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Abstract

Let n > 1 be an integer with its canonical representation, n = pα1
1 ·

pα2
2 · · · p

αk
k . Put H(n) = max{α1, . . . , αk}, h(n) = min{α1, . . . , αk},

ω(n) = k, Ω(n) = α1 + · · · + αk, f(n) =
∏
d|n d and f∗(n) = f(n)

n .
Many authors deal with the statistical convergence of these arithmeti-
cal functions. For instance the notion of normal order is defined by
means of statistical convergence. The statistical convergence is equiva-
lent with Id-convergence, where Id is the ideal of all subsets of pos-
itive integers having the asymptotic density zero. In this paper we
will study I-convergence of well known arithmetical functions, where

I = I(q)c = {A ⊆ N :
∑

a∈A a
−q < +∞} is an admissible ideal on N

for q ∈ (0, 1〉 such that I(q)c ( Id.

1 Introduction

The notion of statistical convergence was introduced in [6], [24] and the notion
of I-convergence from the paper [15] coresponds to the natural generaliza-
tion of statistical convergence (see also [4] where I-convergence is defined by
means of filter-the dual notion to ideal). These notions have been developed
in several directions in [2], [3], [5], [9], [13], [14], [19], [22] and have been used
in various parts of mathematics, in particular in number theory and ergodic
theory, for example [1], [7], [10], [11], [14], [18], [20], [21], [23]. Recall the
definition and some examples of ideals on N.

Let I ⊆ 2N. I is called an admissible ideal of subsets of positive integers,
if I is additive (if A,B ∈ I then A∪B ∈ I), hereditary (if A ∈ I and B ⊂ A
then B ∈ I), containing all singletons and it does not contain N. Here we
present some examples of admissible ideals.

More examples can be found in the papers [11], [13] and [17].
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Example 1.1. a) The class of all finite subsets of N forms an admissible
ideal usually denoted by If .

b) Let % be a density function on N, the set I% = {A ⊆ N : %(A) = 0}
is an admissible ideal. We will use namely the ideals Id, Iδ, Iu and
Ih related to asymptotic, logarithmic, uniform and Alexander density
respectively. The definitions for those densities see [1], [8], [11], [13],
[17] and [26].

c) For an q ∈ (0, 1〉 the set I(q)c = {A ⊆ N :
∑

a∈A a
−q < +∞} is an

admissible ideal. The ideal I(1)c = {A ⊆ N :
∑

a∈A a
−1 < +∞} is

usually denoted by Ic. It is easy to see, that for any q1, q2 ∈ (0, 1),
q1 < q2 we have

If ( I(q1)c ( I(q2)c ( Ic ( Id ( Iδ. (1)

d) Let N =
⋃∞
j=1Dj be a decomposition on N (i.e. Dk ∩Dl = ∅ for k 6= l).

Assume that Dj (j = 1, 2, . . . ) are infinite sets (e.g. we can choose
Dj = {2j−1.(2s− 1) : s ∈ N} for j = 1, 2, . . . ). Denote IN the class of
all A ⊆ N such that A intersects only a finite number of Dj. Then IN
is an admissible ideal.

Let us recall notions of I- and I∗-convergence of sequences of real numbers
see [15].

Definition 1.2. (i) We say that a sequence x = (xn)∞n=1 I-converges to
a number L and we write I − limxn = L, if for each ε > 0 the set
A(ε) = {n : |xn − L| ≥ ε} belongs to the ideal I.

(ii) Let I be an admissible ideal on N. A sequence x = (xn)∞n=1 of real
numbers is said to be I∗-convergent to L ∈ R, if there is a set H ∈ I,
such that for M = N \H = {m1 < m2 < · · · } we have

lim
k→∞

xmk
= L,

where the limit is in the usual sense.

