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Abstract—A special form of a predictive controller is presented
in this paper. Based on previous authors’ work, a piecewise-linear
neural model of nonlinear plant to be controlled is adopted to
local linearization. The linearized model is then used for control
action evaluation using a predictive controller. Although the
linearization using piecewise-linear neural network is simple and
efficient, it provides the model in a nonstandard form. Therefore,
the proposed predictive controller is designed in order to handle
that nonstandard model without any customization. At the end of
the paper, the illustrative example demonstrates the main features
of the introduced solution.

I. INTRODUCTION

If a system can be described by a finite set of individual
linear subsystems, where each subsystem is valid in a dis-
tinguished region of state space, this system is then called
a piecewise-linear system. Piecewise-linear systems have re-
ceived a lot of attention recently for their equivalence to other
classes of the systems [1], but mainly for their practicality.
Namely, they provide a structure which is capable of approxi-
mating nonlinear systems. This structure can be consequently
dealt with using techniques which were originally proposed
for linear systems. Besides, some specialized tools for a
piecewise-linear system analysis were published, too [2].

Identification of the nonlinear systems using piecewise-
linear model is generally not a simple problem. In a very
rare case, when the number of linear regions is known, the
issue transforms into a classical linear system identification;
the parameters of the subsystems can be estimated from the
corresponding input-output data. Nevertheless, the significant
challenge occurs in the situation when the state space division
is not known. Many contributions dealing with the identifica-
tion of piecewise-linear systems (or more general piecewise-
affine systems) have been proposed over time; Vidal et al.
propose an algebraic approach [3], while others use clustering
approach [4] or the bounded error method [5].

Once a piecewise-linear model of the nonlinear system is
designed, it can be advantageously applied in stability inves-
tigation, prediction, fault diagnosis and especially in process
control. Ameur et. al [6] use piecewise-linear and piecewise-
affine approach to electropneumatic systems control; authors
of [7] propose an adaptive controller for piecewise-linear

systems; and in [8], uncertain parameters of piecewise-linear
systems are even considered, when a controller is designed.

In 2012, a novel way of piecewise-linear model design was
proposed [9]. Authors used a special topology of feedforward
neural network, which could ingenuously provide a piecewise-
linear model of nonlinear system to any degree of accuracy.
This approach was then used for nonlinear systems control
using PID controller [10], [11], and tested in industrial envi-
ronment [12]. The issue is, that control techniques applied in
the mentioned contributions used classical control approaches.
In so doing, the piecewise-linear model derived in [9] had to be
transformed a bit to fit to those classical approaches. However,
the family of control laws is much richer these days and some
of them can be applied directly without any transformation. To
be more specific, a suitable version of predictive controller is
introduced in this paper. This controller can directly utilize the
model of a nonlinear system provided by [9] and, apparently,
it offers much larger tools for control response tuning, than
the classical approaches.

The paper is organized as follows. In section II, the aim
of this paper is properly formulated. Then, the particular
predictive controller, which fits to the problem defined in
section II, is suggested (section III) and its features are
demonstrated on a laboratory system (section IV).

II. PROBLEM FORMULATION

In [9], a novel and computationally simple technique, which
provides a piecewise-linear model of a nonlinear system, is
presented. Functionally, it works as illustrated in Fig. 1.

The deterministic form of a provided piecewise-linear model
is as follows.

A1(q−1)y(k) = B1(q−1)u(k) + c1, if x ∈ X1

A2(q−1)y(k) = B2(q−1)u(k) + c2, if x ∈ X2

...
AR(q−1)y(k) = BR(q−1)u(k) + cR, if x ∈ XR

(1)

In equation above, k is a discrete time, y(k) is the output
of the model, u(k) is the input to the model and q denotes
the forward shift operator, i.e. q−1y(k) = y(k − 1).
The vector x defines the current state of the model,
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Fig. 1. Technique.

