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Abstract: The paper describes an approach to adaptive feedback control of a 
robot manipulator, based on partitioning of the joint space into segments. 
Within each segment the robot is controlled as a decoupled linear system by 
means of conventional PID controllers. To achieve continuity of control vari-
ables the segments are represented as fuzzy sets. The controller settings are 
adapted by online identification from past measurements of position and control 
signals.   
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1 Introduction 

Control of robot manipulators is difficult in general, because robot dynamics is usu-
ally strongly non-linear. Although the influence of non-linear terms in the arm motion 
equations can be suppressed by using high-ratio gears in the actuators, is such cases 
the friction in the gears and bearings often degrades the actuator performance for 
high-velocity motions. Especially in the case of light-weight, high-velocity robot arms 
for pure manipulating purposes, the arm dynamics cannot be neglected to achieve 
optimal performance.  

In this paper the problem of tracking a trajectory, provided by the motion planning 
layer of the robot control system, is discussed. It is assumed that the trajectory, de-
fined in the robot operational space, is transformed into the robot joint space by the 
algorithm of inverse kinematics [1], before the motion task is performed. The motion 
control layer then works with the information on the robot joint positions, i.e. the 
relative positions of the robot links.  

Multiple approaches to design of the feedback control system of robot manipulator 
are described in literature [1,2]. The simplest approach, suitable only for low-velocity 
motions, works with the actuators as with velocity generators and the effects of the 
robot dynamics are considered as unknown disturbances [2]. The feedback control 
can be then based on PI or PID controllers. To enhance the performance, cascade 
configuration with additional velocity or even acceleration feedback can be used. It is 
also possible to use a partial feed-forward compensation of non-linearities, if a partial 
knowledge of the robot mathematical model is available [1].  

More advanced robot control architectures use actuators as torque generators [1,2]. 
This approach is utilized in centralized control systems, viewing the robot dynamics 
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in full complexity as a high-order, coupled and non-linear one. The centralized meth-
ods utilize some special features of the robot dynamics. In particular, dynamic inver-
sion method transforms the controller design problem into a linear one by means of 
additional interior loop. However, applicability of this approach depends on precision 
of the mathematical model available, which often cannot be guaranteed due to un-
known influences, such as backslashes and flexibilities in the gears or saturations of 
the action forces. Therefore, practical usability requires some extensions, guarantee-
ing at least closed-loop asymptotical stability [1]. Among alternative approaches e.g. 
the non-linear PID control based on Lyapunov stability theory or passive systems 
theory can be mentioned [1, 2].          

An advantage of the decentralized control approach is that for the controller tuning 
only rough robot mathematical model is sufficient, describing approximate inertial 
effect on individual axes and damping effects. If we assume that terms in the robot 
model depend only on position, it is possible to improve the performance by dividing 
the joint space into segments with constant controller settings. The controller parame-
ters can be changed during motion when the trajectory goes across the segment 
boundary. Within each segment the robot then can be controlled as a decoupled linear 
system by means of conventional PID controllers. It is possible to use initially the 
same settings in all the segments and to adapt the controller parameters in each seg-
ment automatically by processing past measurements of the kinematic and control 
variables. Such an algorithm adapts the controller parameters also when the robot 
manipulated load changes.  

In this paper an extension of the decentralized robot control approach is proposed, 
based on the idea outlined above, including some additional enhancements. Practical 
implementation is indeed more complex than in the case of conventional decentral-
ized control. Partitioning of the joint space into segments brings increased require-
ments on the control system hardware, as regards both performance and memory ca-
pacity. However, it reveals that these requirements can be fulfilled by using current 
32-bit microcontroller-based platforms.  