It is clear that for an admissible ideal I we have that I∗-convergence of
sequence implies I-convergence. The converse is not true, for example the
ideals Iu = {A ⊆ N : u(A) = 0}, where u is the uniform density (see [8],
[26]), IN from example 1.1 d) (see [15]) and the ideal Iµ = {A ⊆ N : µ(A) =
0}, where µ is the Buck’s measure (see [17]) have this property. For ideals
Id and Iδ the notions I- and I∗-convergence are equivalent (see [15]). The

following theorem shows that also for all ideals I(q)c for q ∈ (0, 1〉 the concepts
I- and I∗-convergence coincide.
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Theorem 1.3 (Theorem 1.5 from [11]). For any q ∈ (0, 1〉 the I(q)c and

I(q)∗c -convergence are equivalent.

Proof. It suffices to prove that for any sequence (xn)∞n=1 of real numbers such
that I− limxn = ξ there exists a set M = {m1 < m2 < · · · < mk < · · · } ⊆ N
such that N \M ∈ I and lim

k→∞
xmk

= ξ.

For any positive integer k let εk = 1
2k

and Ak = {n ∈ N : |xn − ξ| ≥ 1
2k
}.

As I − limxn = ξ, we have Ak ∈ I, i.e.∑
a∈Ak

a−q <∞.

Therefore there exists an infinite sequence n1 < n2 < · · · < nk < · · · of
integers such that for every k = 1, 2, . . .∑

a>nk
a∈Ak

a−q <
1

2k
.

Let H =
⋃∞
k=1[(nk, nk+1〉 ∩ Ak]. Then∑

a∈H

a−q ≤
∑
a>n1
a∈A1

a−q +
∑
a>n2
a∈A2

a−q + · · ·+
∑
a>nk
a∈Ak

a−q + · · · <

1

2
+

1

22
+ · · ·+ 1

2k
+ · · · < +∞.

Thus H ∈ I. Put M = N \ H = {m1 < m2 < · · · < mk < · · · }. Now it
suffices to prove that lim

k→∞
xmk

= ξ. Let ε > 0. Choose k0 ∈ N such that
1

2k0
< ε. Let mk > nk0 . Then mk belongs to some interval (nj, nj+1〉 where

j ≥ k0 and doesn’t belong to Aj (j ≥ k0). Hence mk belongs to N \ Aj, and
then |xmk

− ξ| < ε for every mk > nk0 , thus lim
k→∞

xmk
= ξ.

In [15] was formulated a necessary and sufficient condition for an admissi-
ble ideal I under which I- and I∗-convergence are equivalent. This condition
(AP) is similar to the condition (APO) in [5] and [6].

Definition 1.4 (see also [8]). An admissible ideal I ⊂ 2N is said to sa-
tisfy the condition (AP) if for every countable family of mutually disjoint
sets {A1, A2, . . . } belonging to I there exists a countable family of sets
{B1, B2, . . . } such that symmetric difference Aj∆Bj is finite for j ∈ N and
B =

⋃∞
j=1Bj ∈ I.
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Corollary 1.5 (see [11]). Ideals I(q)c for q ∈ (0, 1〉 have the property (AP).

It is easy to prove the following lemma.

Lemma 1.6 (see [15]). If I1 ⊆ I2 then the statement I1− limxn = x implies
I2 − limxn = x.

The converse is not true as the following example shows.

Example 1.7. I( 1
2)

c ( Ic. Define the sequence x = (xn)∞n=1 as follows:
xn = 1 for n = k2 and xn = 0 otherwise. Then Ic − limxn = 0 but

x = (xn)∞n=1 is not I( 1
2)

c -convergent.

Recall some arithmetical functions, which we will investigate with respect
to I(q)c -convergence for q ∈ (0, 1〉. Let n = pα1

1 · pα2
2 · · · p

αk
k be the canonical

representation of the integer n ∈ N.

1. ω(n) - the number of distinct prime factors of n (ω(n) = k),

2. Ω(n) - the number of prime factors of n counted with multiplicities
(Ω(n) = α1 + · · ·+ αk),

3. for n > 1 denote

h(n) = min
1≤j≤k

αj, H(n) = max
1≤j≤k

αj

and h(1) = 1, H(1) = 1,

4. f(n) =
∏

d|n d, f ∗(n) = 1
n
f(n), where n = 1, 2, . . . ,

5. ap(n) is defined as follows: ap(1) = 0 and if n > 0, then ap(n) is a
unique integer j ≥ 0 satisfying pj | n, but pj+1 - n i. e., pap(n)‖n.

