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Abstract

Let n > 1 be an integer with its canonical representation, n = p?l .
Py -pz’“. Put H(n) = max{ay,...,ax}, h(n) = min{ay,...,ax},
w(n) =k, Qn) = a1 + -+ + ag, f(n) = [y, d and f*(n) = L2,
Many authors deal with the statistical convergence of these arithmeti-
cal functions. For instance the notion of normal order is defined by
means of statistical convergence. The statistical convergence is equiva-
lent with Z;-convergence, where Z; is the ideal of all subsets of pos-
itive integers having the asymptotic density zero. In this paper we
will study Z-convergence of well known arithmetical functions, where
I=19 = {ACN : > c4a %< +oo} is an admissible ideal on N

for ¢ € (0,1) such that 7 C Iy.

1 Introduction

The notion of statistical convergence was introduced in [6], [24] and the notion
of Z-convergence from the paper [15] coresponds to the natural generaliza-
tion of statistical convergence (see also [4] where Z-convergence is defined by
means of filter-the dual notion to ideal). These notions have been developed
in several directions in [2], [3], [5], [9], [13], [14], [19], [22] and have been used
in various parts of mathematics, in particular in number theory and ergodic
theory, for example [1], [7], [10], [11], [14], [18], [20], [21], [23]. Recall the
definition and some examples of ideals on N.

Let Z C 2. T is called an admissible ideal of subsets of positive integers,
if 7 is additive (if A, B € Z then AUB € I), hereditary (if A€ Zand BC A
then B € 7), containing all singletons and it does not contain N. Here we
present some examples of admissible ideals.

More examples can be found in the papers [11], [13] and [17].
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Example 1.1. a) The class of all finite subsets of N forms an admissible
ideal usually denoted by Z;.

b) Let o be a density function on N, the set Z, = {A C N : p(A) =0}
is an admissible ideal. We will use namely the ideals Z;, Zs, Z, and
7, related to asymptotic, logarithmic, uniform and Alexander density
respectively. The definitions for those densities see [1], [8], [11], [13],
[17] and [26].

c¢) For an ¢ € (0,1) the set 79 = {ACN : Y _,a"? < +oo} is an
admissible ideal. The ideal Z" = {ACN : Y  at < oo} is
usually denoted by Z.. It is easy to see, that for any ¢, € (0,1),
q1 < g2 we have

Iy T C T C 1. C 1, C T, (1)

d) Let N={J;Z, D; be a decomposition on N (i.e. DyND; =0 for k # 1).
Assume that D; (j = 1,2,...) are infinite sets (e.g. we can choose
D; ={2""(2s—1) : seN}forj=1,2,...). Denote Zy the class of
all A C N such that A intersects only a finite number of D;. Then Zy
is an admissible ideal.

Let us recall notions of Z- and Z*-convergence of sequences of real numbers
see [15].

Definition 1.2. (i) We say that a sequence z = (x,)32, Z-converges to
a number L and we write Z — limz,, = L, if for each ¢ > 0 the set
A(e) ={n : |z, — L| > €} belongs to the ideal Z.

(ii) Let Z be an admissible ideal on N. A sequence x = (x,)>2, of real
numbers is said to be Z*-convergent to L € R, if there is a set H € Z,
such that for M = N\ H = {m; < my < ---} we have

lim z,, =L,
k—o00
where the limit is in the usual sense.

It is clear that for an admissible ideal Z we have that Z*-convergence of
sequence implies Z-convergence. The converse is not true, for example the
ideals Z, = {A C N : u(A) = 0}, where u is the uniform density (see [8],
[26]), Zy from example 1.1 d) (see [15]) and the ideal Z, = {A C N : p(A) =
0}, where p is the Buck’s measure (see [17]) have this property. For ideals
Z, and Zj the notions Z- and Z*-convergence are equivalent (see [15]). The
following theorem shows that also for all ideals 79 for q € (0,1) the concepts
Z- and Z*-convergence coincide.



Theorem 1.3 (Theorem 1.5 from [11]). For any q € (0,1) the 79 and
T _convergence are equivalent.

