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Abstract

In our previous work we have shown the design of a
Communication based Sensing (CommSense) system. The
current work presents analysis of the data captured by a
CommSense system. Analysis is performed using Support
Vector Machines (SVM) and a Multi-layer Perceptron (MLP)
which are commonly used supervised learning algorithms. The
predicted results are presented in the form of a confusion
matrix and an analysis is presented showing the percentage of
error in prediction.

1 Introduction

Implementation of radar systems for civilian applications has
been an active area of research in the recent past. Out of
the many different fields of interest the one of particular
relevance to this paper is the field of commensal or passive
radar [1–6]. Commensal radar1 is a type of radar built to
use the communication system transmitters in order to detect
targets of interest, without affecting the performance of the
original system. These transmitters, from the view point of
radar systems, are known as “illuminators of opportunity”. A
special case of commensal radar is the passive bistatic radar
[7–9] which uses wireless radio-frequency signals to determine
the channel parameters.

Recently we have proposed a sensing system which uses the
channel estimation process of a telecommunication system to
sense the changes in the environment [10]. We call this system
communication based sensing (CommSense) system. In this
work we analyse the data captured by the CommSense system
[11–13] using supervised learning algorithms. To validate
the claim that it can sense the environment, an analysis is
performed on the captured channel information using Support
Vector Machines (SVM) [14–17] and a Multi-layer Perceptron
(MLP) [18]. The results are discussed in this paper. Different
categories of datasets are used here to classify the different

1 The word commensal has been borrowed from biology in which this
represents co-existence of two species out of which one is benefited and the
other remains unaffected

scenarios including environmental conditions. In this work
we have used the system to distinguish different weather
conditions such as rain and humidity and for the detection of
vehicles, such as trains and cars.

In our previous work we have shown implementation of a
channel estimation algorithm in open source software defined
radio platform [11]. The channel estimation technique was
implemented to extract the real time channel information
from a global system for mobile communication (GSM) [19]
signals, which is then analysed using principal components
analysis to show the definite clustering of the captured
information [12]. The system was then built on a hand-held
platform using a raspberry pi as the processing unit and
BladeRF as the wireless receiver connected to power-banks as
the power source [13].

The major novelties of the current work are as follows. We
demonstrate that event detection and classification using a
CommSense system based on GSM transmit signal from single
base station is possible. In this we have used different
classification algorithms as well. The machine learning
algorithms we have used are SVM, a supervised learning
model used for classification, and MLP, a feed-forward
artificial neural network model that maps a set of inputs to a
set of outputs. The results are presented and discussed.

The rest of the paper is organized as follows, In Section 2 the
CommSense system is explained in brief. In Section 3 the
details of SVM classifier and a MLP classifier are provided.
The details of the experimental scenario if presented in
Section 4, the data from which are then used in Section 5
to perform analysis. The results are analysed and a table
portraying the simulation parameters used is presented here.
Section 6 concludes the paper and provides scope for future
work.

2 CommSense: A Short Review

A signal, when transmitted over a wireless channel gets
reflected through all the obstacles in its path until it reaches the
receiver. Figure 1 shows an overview of the system depicting
the multipath signal. These multipath signals are affected
by the specific parameters of a certain path. The idea of
CommSense system is to extract this multipath information
and trace back the channel it passed through, by a method
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called channel estimation. Since the CommSense system is
designed in commensal mode, it uses the signal from the
available base stations and performs channel estimation on it.

This system is based on GSM system, which is a wireless
communication protocol. GSM signal consists of a known
bit stream called training sequence in every frame to perform
channel equalization. This increases the throughput of the
system. CommSense captures the GSM broadcast signals and
uses the training sequence to perform channel estimation and
analysis. The system is built using open source hardware such
as a raspberry pi and BladeRF as well as software such as
GNU radio. GNU radio is an open source software platform to
implement software defined radio as well as signal processing
applications.

3 Classifier Models
This section provides an overview of SVM and MLP which are
then used for classification of the CommSense datasets.