2 The robot mathematical model    

The mathematical model of a robot arm consisting of n  links in an open kinematic 
chain, moving freely in the operation space, can be considered in the form  

      ,  B q q C q q q g q f    (1) 

where q  is the vector of joint positions and f  the vector of total force effects of ac-
tuators. If K  and P  denote the total kinetic and potential energy,   2 2/K  B q q  
is a positive definite position-dependent inertia matrix,  
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is a non-linear function corresponding to the effects of centrifugal and Coriolis forces 
and   /P  g q q  is the vector function corresponding to the gravity-force effects 
[1]. If we assume only electrical DC actuators, by neglecting the winding inductance 
and mechanical friction, we obtain  

 u v M K u K ω  (3) 

where M  is the vector of motor output torques, u  the input voltages, ω  the vector 
of motor angular velocities and 0u K , 0v K  constant diagonal matrices. In prin-
ciple, (3) allows using the motors as velocity generators, where the connected load is 
represented as a disturbance. Alternatively, the motor can play the role of a torque 
generator, where the term vK ω , corresponding to induced voltage in winding, is 
considered as electromagnetic friction. In this case, the motor is usually equipped 
with inner current feedback, which reduces the effect of vK ω  and protects from over-
load [1]. Although this paper is based on the idea of decentralized control, the motors 
are considered as torque generators, like at most centralized control methods. In this 
case     

  r u v  f K K u K ω Fq  (4) 

where 0r K  and 0F  are diagonal matrices. The term Fq  corresponds to viscous 
friction in bearings and gears and  rK  is the mechanical gear ratio. Coulomb friction 
is not considered. Since 1

r
q K ω ,  

   r u r f K K u F q ,  r r v r F K K K F . (5) 

The equation (1) then can be rewritten as  

       , r   B q q C q q F q g q Ku    (6) 

where r uK K K . Since the dependence of rF  on rK  is quadratic, the term  ,C q q  
has low influence in the case of higher mechanical gear ratios and the model depends 
predominantly only on q .  

3 The decentralized control with partial knowledge of  B q   

One possible version of the decentralized robot control algorithm uses partial knowl-
edge of the inertia matrix  B q , which is decomposed as  

      B q B B q  (7) 
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where B  is a constant diagonal positive definite matrix, corresponding to approxi-
mate average inertial effects on individual axes [1]. The robot model for the controller 
design is in the form 

 r  Bq F q Ku d   (8) 

where  

      ,   d B q q C q q q g q    (9) 

is disturbance. Since all matrices in (8) are diagonal, it is possible to write (8) as  

 i i ri i i ib q f q k u d    ,  1,..,i n  (10) 

where ib , rif  and ik  denote the diagonal terms of B , rF  and K , respectively.  Eq. 
(10) can be rewritten as   

 i i i i iT q q K u      (11) 

where /i i riT b f , /i i riK k f  and /i i rid f  . The corresponding axis transfer 
function is in the form  

    1
i

i
i

K
F s

s T s



. (12) 

To compensate the effect of persistent input-type disturbance id  of the system (10) 
and to achieve zero tracking error in the case of ramp reference trajectory, a controller 
with additional zero pole is needed. If we use the PID controller with the transfer 
function in Laplace transform  

       211 1i
i i Di Ii Di Ii

Ii Ii

rR s r T s T T s T s
T s T s

 
      

 
 (13) 

for generating the control signals  iu t , the characteristic polynomial of the i-th axis 
is in the form     

      
2

2 3 21
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        . (14) 

The PID controller parameters can be determined so that poles of  iQ s  are placed at 

desired locations [6]. If we assume     2 2
1 2 21 2 1i i i i iQ s T s T s T s    , where 

1 2,i iT T  are chosen closed-loop response time constants and i  is the relative damping 
ratio, by comparison of the coefficients we obtain      
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If the disturbance id  is partially known, its effect can be compensated in part by add-
ing 1

i iK   to the i-th axis controller output, where /i i rid f  .   

4 The extended decentralized robot control algorithm  

Consider that the robot joint space S , i.e. the space of all possible joint positions 

 1,..., T
nq qq , is partitioned into m segments kS , 1,..,k m , such that   
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 . (16) 

Since the diagonal parts of  B q  and  g q  are position-dependent, it is possible to 
approximate the robot dynamics in each segment by a different linear model. Then the 
tracking performance can be enhanced if to each segment there correspond different 
controller settings.  

A basic approach is that the controller parameters are rewritten during motion 
when the trajectory goes across the segment boundary. Within each segment the robot 
is controlled as a decoupled linear system by means of conventional PID controllers. 
This extension is rather straightforward and can be efficiently implemented, although 
a sufficient amount of memory in the control system hardware is needed. If a space of 
each generalized coordinate is divided into d  sub-intervals, the joint space will be 
divided into nm d  segments. To each segment kS  there corresponds a matrix of the 
parameters  , ,k k k kP K T δ  describing the plant dynamics as described in the previ-
ous section. The columns in kP  are vectors of n components, e.g. 