Proof. Tt suffices to prove that for any sequence (z,,)5°; of real numbers such
that Z—limx,, = £ there existsaset M ={m; <my <---<mp <---} CN
such that N\ M € Z and klim T, = &.

— 00

For any positive integer £ let g, = 2% and Ay, ={neN: |z, - ¢ > QL,C}
As7Z —limz, =&, we have A, € Z, i.e.

g a 4 < oo.
a€Ag

Therefore there exists an infinite sequence ny < ng < --- < nyp < --- of
integers such that for every k =1,2,...

Z a ! < 2%

a>ng
aGAk

Let H = UZOZI[(nk,TL]H_ﬁ N Ak] Then

S s St Yt <

acH a>ng a>ng a>ng

a€A; a€As a€ Ay
Ll
J— —_— PR _— DRI (x)_
2 22 2k

Thus H € Z. Pt M =N\ H ={m; <my < --- <my <---}. Now it
suffices to prove that klim ZTm, = & Let € > 0. Choose ky € N such that
— 00

2%0 < e. Let my > ng,. Then my belongs to some interval (n;,n;4+1) where

J > ko and doesn’t belong to A; (j > ko). Hence my, belongs to N\ A;, and
then |z,,, — &| < e for every my > ny,, thus klim T, = &. ]
— 00

In [15] was formulated a necessary and sufficient condition for an admissi-
ble ideal Z under which Z- and Z*-convergence are equivalent. This condition
(AP) is similar to the condition (APO) in [5] and [6].

Definition 1.4 (see also [8]). An admissible ideal Z C 2V is said to sa-
tisfy the condition (AP) if for every countable family of mutually disjoint
sets {Aj, As, ...} belonging to Z there exists a countable family of sets
{B1, By, ...} such that symmetric difference A;AB; is finite for j € N and
B = Ujil Bj el



Corollary 1.5 (see [11]). Ideals ItV for q € (0,1) have the property (AP).
It is easy to prove the following lemma.

Lemma 1.6 (see [15]). IfZ; C I, then the statement T; —lim x,, = x implies
I —limzx, = x.

The converse is not true as the following example shows.

Example 1.7. Ic(ﬁ) C Z.. Define the sequence =z = (z,)%, as follows:
z, = 1 for n = k? and z,, = 0 otherwise. Then Z. — limz, = 0 but
3)
2

x = (x,)22, is not Ic< -convergent.

Recall some arithmetical functions, which we will investigate with respect
to IC(Q)—convergence for ¢ € (0,1). Let n = p* - p5?---pi* be the canonical
representation of the integer n € N.

1. w(n) - the number of distinct prime factors of n (w(n) = k),

2. Q(n) - the number of prime factors of n counted with multiplicities
(Q(TL) =a;+ - —|—Oék>,

3. for n > 1 denote

h(n) = 1r§11]1£1k a;, H(n)= 112]a§xk a;

and h(l) =1, H(1) =1,
4. f(n) = Hd|nd, f*(n) = %f(n), where n = 1,2, ...,
5. ap(n) is defined as follows: a,(1) = 0 and if n > 0, then a,(n) is a

unique integer j > 0 satisfying p’ | n, but p*' { n i. e., p®™||n.

In the papers [7], [21], [23] and in the book [26] there are studied vari-
ous convergences of above mentioned arithmetical functions. The following
equalities were proved in the paper [23] by using the notion of normal order
and some results from [12] and [16].

Q
lims.tatM = limstatﬂ =1
log logn log logn
and , "
limstatﬂ = limstatﬂ =0.
ogn ogn



Recall that the statistical convergence coinsides with Z;-convergence, that
is why we can write Z; — lim instead of limstat in the previous equalities.
Similarly for the functions f(n) and f*(n). In [21] it is proved the following
equality:

loglog f(n) — 7, lim loglog f*(n)

Z;—li
4~ log logn log logn

=1+log?2.
Let us recall one more result from [20] there was proved that the sequence

(log pa”—(n)) is Z4 convergent to 0. Moreover the sequence (log pap—(")>
n=2 n=2

logn logn

is IC(Q) -convergent to 0 for ¢ = 1 and it is not Iéq)—convergent forall ¢ € (0,1),
this was shown in [7]. In [1] it was proved that this sequence is also Z,-
convergent to 0. It is known that Z, C Z; (see for ex. [2], [3]) but the ideals
Z. an Z, are not disjoint and moreover Z, Z Z. and Z. Z Z,,. For example the
set of all prime numbers belongs to Z, but not belongs to Z.. On the other
hand there exists the set B = J;—, By, where B, = {k*+1,k%+2,... k*+k}
which not belongs to Z, but it belongs to Z..