3.1 SVM Classifier

SVM is a supervised learning algorithm that takes a sample
dataset and a predetermined kernel function as input, and
generates a model for this sample. This model is then used
to categorize the test dataset. The goal of SVM is to design a
hyperplane or a set of hyperplanes in high-dimensional space
that classifies all training vectors into different classes. Out
of the multiple hyperplanes that can achieve the same task,
the best choice will be the hyperplane that has the maximum
separation from the nearest element of each class.

min
α∈RF

1

2
||α||22 + C

n∑
i=1

l(yi, fα(xi)) (1)

Let training data be represented as D = {(xi, yi)|i ∈ Z+, 1 ≤
i ≤ n}, where xi ∈ Rd is training input points, yi ∈ {1,−1}
are training labels, n is the size of the training data and d
is the dimension of input data. In order to maximize the
geometric margin between two classes and minimize the error,
the soft-margin SVM can be represented as (1). Where α is
normal vector to the hyperplane separating the classes, l(.)
is a loss function, C is a regularization parameter weighing
the smoothness and errors and fα(xi) = 〈φ(xi), α〉. Where
φ(x) : Rd → RF is a function mapping training data points
from input space Rd to a new F−dimensional feature space
RF . For large F , the inner products of feature space can
be calculated by a kernel function (2), such as Radial Basis
Function (RBF) shown in (3). Where x is the training input
points and y is the training label.

k(x, y) = 〈φ(x), φ(y)〉 (2)

k(x, y) = exp(−||x− y||22/σ2) (3)

The representation of SVM shown here is referred from [17].

3.2 MLP Classifier

The network topology of a MLP with a single hidden layer is
shown in Figure 2. Here three layers are shown out of which
the input and the output layers are visible to the users, whereas
the hidden layer, as the name suggests, stays hidden. Each
layer contains multiple nodes known as neurons. The nodes
that are not a target of a connection are known as input neurons.
Each neuron in the input layer takes one feature from the input
dataset. These features then act as the input for the subsequent
hidden layers and this continues until it gets to the output layer.
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Fig. 2: One hidden layer MLP classifier

In Figure 2 {X1, X2, X3} are the features of the input dataset,
which then becomes the input information for the hidden layer
thereby generating a bias {a1, a2, a3, a4, a5}. The bias of the
hidden layer then acts as the input features of the output layer.
During the training period the weights of each neuron is set
by a method called backpropagation. This process is used to
adjust the weights of the input at the output layer.

∆w = ηdX (4)

During training, the weights ∆w are set to get a particular
output as shown in (4). Here η is the learning rate
that is usually less than 1, X is the input dataset and
d = Outputpredicted − Outputdesired. The weight of
each neuron is set individually by specific algorithms, such as
gradient descent.

4 Experimental scenario

The different scenarios used to prove the claim of sensing the
environment using CommSense system is given below.
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Fig. 1: System overview: Showing multipath signals from transmitter to receiver.

4.1 Environment

This scenario consists of four different environmental
conditions named “Rain”, “Medium Rain”, “Humid No Rain”
and “Hot Day”. All the captures are taken with the receiver
placed in the same location at different instances of time.

• Rain: This contains captures from a day when it was
raining heavily outside.

• Medium Rain: This contains captures from the same day
as “Rain” captures but later in the day when the intensity
of rain was considerably low.

• Humid No Rain: This contains captures from the day after
the “Rain” and “Medium Rain” captures. This day was
very humid and the clouds were covering the region but
there was no rain.

• Hot Day: This set of captures contains data from a very
hot day without any humidity.

4.2 Vehicle Detection (Train-Car)

This scenario consists of four different situations with and
without the presence of a train or a car. To obtain one particular
dataset the presence or absence of one vehicle is focussed
upon.

• With Train: This set of captures were taken at a train
station with the receiver approximately 3 m from the train
when the train was present in the platform.

• Without Train: This set of captures were taken just after
the train left the station with the receiver at the same
location as the “With Train” dataset. All other parameters
were kept constant as far as possible.

• With Car: This set of capture was taken at an empty
parking space with only one car in the direct vicinity

of the receiver at about 3 m from the car. There were
no other vehicles present around the receiver upto a
distance of 100 m from the receiver. Although there
was a highway at about 105 m from the receiver in one
direction.

• Without Car: This set of captures were taken at the same
day and location as the dataset “With Car”, when the car
was not in the 100 m radius of the receiver.

Multiple sets of each of the above mentioned scenarios are
captured for 30 s each with a gap of 20 s between consecutive
sets. Each 30 s dataset contains 4500×40 points. The analysis
presented here is performed on two of these sets, using one
set as training and the other set as testing. In the case of
“Environment” 4000×40 points from set one of each condition
is used as training data and 1000× 40 from capture set two of
each condition is used as test data, thereby a total training set
of 16000×40 is used and test set of 4000×40 is used. In case
of “Train-Car” scenario the training data is made of 4000× 40
points of set one from each situation and the test data contains
4000×40 points from set two of each situation, in total making
16000×40 points for training and 16000×40 points for testing.