In the papers [7], [21], [23] and in the book [26] there are studied vari-
ous convergences of above mentioned arithmetical functions. The following
equalities were proved in the paper [23] by using the notion of normal order
and some results from [12] and [16].

limstat
ω(n)

log log n
= limstat

Ω(n)

log log n
= 1

and

limstat
h(n)

log n
= limstat

H(n)

log n
= 0.
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Recall that the statistical convergence coinsides with Id-convergence, that
is why we can write Id − lim instead of limstat in the previous equalities.
Similarly for the functions f(n) and f ∗(n). In [21] it is proved the following
equality:

Id − lim
log log f(n)

log log n
= Id − lim

log log f ∗(n)

log log n
= 1 + log 2.

Let us recall one more result from [20] there was proved that the sequence(
log pap(n)

logn

)∞
n=2

is Id convergent to 0. Moreover the sequence
(

log pap(n)
logn

)∞
n=2

is I(q)c -convergent to 0 for q = 1 and it is not I(q)c -convergent for all q ∈ (0, 1),
this was shown in [7]. In [1] it was proved that this sequence is also Iu-
convergent to 0. It is known that Iu ( Id (see for ex. [2], [3]) but the ideals
Ic an Iu are not disjoint and moreover Iu 6⊆ Ic and Ic 6⊆ Iu. For example the
set of all prime numbers belongs to Iu but not belongs to Ic. On the other
hand there exists the set B =

⋃∞
k=1Bk, where Bk = {k3+1, k3+2, . . . , k3+k}

which not belongs to Iu but it belongs to Ic.
Under the fact that I(q)c ( Id for all q ∈ (0, 1〉 and Lemma 1.6 it is useful

to investigate I(q)c -convergence of these sequences for q ∈ (0, 1〉.

2 Main results

In this section we will investigate the I(q)c -convergence of special sequences
described in the introduction. Under the Lemma 1.6 it is clear that if there
exists the I(q)c -limit of some sequence for any q ∈ (0, 1〉 then it is equal to the
Id-limit of the same sequence. There are no other options.

First of all consider the sequences
(
h(n)
logn

)∞
n=2

and
(
H(n)
logn

)∞
n=2

. In [23] it

was proved that these sequences are dense on (0, 1
log 2

) and moreover they

both are statistically convergent to zero. The same result we have for I(q)c -

convergence, but only for the sequence
(
h(n)
logn

)∞
n=2

for all q ∈ (0, 1〉.

Theorem 2.1. We have

I(q)c − lim
h(n)

log n
= 0, for all q ∈ (0, 1〉 .

Proof. Let k ∈ N and k ≥ 2. It is easy to see that the following equality
holds

1 +
∑

n : h(n)≥k

n−q =
∏
p∈P

(
1 +

1

pkq
+

1

p(k+1)q
+ · · ·

)
(2)
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where P denotes the set of all primes.
The right hand side of the equality (2) equals

∏
p∈P

(
1 +

1

pkq
· 1

1− 1
pq

)
=
∏
p∈P

(
1 +

1

p(k−1)q · (pq − 1)

)
.

Then for q > 1
k

the product on the right hand side of the previous equality
converges. Thus the series on the left hand side of (2) converges.

Let ε > 0. Put A(ε) =
{
n : h(n)

logn
≥ ε > 0

}
. There exists an n

(k)
0 ∈ N for

all k ≥ 2 such that for all n > n
(k)
0 and n ∈ A(ε) we have h(n) ≥ ε. log n > k

(it is sufficient to put n
(k)
0 = [e

k
ε ], where [x] is whole part of number x).

From this A(ε) ∩ {n(k)
0 + 1, n

(k)
0 + 2, . . . } ⊆ {n ∈ N : h(n) ≥ k} for all

k ≥ 2, k ∈ N.
Therefore

∑
n∈A(ε) n

−q < +∞ for all k ≥ 2 and I(q)c − lim h(n)
logn

= 0 since

the series (2) converges for all q > 1
k
. If k → ∞ for sufficient large then

I(q)c − lim h(n)
logn

= 0 for all q ∈ (0, 1〉.

