Computer game as a tool for
machine learning education

Petr Dolezel
Faculty of Electrical
Engineering and Informatics
University of Pardubice
Pardubice, Czech Republic
Email: petr.dolezel @upce.cz

Abstract—The effective education is one of very important and
everlasting challenges of human society. With each generation
of students, new approaches have to be implemented to keep
the process of education prosperous. This paper introduces a
small piece to a set of modern tools for education of Informatics
and Electrical Engineering. To be more specific, an interactive
software for machine learning testing and demonstration is
presented in this paper. The software is designed especially to
be used as a motivation and a first encounter to these areas
of technical studies, while it supports individual efforts of the
students. In the paper, the software architecture is described
and, in the second half of the paper, some possibilities of software
usage in education process are suggested.

I. INTRODUCTION

Education is a process of sharing of knowledge and ex-
perience. It is also the process of creating and transforming
of moral features and attitudes. Therefore, it is a part of
socialization.

Experiments have proven to be effective means of teaching,
especially for their higher level of attractiveness and inter-
activity in comparison to other means of education. While
teaching using experiments is well implemented in some
areas of education, other branches would rather use different
approaches.

One of the latest issues of education is the shift in leisure
time activities of students. Especially in the area of Infor-
matics and Electrical Engineering, the students are often and
frequently (like every five minutes or more) distracted by the
reminders and requests on their mobile phones and tablets;
either it is the message from some farming mobile phone game
or a new post on a selected social network.

Along with these behavior changes, new approaches of
education in the area of Informatics and Electrical Engineering
are being implemented. Traditional face-to-face learning is re-
placed by e-learning [1], [2], laboratories are being rearranged
to be accessed online [3], [4], these days even exams are
prepared to be passed online [5]. All these new approaches are
designed for students to organize their studies independently
with a very low linkage to other students or the institution.

In conformity with the mentioned trends, this contribution
provides a comprehensive tool for teaching of artificial neural
networks and soft computing related courses. To be more

Miroslav Dvorak
Faculty of Electrical
Engineering and Informatics
University of Pardubice
Pardubice, Czech Republic
Email: miroslav.dvorak @student.upce.cz

specific, a software for machine learning testing and demon-
stration is presented in following sections. While trying to
catch a student’s eye for more than five minutes, the tool is
based on a classical and wide-spread computer game called
Achtung - die Kurve [6]. This approach has already proved
to be effective [7]. Despite the simplicity of the game, it has
drawn a lot of attention due to its undeniable addictiveness.
The game mechanism is as follows: the players leave a trail
while moving, and try to make the opponent hit a wall or
a trail. The last surviving player wins. Thus, some level of
tactics as well as dexterity has to be displayed by the player
to be successful.

The human player can be clearly replaced by an artificial
entity, which is the main point of this contribution. We
introduce a comprehensive tool to design an artificial player
into the game called Achtung - die Kurve. The tool is meant
to be used by students to get some basics of machine learning,
artificial neural networks, deep learning and similar topics in
an enjoyable and interactive way. Matlab is chosen as the
programming language, since it is probably the most wide-
spread tool for technical computing, used not only by coders,
but also by many engineers, academicians and students. The
work presented here is linked to the previous authors’ works
[8] and [9].

The text is organized as follows. The tool architecture
is described comprehensively in Section II. Then, several
illustrative examples of tool usage in education are suggested,
and the paper is finished with conclusions. The tool is available
on a website [10].

II. SOFTWARE ARCHITECTURE

At the beginning of the game called Achtung - die Kurve,
each player starts at a random spot on the playing field. After
the game is started, all players move with a constant speed,
having the ability to turn left or right, although the turning
speed is limited. As the player moves across the playing board,
it draws a permanent, solid line. When the dot collides with
any section of the line or the boundary of the playing field, the
player instantly loses, although the line remains in the playing
board until the end of the game. The player may try to draw
barriers to block the path of other players, forcing them into



GAME
PLAYER PLAYER eee PLAYER
SENSOR SENSOR oo SENSOR

Fig. 1. Diagram using unified modeling language.

a collision. The game is won when all but one of the players
have collided [6].

The following comprehensive tool is proposed to design an
artificial player to the game. It consists of several classes, each
corresponding to some functional block of the game.

e Game - an instance of this class controls the whole game

including a graphical output.

e Player - instances of this class represent the players of

the game.

e Sensor - an instance of this class is used by the player to

inspect the surroundings and to find possible obstacles.

e Probe - each sensor uses several probes to determine the

obstacles in various directions.

The diagram, which describes the software architecture, is
shown in Fig. 1.

The game is performed by creating the instance of Game
and iterative calling of its method performStep(). In the
following list, the important properties and methods of all the
used instances are described. See the documentation of the
tool for the complete list.