 1,..., T
k k knK KK . The corresponding PID controlled settings can be obtained di-

rectly by substitution into (15).  
However, this concept has an important drawback, consisting in discontinuity of 

the action variables  iu t  caused by changes of the controller settings at the segments 
boundaries. Such discontinuities are undesirable, since they can lead to oscillations of 
the mechanical structure.  

One possible solution is replacing the segments kS  by the fuzzy sets 

  ,n
k kS R  q , where the membership functions  k q  are chosen continuous 

and so that    0,1k q  and   1k k c , where kc  denotes the centre of the seg-
ment kS . The matrix of the plant parameters is then computed at each control step as    

    
1 1

/
m m

k k k
k k

 
 

 P q P q .  (17) 
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The expression (17) is usually used as an inference rule in Takagi-Sugeno-type fuzzy 
modeling [4]. However, the computation of (17) at each control step can be time-
consuming due to rather large number of segments m. It can be considered that the 
segments are for given parameter h  defined by means of their centers kc  as  

  |k kS h


  q q c ,  (18) 

where max ix

x  denotes the L - norm. Then it is possible to define  

    k k  q q c  (19) 

where    0,1 q  is a chosen continuous function, such that   1 0 . Computa-

tion of (17) can be made much more efficient if   q  is chosen as a function with 
compact support, see e.g. [5]. A simple possibility is to choose  

      max 1 / 1 , 0h 


  q q   (20) 

where 0  , typically  0.5, 2 . In this case the values of  k q  are zero, except 

for the k -the segment, where  k q  has the largest value, and several neighboring 
segments. This fact can be utilized for efficient implementation of the controller, al-
though such a realization is more complex. A disadvantage of the choice (20) is that 
this function is not smooth, which will produce non-smooth histories of the control 
signals. Therefore, it might be preferable to construct   q  as at least continuously 

differentiable. The compact-support choice of   q  brings the risk of unbounded 
values in (17) for trajectories exceeding the boundaries of S , but this problem can be 
easily avoided, e.g. by increasing   in the cases when  1

0m
kk




 q .  

5 Adaptation of the controller settings 

Since the number of segments can be rather large, it is necessary that the controller 
settings are computed automatically. Initially, the settings in all the segments are set 
to the same values corresponding to the decentralized PID controller design described 
in Section 3. During the robot operation the settings in the segments can be adapted 
by processing the measured values of  ktq  and  ktu , at the instants kt k  , 
where   is the identification scan period. During motion in each segment it is needed 
to estimate the parameters iK , iT  and i . The index of segment is omitted below for 
simplicity, i.e. e.g. iK  should be written as kiK  in the k-th segment to be precise.   

The continuous transfer function (12)  has the corresponding transfer function in Z-
transform  
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If / iT  is sufficiently low, / 1 /iT
ie T    , so  
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 (22) 

where / iT
i e  . Eq. (22) corresponds to the data model    

              2 11 1k k k k k
i i i i i i i iq q q K u            (23) 

where  k
iq  denotes the value of iq  at k -th instant and  k  is the error process. After 

including the disturbance i , defined by (11), (23) can be rewritten as  

              1 1 21 1k k k k k k
i i i i i i i iq q u K q q              (24) 

where  1i i iK K    and  1i i i    . From (24) the value of , ,
T

i i i iK    θ   

can be estimated by means of the least-squares method. Then, i  determines the 
value of iT . The parameters iK  and i  can be computed directly from iθ  .  