Under the fact that Z9 C Z, for all ¢ € (0,1) and Lemma 1.6 it is useful

to investigate Ic(q)—convergence of these sequences for ¢ € (0,1).

2 Main results

In this section we will investigate the Iéq)—convergence of special sequences
described in the introduction. Under the Lemma 1.6 it is clear that if there
exists the Ic(q)—limit of some sequence for any ¢ € (0, 1) then it is equal to the
Z4-limit of the same sequence. There are no other options.

First of all consider the sequences <M> and <H(”)> . In [23] it
n=2 n=2

logn logn

was proved that these sequences are dense on (0, @) and moreover they
both are statistically convergent to zero. The same result we have for 79

convergence, but only for the sequence <%> for all ¢ € (0,1).
n=2

Theorem 2.1. We have

h(n)
logn

79 — lim =0, forallqe (0,1).

Proof. Let k € N and k& > 2. It is easy to see that the following equality

holds . .
S eI t) @
n : h(n)>k p p

peP



where P denotes the set of all primes.
The right hand side of the equality (2) equals

11 1
H<1+ﬁ'1—i) :H(1+p(k‘1)q'(pq—l))'

p€eP pd pEP

Then for ¢ > % the product on the right hand side of the previous equality
converges. Thus the series on the left hand side of (2) converges.

Let € > 0. Put A(e) = {n L OISR 0}. There exists an n(()k) € N for

logn

all k£ > 2 such that for all n > n(()k) and n € A(e) we have h(n) > e.logn > k

(it is sufficient to put nék) = [e£], where [2] is whole part of number ).

From this A(e) N {nék) + l,nék) +2,...}C{neN : hn) >k} for all
k>2 keN.

Therefore ZneA(a) n=1 < +oo for all k > 2 and Z.? — lim 1};(;7)1 = 0 since
the series (2) converges for all ¢ > +. If k& — oo for sufficient large then
77 —lim 2 = 0 for all ¢ € (0, 1). 0

Corollary 2.2. We have

h
7@ —lim () =0 for all ¢ € (0,1).
logn

logn

For the sequence <H(n)> we get the result of different character.
n=2

Theorem 2.3. The sequence (igg) s not Zé‘I)_Comjergent for every q €
n=2
(0,1).

o0
Proof. In the paper [7] is proved, that the sequence <10gp- TOPT(R")L:Q is not

I -convergent to zero for any ¢ € (0,1). The sequence (%’2) is also
n=2

not Z.”-convergent to zero. The inequality H (n) > a,(n) holds for all n =

1,2,... and for any prime number p. Then we have ﬁ(n) > ‘f”ﬂ for all
gn ogn

o
n = 2,3,.... This implies that the sequence ( H(n)) is also not Ic(q)—

logn n=9

convergent to zero for every ¢ € (0,1). ]
Theorem 2.4. For ¢ = 1, we obtain

L—hmHmW—




Proof. We will show that

H(n)
logn

A(s):{neN: >5}6L

for any € > 0.
Every non-negative integer n can be represented as n = ab?, where a is a
square-free number. Hence H(a) =1 and

H(n) € {H(b?*), H(b*) + 1}.
If n € A(e) then from H(n) > elogn we have

H(?) +1
S

H(?) +1

log(ab?) < and so loga <

Therefore

H(b?) + 1
A(a)gB:{nEN — 1ogag%, beN}.

It is enough to prove that »° _,n™" < +oo. We have

o0
Z : Z : Z 1
=i L, a
ne =1 log a< H(b€)+1

We use the inequality Sy = 25:1 % < 1+log k for the harmonic series. Then
we have the following inequality

1 &1 /HW) +1
Soey g (HH= ) ®
neB b=1
Because the Y~ & = %2 < 400, it is enough to prove that the

— H(V?
>

b=1

< +o00. (4)

logn
log2*

For any n € N we have n = p{' ... pt* > 2H™ and from this H(n) <
Therefore
iH(b2) o2 = logb
b2~ log2 oy b?