A. Game

Using this tool, only one instance of the class Game is

initialized. It uses the following properties.

o players - a cell array of all the players.

e board - a two-dimensional array which represents the
playing field. Zeros are free cells, while non-zeros in-
dicate obstacles.

e draw - a boolean property, which allows the graphical
visualization of the game.

e alive - a boolean property, which indicates, that at least
one of the players is alive (the game is not over).

Apart from the properties, it utilizes several methods.

e Game() - constructor.

o performStep() - this method performs one step of the
game - each player moves one step ahead.

o testEnd() - a method, which tests the possibility of ending
the game - all players are dead.

o countSteps() - this method returns the number of the steps
performed in the game.

e getRank() - this method returns the rank of the players
after the game is over.

B. Player

The instances of Player are created by the instance of Game.
Some of the properties of those instances are listed below.

o direction - direction of the player, real value between 0
and 2.

e ordAct - two values array with the current coordinates of
the player within the board.

o game - the instance of the currently used game.

e sensor - the instance of sensor, which detects the obsta-
cles around the player.

e decider - the instance of a class Decider. This class
should be written by the user. It should implement the
method decide(), which applies the decision rule accord-
ing to the information from sensor.

The relevant methods are listed below.

o Player() - constructor.

o performStep() - this method performs one step of the
player.

e testLife() - a method, which tests whether the player is
dead or alive.

o getStepsNumber() - this method returns the number of the
steps performed by the player.

C. Sensor

Each instance of Player includes one instance of Sensor.
The properties of the instance are listed below.

e player - the player, which uses the sensor.

e number - the number of probes used by sensor.

e game - the instance of the currently used game.

o range - the range of the probes.

e angle - operating angle of the sensor.

Apart from the constructor, sensor implements only one
method.

e Sensor() - constructor.
o measure() - this method returns the distances of obstacles
detected by every probe.

D. Probe

An instance of the class Probe is initialized in the method
measure() of the instance of Sensor. After the initialization,
it moves in the constant direction till it reaches the obstacle
or the maximum number of steps (range). In the list below,
some important properties are shown.

e direction - direction of the probe, real value between 0

and 2.

e game - the instance of the currently used game.

o stepsNumber - number of steps performed to reach the

obstacle.

Probe implements the following methods.

e Probe() - constructor.
o performStep() - this method performs one step ahead of
the probe.



Fig. 2. Operating angle of player.
TABLE I
EXPERIMENT 1
Feature Value
Board width 320
Board height 200
Number of players 1

Sensor.range 10

Sensor.angle 0.1257;0.1757; 0.257; 0.57; 0.757; 0.97
Cost function Number of steps till death

o getStepsNumber() - the method returns the number of
steps performed by the probe before it reaches the ob-
stacle.

III. EXAMPLES AND DEMONSTRATIONS

Several illustrative examples are performed and described
here. This section should suggest the various usages in teach-
ing. Note that a multilayer feedforward neural network is used
as decider here. However, many paradigms can be applied,
including expert system, support vector machine, decision tree
and others. In addition, most of the mentioned paradigms
have to be optimized using a defined learning algorithm or
search technique. In our examples, differential evolution is
applied. However, other stochastic techniques (genetic algo-
rithm, simulated annealing, evolutionary strategy, ...) could be
implemented, too.

The following examples are described only in a generalized
way, since the purpose is to demonstrate the possibilities of
the tool, rather than to prove the optimal solutions.

A. Issue 1 - Operating angle of sensor

One issue is to determine the suitable operating angle of
the sensors. As described above, the operating angle can be
set by the user and the behavior of the player is significantly
related to it. Graphically, the issue is depicted in Fig. 2. To
determine the suitable operating angle value, the experiment
can be prepared as seen in Table 1.

After optimization of decider, the behavior of players as
shown in Fig. 3 is achieved. The differences in behavior of
various players are clear. Considering only the number of steps
reached, the suitable value of Sensor.angle is 0.97.

Sensor.angle = 0.1251
steps = 74

Sensor.angle = 0.175w
steps = 88

®

Sensor.angle = 0.257
steps = 4736

Sensor.angle = 0.57
steps = 4369

Sensor.angle = 0.751
steps = 6709

Sensor.angle = 0.9n
steps = 8631

Fig. 3. Results of Issue 1.

Fig. 4. Maze for player.

B. Issue 2 - Obstacle avoidance

Another issue can be defined to prepare a proper experiment
for obstacle avoidance or maze solving. It is necessary to
provide a board with obstacles drawn on it. The example can
be seen in Fig. 4. The parameters for the experiments are
defined by Table I, while Sensor.angle is set to 0.97.

After several learning procedures, the resulting players are
designed - see Fig. 5.

C. Issue 3 - Confrontation

The main purpose of the tool is to design a player which
will beat other players in the game. The intuitive experiment
can be arranged as seen in Table II.



Fig. 5. Results of Issue 2 - two attempts with random initial conditions.