Corollary 2.2. We have

I∗(q)c − lim
h(n)

log n
= 0 for all q ∈ (0, 1〉.

For the sequence
(
H(n)
logn

)∞
n=2

we get the result of different character.

Theorem 2.3. The sequence
(
H(n)
logn

)∞
n=2

is not I(q)c -convergent for every q ∈
(0, 1).

Proof. In the paper [7] is proved, that the sequence
(

log p · ap(n)
logn

)∞
n=2

is not

I(q)c -convergent to zero for any q ∈ (0, 1). The sequence
(
ap(n)

logn

)∞
n=2

is also

not I(q)c -convergent to zero. The inequality H(n) ≥ ap(n) holds for all n =

1, 2, . . . and for any prime number p. Then we have H(n)
logn

≥ ap(n)

logn
for all

n = 2, 3, . . . . This implies that the sequence
(
H(n)
logn

)∞
n=2

is also not I(q)c -

convergent to zero for every q ∈ (0, 1).

Theorem 2.4. For q = 1, we obtain

Ic − lim
H(n)

log n
= 0.
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Proof. We will show that

A(ε) =

{
n ∈ N :

H(n)

log n
≥ ε

}
∈ Ic

for any ε > 0.
Every non-negative integer n can be represented as n = ab2, where a is a

square-free number. Hence H(a) = 1 and

H(n) ∈ {H(b2), H(b2) + 1}.

If n ∈ A(ε) then from H(n) ≥ ε log n we have

log(ab2) ≤ H(b2) + 1

ε
and so log a ≤ H(b2) + 1

ε
.

Therefore

A(ε) ⊆ B =

{
n ∈ N : n = ab2, log a ≤ H(b2) + 1

ε
, b ∈ N

}
.

It is enough to prove that
∑

n∈B n
−1 < +∞. We have

∑
n∈B

1

n
=
∞∑
b=1

1

b2

∑
log a≤H(b2)+1

ε

1

a
.

We use the inequality Sk =
∑k

j=1
1
j
≤ 1 + log k for the harmonic series. Then

we have the following inequality∑
n∈B

1

n
≤

∞∑
b=1

1

b2

(
H(b2) + 1

ε
+ 1

)
. (3)

Because the
∑

1
b2

= π2

6
< +∞, it is enough to prove that the

∞∑
b=1

H(b2)

b2
< +∞. (4)

For any n ∈ N we have n = pa11 · · · p
ak
k ≥ 2H(n) and from this H(n) ≤ logn

log 2
.

Therefore
∞∑
b=1

H(b2)

b2
≤ 2

log 2

∞∑
b=1

log b

b2
< +∞.

We have shown that the sum in (4) is finite and therefore the sum in (3) is
also finite.

Moreover B ∈ I and because A(ε) ⊆ B we have A(ε) ∈ Ic.
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The situation for sequences

(
ω(n)

log log n

)∞
n=2

and

(
Ω(n)

log log n

)∞
n=2

is diffe-

rent.

Theorem 2.5. The sequences

(
ω(n)

log log n

)∞
n=2

and

(
Ω(n)

log log n

)∞
n=2

are not

I(q)c -convergent for all q ∈ (0, 1〉.

Proof. We prove this assertion only for

(
ω(n)

log log n

)∞
n=2

. The proof for the

sequence

(
Ω(n)

log log n

)∞
n=2

is analogous. Let q = 1. On the basis of the

Theorem 2.2 of [23] and Lemma 1.6 we can assume that Ic−lim
ω(n)

log log n
= 1.

Take ε ∈
(
0, 1

2

)
and consider the set

A(ε) =

{
n ∈ N :

∣∣∣∣ ω(n)

log log n
− 1

∣∣∣∣ ≥ ε

}
.

Put n = p where p is a prime number, then ω(p) = 1 and
∣∣ 1
log log p

−1
∣∣ ≥ ε holds

for all prime numbers p > p0. Therefore the set Aε contains all prime numbers
greater than p0. For these p we have:

∑
p>p0

1
p

= +∞ and so A(ε) /∈ Ic. From

this Ic − lim ω(n)
log logn

6= 1. Under the inclusion I(q)c ( I(1)c ≡ Ic and according

to Lemma 1.6 we have I(q)c − lim ω(n)
log logn

6= 1 for q ∈ (0, 1〉. This complete the
proof.