< +o00.

b=1
We have shown that the sum in (4) is finite and therefore the sum in (3) is
also finite.

Moreover B € Z and because A(e) C B we have A(e) € Z.. O

7



The situation for sequences w( and is diffe-
loglogn /. _, log log n). o
rent.

Theorem 2.5. The sequences w(n are not
log logn log log n
I convergent for all q € (0,1).
Proof. We prove this assertion only for . The proof for the
log log n
Qn) ™ .
sequence | ———— is analogous. Let ¢ = 1. On the basis of the
loglogn /), _,
Theorem 2.2 of [23] and Lemma 1.6 we can assume that Z.—lim _wln) =1
log logn
Take € € (0, %) and consider the set
A(e)=49qneN : M—l >ep.
log logn
Put n = p where p is a prime number, then w(p) = 1 and ‘logfogp—ll > ¢ holds

for all prime numbers p > pg. Therefore the set A, contains all prime numbers
greater than pg For these p we have: Zp>p0 5 = +oo and so A(e) ¢ Z.. From

this Z, — lim # 1. Under the 1nclu310n 9 ¢ I(l) = 7. and according

to Lemma 1.6 we have Z:? — lim log logn # 1 for g € (0,1). This complete the

proof. O

log log n

Similar results we can prove for functions f(n) and f*(n).

loglog f(n)

Theorem 2.6. The sequence
loglogn

all g € (0,1).

) 18 not Ic(q)-convergent for
n=2

Proof. According to Theorem 2.1 of [21] suppose that the

loglog f(n)

Z9 —lim
log logn

C

=1+log2,

where ¢ € (0,1). Let € € (0,log2) and define the set

log log f(n)
loglogn

A(s):{neN :

—(1+10g2)‘ 25}.



Put n = p, where p is a prime number, then f(p) = p and Eé}—ziz = 1.

Therefore the set A(e) contains all prime numbers. Next we have:

Z n~? > ij_q > ij_l = +oo, ¢€(0,1).
j=1 j=1

neA(e)

Hence A(g) ¢ Z7 and 7 — lim 2828/®™) £ 1 4 1662 for all g € (0,1). O

loglogn

loglog f*(n)\™
M) s not Ic(q)_convergent Jor

Theorem 2.7. The sequence
log logn

all g € (0,1).
Proof. According to Theorem 2.2 of [21] again suppose that the

log log f*(n)
log logn

n=2

T _ lim

c

=1+ log2,

where ¢ € (0,1). The proof is going similar as in the previous Theorem. Put
n = pip;, i # j, where p;, p; are distinct prime numbers. Then f*(n) =

* _ foipg) _ pipipipg) . . loglog f*(pips) __
f*(pipj) = v = T = pipj, @ # J. Hence =me R = 1 Let

e € (0,1og2) and define the set

A(E):{nGN :

This set contains all numbers of the type p;p;, ¢ # j. For ¢ € (0,1) we have:

I |
an22%7 (pi =2).

log log f*(n)
log logn

— (1+log2)‘ > 5}.

neA(e) Jj=1

PiF2
Since the series ) 77 %ﬁ diverges, we have A(e) ¢ .9 for all ¢ € (0,1)
Therefore Ic(q) — ljm lelos /1) # 1+ log 2 and the proof is complete. O

loglogn
There exists a relationship between functions f(n) and 7(n), where 7(n)
is the number of divisors of n. The following equality holds: log f(n) =
#. logn, (n > e) (see [12]). From this we have

e

1
loglog f(n) = log§ +log7(n) + loglogn, n > e

Therefore

loglog f(n) 14 log 7(n) N log % Cns e
log logn loglogn  loglogn

From Theorem 2.6 we have the following statement.
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(@)

Corollary 2.8. The sequence ( 1s not Zo" -convergent for all

q€(0,1).

ke rio) )

loglogn
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