TABLE II
EXPERIMENT 3

Feature Value
Board width 320
Board height 200

Number of players 4

Sensor.range 10
Sensor.angle 0.97
Cost function Number of steps of player 1 till death

Apparently, player 1’s decider is optimized while the other
players are controlled by deciders gained in previous exper-
iments. The problem of this setting is in its cost function.
Although there are four players in the game, the cost function
does not force them to play belligerently. They just try to avoid
each other - see Fig. 6.

Therefore, the cost function can be modified to appreciate
the aggressiveness of the player. Thus, instead of the number
of steps till the death, the rank of the player is used as the cost
function (rank = 1 if the player dies as the first one, rank =
4 if the player dies as the last one). The resulting behavior of
the player is shown in Fig. 7, where the suitable situation is
postured. It is obvious that after detecting the nearby opponent,
the player tries to cross its path. However, this feature is
apparent only in these specific situations. In whole figure, the
behavior shift is not so obvious - see Fig. 8.

D. Issue 4 - Competition

As students are naturally competitive beings, it is convenient
to organize a competition of students’ works. For an example,

Fig. 6. Results of Issue 3 (Player 1 is white) - four games with random initial
conditions.

Start of player 1

N\

Start of other
players

Fig. 7. Results of Issue 3 (Player 1 is white) - detail of aggressive behavior.

Fig. 8. Results of Issue 3 (Player 1 is white) - aggressive behavior.

a competition between the players designed in previous issues
is prepared - player 1 is designed in issue 1, player 2 in
issue 2, player 3 is the non-aggressive player from issue 3
and player 4 is the aggressive player from issue 3. A hundred
of matches are arranged with random initial conditions and
the players are evaluated in the following way: the winner
of each match gains four points, the second one gains three
points, the third one gains two points and, finally, the last one
gains one point. The final numbers are summarized in Fig. 9.
The quaint observation is the highest rank of the player one,
which was designed according to the simplest approach. On
the other hand, the aggressive player got the lowest number
of points. However, the absolute numbers are quite similar,
which indicates, that the rank of the players is very relevant
to initial conditions.

Player 4

Player 3

Player 2

Player 1

0 50 100 150 200 250

Fig. 9. Results of competition.



IV. CONCLUSION

A software tool, which can be used for teaching and training
of machine learning, artificial neural networks, deep learning
and similar topics, has been developed and presented in this

paper.

The presented tool is clear, highly enjoyable and based on
the wide-spread Matlab software. The architecture of the tool
is straightforward and naturally structured. As demonstrated
in section III, the usage of the tool is simple, descriptive and
entertaining. In addition, the tool is licensed as an open source,
which means, that any user can adjust its functionalities freely.

ACKNOWLEDGMENT

The work has been supported by the Funds of University
of Pardubice, Czech Republic. This support is very gratefully
acknowledged.

REFERENCES

[1] J. Ligusova, J. Ligus, and 1. Zolotova, “Cybernetic education centre,” in
2013 24th EAEEIE Annual Conference (EAEEIE 2013), May 2013, pp.
133-138.

[2] M. Watfa, “Cloud computing and e-learning: Potential pitfalls and ben-
efits,” in 2016 Sixth International Conference on Innovative Computing
Technology (INTECH), Aug 2016, pp. 140-144.

[3] M. Kaluz, J. Garcia-Zubia, M. Fikar, and L. Cirka, “A flexible and
configurable architecture for automatic control remote laboratories,”
vol. &, no. 3, pp. 299-310, July 2015.

[4] M. Kaluz, L. Cirka, and M. Fikar, “Virtual and remote laboratories in
education process at FCFT STU,” in 2011 14th International Conference
on Interactive Collaborative Learning, Sept 2011, pp. 134-139.

[5] X. F. Li, J. H. Wang, and W. W. Gao, “Examination system in the
cloud computing platform based on data mining,” in Proceedings 2013
International Conference on Mechatronic Sciences, Electric Engineering
and Computer (MEC), Dec 2013, pp. 1605-1608.

[6] (2016) Achtung, die kurve - wikipedia page. [Online]. Available:
https://en.wikipedia.org/wiki/Achtung,_die_Kurve!

[71 B. R. C. Marques, S. P. Levitt, and K. J. Nixon, “Video games as a
medium for software education,” in 2012 IEEE International Games
Innovation Conference, Sept 2012, pp. 1-4.

[8] P. Dolezel, M. Mariska, I. Taufer, and L. Havlicek, “Artificial neural
network promotion,” in 2013 International Conference on Process
Control (PC), June 2013, pp. 214-218.

[9] M. Mariska and P. Dolezel, “Agent-based software framework support-
ing fast modeling of service systems for repast simphony 2,” in Mendel,
June 2013, pp. 415-420.

[10] (2017) Tool for experiments with machine learning. [On-
line]. Available: https://www.researchgate.net/publication/313817405
_Tool_for_experiments_with_Machine_Learning