Similar results we can prove for functions f(n) and f ∗(n).

Theorem 2.6. The sequence

(
log log f(n)

log log n

)∞
n=2

is not I(q)c -convergent for

all q ∈ (0, 1〉.

Proof. According to Theorem 2.1 of [21] suppose that the

I(q)c − lim
log log f(n)

log log n
= 1 + log 2,

where q ∈ (0, 1〉. Let ε ∈ (0, log 2) and define the set

A(ε) =

{
n ∈ N :

∣∣∣∣ log log f(n)

log log n
− (1 + log 2)

∣∣∣∣ ≥ ε

}
.
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Put n = p, where p is a prime number, then f(p) = p and log log p
log log p

= 1.

Therefore the set A(ε) contains all prime numbers. Next we have:∑
n∈A(ε)

n−q ≥
∞∑
j=1

pj
−q ≥

∞∑
j=1

pj
−1 = +∞, q ∈ (0, 1〉.

Hence A(ε) /∈ I(q)c and I(q)c − lim log log f(n)
log logn

6= 1 + log 2 for all q ∈ (0, 1〉.

Theorem 2.7. The sequence

(
log log f ∗(n)

log log n

)∞
n=2

is not I(q)c -convergent for

all q ∈ (0, 1〉.

Proof. According to Theorem 2.2 of [21] again suppose that the

I(q)c − lim
log log f ∗(n)

log log n
= 1 + log 2,

where q ∈ (0, 1〉. The proof is going similar as in the previous Theorem. Put
n = pipj, i 6= j, where pi, pj are distinct prime numbers. Then f ∗(n) =

f ∗(pipj) =
f(pipj)

pipj
=

pipj(pipj)

pipj
= pipj, i 6= j. Hence

log log f∗(pipj)
log log pipj

= 1. Let

ε ∈ (0, log 2) and define the set

A(ε) =

{
n ∈ N :

∣∣∣∣ log log f ∗(n)

log log n
− (1 + log 2)

∣∣∣∣ ≥ ε

}
.

This set contains all numbers of the type pipj, i 6= j. For q ∈ (0, 1〉 we have:∑
n∈A(ε)

n−q ≥
∞∑
j=1
pj 6=2

1

2pj
, (pi = 2).

Since the series
∑∞

j=1
1

2pj
diverges, we have A(ε) /∈ I(q)c for all q ∈ (0, 1〉.

Therefore I(q)c − lim log log f∗(n)
log logn

6= 1 + log 2 and the proof is complete.

There exists a relationship between functions f(n) and τ(n), where τ(n)
is the number of divisors of n. The following equality holds: log f(n) =
τ(n)
2
. log n, (n > e) (see [12]). From this we have

log log f(n) = log
1

2
+ log τ(n) + log log n, n > ee.

Therefore

log log f(n)

log log n
= 1 +

log τ(n)

log log n
+

log 1
2

log log n
, n > ee.

From Theorem 2.6 we have the following statement.
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Corollary 2.8. The sequence

(
log τ(n)

log log n

)∞
n=2

is not I(q)c -convergent for all

q ∈ (0, 1〉.
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functions ap(n), γ(n), τ(n). Annales Math. et Informaticae 33(2006),
35-43.

[8] A. R. Freedman - J. J. Sember: Densities and summability, Pacific
Journal of Mathematics, 95(1981), 293-305.

[9] J. A. Fridy: On statistical convergence, Analysis, 5(1985), 301-313.

[10] H. Furstenberg: Recurrence in Ergodic Theory and Combinatorial Num-
ber Theory, Princeton University Press, Princeton 1981.

10



[11] J. Gogola - M. Mačaj - T. Visnyai: On I(q)c convergence. Annales Math-
ematicae et Informaticae, 38(2011), 27–36.

[12] G. H. Hardy - E. M. Wright: An Introduction to the Theory of Numbers.
Clarendon Press, Oxford 1954.
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