Note that to each segment there corresponds one data model (24) and a correspond-
ing data structure have to exist in the control system for storing the measurements. It 
is advantageous to use the recursive version of the LS estimator [3], which need not 
store all the data, but only a 3x3 matrix and the vector iθ  in each segment and for 
each axis. It is assumed that the settings are updated after a single task is performed, 
but the same approach can be used when the controller is updated during motion. Let  

         1[ ] [ ] 1 , ,1
T

k k kk k
i j i i iw q q u     x q ,       1 2[ ] [ ] 1 k kk k

i j i iy w q q   q  (25) 

where  jw q  is the weight of the measurement in the j-th segment, computed as  

      
1

/
m

j j l
l

w  


 q q q . (26) 

The  1k  -th estimate of iθ  for the  j-th segment is obtained as follows:  

    
   

     
      1

k k
k k k k T ki i

i i i i ik k kT
i i i

y


   


C xθ θ x θ
x C x

    (27) 
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 1 1 k k k T

k ki i i
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i i i
 

  
    

C x xC I C
x C x

 (28) 

where   is the forgetting coefficient, equal or very close to 1. In the considered case 
it seems to be necessary to require that min 0i iT T   and min 0i iK K  , where the 
constants miniT , miniK  are suitably chosen. The recursive form of the estimator (27) 
enables to keep the values of the components of iθ  in the corresponding range by 

updating only with feasible values. The matrix  0
iC  is set as    0

1 2 3diag , ,i   C , 
where 0k   are chosen. Total memory requirements can be estimated as 12 m n  
real numbers, which can occupy from tens to hundreds of  kbytes of the control sys-
tem memory.  

6 Simulated results 

Consider the 3-DOF anthropomorphic robot arm approximate model in Fig. 1, where 
1 2 1 kgm m  , 1 2 0.5ml l   and 1mh  . The terms of the diagonal matrices 

, ,u v rK K K  and F  were chosen as 1uik  , 0vik  , 10rik   and 3if  , 1,..,3i  . 
The mathematical model for simulation, which is strongly non-linear, was obtained by 
expressing the terms  B q ,  ,C q q q   and  g q  in (1), where  , , T  q , from 
the expressions for kinetic and potential energy. Since the mathematical model is 
rather complex, the details had to be omitted due to paper length limitations.  

First, the fixed axes PID controllers (13) were used. The diagonal matrix B  for 
setting-up the PID controllers, with the meaning of rough estimate of the inertia ma-
trix, was chosen as  

    
22

1 1 2 1 2 2 2
1 2 1 2 2diag , ,

2
m l m l l

m m l m l
  
  
 
 

B . (29) 

The reference trajectory was chosen as the step function, which can be viewed as the 
worst-case situation, since the robot will usually track a continuous trajectory. The 
controller parameters were computed so that 1 2 0.075i iT T s   and 0.8i   in (15). 
The joint initial and target positions are considered as   

  0 1.5,2,3 q ,  1.5, 2, 1f   q . (30) 

Figure 2 shows the corresponding histories of the robot joint positions. 
Further, the proposed adaptive controller has been used. The joint space has been 

divided into 38m   segments, 1   has been chosen in (20). The controller has been 
initialized to the same settings as in the previous case and executed 20 times the same 
trajectory with the scan period 0.002  s to adapt. The desired closed-loop settings 
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1 2 0.075i iT T s   and 0.8i   were preserved. The matrices iC  have been initial-

ized as    0 0.01 diag 1,0.3,1i  C  and 0.9  , min 0.03iT   and min 0.05iK   has 
been chosen. Figure 3 shows the final simulated histories. It can be seen that signifi-
cant enhancement has been achieved. Similar results were obtained also for lower 
values of m . In these cases the convergence was faster, but it seems that it is neces-
sary to use higher values of miniT  and miniK  and the responses are a little slower.  

 
 

  

  

 
 
 
   

 

 

Fig. 1. The robot arm approximate model    

7 Conclusions 

The proposed adaptive control system is based on the principles of the PID controller-
based decentralized control, where the joint space is divided into segments with dif-
ferent controller settings. To ensure continuity of the control signal at the segment 
boundaries, the segments are represented as fuzzy sets with a special choice of the 
membership function. Simulated results show that the approach can be used in the 
cases when the conventional decentralized control fails to produce good responses, 
although such situations seem to occur mainly in the cases of long-range and high-
velocity movements. The control system memory requirements are large in compari-
son with conventional control algorithms, but can be fulfilled by using current 32-bit 
microcontrollers. Thus the worst problem from practical point of view seems to be 
proper initial settings of iC , miniT , miniK  and other parameters that influence conver-
gence of the sequence of estimates (27).         
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Fig. 2. The joint step responses - fixed axes PID controllers    
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Fig. 3. The joint step responses - adaptive control system, 38m      
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