.

2016-09-17]. Received: https://www.ietf.org/rfc/rfc7932.txt.

[5] LI, Bing, Lin ZHANG, Zhuangzhuang SHANG a Qian DONG.

Implementation of LZMA compression algorithm on FPGA.

Electronics Letters. 2014, 50(21), 1522-1524. DOI:

10.1049/el.2014.1734. ISSN 0013-5194. Received: http://digital-

library.theiet.org/content/journals/10.1049/el.2014.1734.

[6] WOFF File Format 2.0: W3C Candidate Recommendation 15

March 2016 [online]. [cit. 2016-09-17]. Received:

https://www.w3.org/TR/ WOFF2/# table_format.

[7] KUETTEL, David. WOFF 2.0 Compression w/ Google Fonts

[online]. In: Google [cit. 2016-09-17]. Received:

https://docs.google.com/spreadsheets/d/1DxoOZLA1QywIzwm

Wr0Pc0GAp15YDnB-4JbJiKWQNgo8/edit#gid=0

[8] Can I Use, Brotli, Received: http://caniuse.com/#search=brotli