5 Analysis of data

The data analysed in this section is captured using CommSense
system. The received signal is preprocessed to extract the
channel impulse response as shown in [11]. The channel
estimation algorithm implemented in the CommSense system
extracts 40 multipath channel state information from each
frame of received signal. With the assumption that each of
the multipath channel state information consists of a specific
feature it is defined that the captured dataset consists of 40
features per frame.

The captured data is passed through SVM and MLP classifiers
and the results are presented here. The kernel used for
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SVM classifier is RBF and the the MLP has two hidden
layers containing 10 neurons each. In case of MLP the
layers and its size is chosen after performing multiple tests
with different configuration and the one showing optimum
results are presented here. In the future more precise
optimization methods should be chosen to find the hidden layer
configuration.

Figure 3a and 3b contain the confusion matrices for
classification between a presence and absence of a train or a car
in the vicinity of the receiver. Figure 3a shows the normalized
prediction of the datasets using a SVM classifier. Although
the train and car cannot be distinguished from the confusion
matrix a general separation between the presence and absence
of a vehicle is visible. The prediction of train is better than the
prediction of the car, mostly because the train is larger in size
and reflects back stronger signal.
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Fig. 3: Confusion matrix: Classification of Train-Car dataset.

Figure 3b shows the normalized prediction using a MLP
classifier. The MLP classifier provides a slightly poor
classification between the train and a car although even in
this case the difference between a vehicle and no vehicle is
clear. In both cases of Figure 3 the prediction percentage of a
car is lower and mixed with the features of the train, as both
the observed objects have metallic surfaces having common
features.

Figures 4a and 4b contain the confusion matrices to classify
different environmental conditions as mentioned above.
Predictions from the SVM classifier is shown in Figure 4a and
the predictions from the MLP classifier is shown in Figure 4b.
The SVM classifier can clearly separate between rain and no
rain conditions, there is some ambiguity between the medium
rain and heavy rain conditions but that is expected as the
water droplets have similar features. In case of MLP the
prediction of hot day is mixed up with the prediction of humid
no rain day. Although a similar prediction pattern is visible in
SVM classification but the difference is almost double. It is
observable that both the algorithms show ambiguity between
the “Rain” and “Medium Rain” conditions which as explained
above is due to the properties of water droplets. The scale on
the right hand side of Figures 4 and 3 is to depict how many
data points are predicted by the classifiers, the colour of the
blocks represent the same in the plots.

Train-Car Dataset Environment Dataset
SVM MLP SVM MLP

Error Rate (in %) 48.79 51.86 33.05 33.95
kernel RBF - RBF -

hidden layer size - (10, 10) - (10, 10)

Table 1: Simulation parameters.

The confusion matrices show details of the prediction errors
and Table 1 contains the simulation parameters used to perform
the analysis presented in this paper and the error rate. The
definition of error rate used here is, for a particular set of output
prediction, how many does not match the true value. This
is calculated by error(in %) = 100

N

∑
(predicted − true) ,

where N is the total number of errors. The overall percentage
of error in each of the algorithms for each scenarios is not
good. This is because the algorithms are predicting certain
aspects of the scenario such as in “Train-Car” scenario it can
separate the situation of presence and absence of vehicles and
in “Environment” scenario it can separate rain and no rain
conditions better than the others.

6 Conclusion

Different datasets captured by the CommSense system
is analysed and classified using the supervised learning
algorithms, SVM and MLP. The results are presented in form
of a confusion matrix and the matrices are discussed. The
overall error rate in each analysis is presented and the reason
for the differences are discussed also the reason for such
high overall error percentage is discussed. The confusion
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Fig. 4: Confusion matrix: Environmental parameters.

matrices show some ambiguous results which is due to the
presence of similar reflective surfaces in each condition, but
overall it proves the initial hypothesis of classifying different
environmental conditions using the CommSense system. The
error rate in detection of different environmental conditions is
approximately 33% which is acceptable as this is the overall
error and individual conditions provides better classification.
The “Train-Car” dataset has a higher error rate even though
the confusion matrix shows promising results. In the future
different classification algorithms will be investigated to get
better prediction accuracy in case of vehicles. More data
needs to be captured at different environmental conditions
and analysed to make accurate classifications with multi-class
labels.
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