Fig. 2. State space partition of demonstrative model.

x = [u(k − 1), · · · , u(k −m), y(k − 1), · · · , y(k − n)]
T.

Then, X =
⋃

i∈{1,2,··· },R Xi denotes the state space partition
into closed regions. Moreover, Ai(q), Bi(q), i = 1, 2, · · · , R,
are the linear filters, which, together with the constant ci,
determine the linear subsystem valid for the particular region i.
The filters are defined as follows.

Bi(q−1) = [0 + bi1q
−1 + bi2q

−2 + ...+ bimq−m], (2)

Ai(q−1) = [1 + ai1q
−1 + ai2q

−2 + ...+ ainq
−n],m ≤ n. (3)

where m is the order of the filter Bi(q−1) and n is the order
of the filter Ai(q−1).

For an illustration, state space partition of a particular
piecewise-linear model for m = 1 and n = 2 provided by
the mentioned technique can be figured as shown in Fig. 2.

Obviously, the constant value ci does not correspond with
the ordinary specification of linear systems and consequent
controller design. Thus, the piecewise-linear model (1) was
transformed in [9] in order to remove the constant value ci.
The aim of this paper is different. In following sections, a
type of predictive controller is proposed here to deal with the

system described by model (1) directly without any transfor-
mation.

III. PREDICTIVE CONTROLLER DERIVATION

Model predictive control is a modern technique of process
control. In comparison to other modern techniques, model
predictive controllers minimize weighted future control errors
and control efford taking into acount constraints and using
concept of receeding horizon. The comprehensive review of
the family of predictive control approaches can be found in
[13], [14] or [15].

In our approach, the cost function is defined as follows.

J =

N∑
j=1

(ŷ(k + j)− w(k + j))
2
+

r

N−1∑
j=1

(u(k + j)− u(k + j − 1))
2
, (4)

where k is the current discrete time slot, y(k) is the output
of the system to be controlled, w(k) is its reference value,
ŷ(k + j) is its predicted value j time slots ahead, u(k) is the
current control action, N is the length of the time horizon and
r is the control action change penalization (r > 0). Tuning of
this parameter affects the dynamics of the control action.

For further processing, it is convenient to transform the cost
function to its matrix form. Thus,

J = (y −w)
T
(y −w) + uTRu, (5)

where y =


ŷ(k + 1)
ŷ(k + 2)

...
ŷ(k +N)

, w =


w(k + 1)
w(k + 2)

...
w(k +N)

, u =


u(k)

u(k + 1)
...

u(k +N − 1)

, and R =


r −r 0 · · · 0
−r 2r −r · · · 0
0 −r 2r · · · 0
...

...
...

. . .
...

0 0 0 · · · r

,

Apparently, it is necessary to determine a control action
course u(k), u(k + 1), · · · , u(k + N − 1) which keeps the
cost function (4) to be minimal. In the following paragraphs,
the intuitive way of this course determination is shown for
the piecewise-linear model (1), where m = 2, n = 2. The
generalization, however, would be obvious.

Thus, suppose an ith linear submodel of a piecewise-linear
model (1) as follows. The upper indices are removed for the
simplicity of the notation.

y(k) + a1y(k − 1) + a2y(k − 2) =

b1u(k − 1) + b2u(k − 2) + c. (6)



According to the previous equation, the following set of
predictive equations can be provided.

ŷ(k + 1) + a1y(k) + a2y(k − 1) =

b1u(k) + b2u(k − 1) + c, (7)

ŷ(k + 2) + a1ŷ(k + 1) + a2y(k) =

b1u(k + 1) + b2u(k) + c, (8)

ŷ(k + 3) + a1ŷ(k + 2) + a2ŷ(k + 1) =

b1u(k + 2) + b2u(k + 1) + c, (9)

...

ŷ(k +N) + a1ŷ(k +N − 1) + a2ŷ(k +N − 2) =

b1u(k +N − 1) + b2u(k +N − 2) + c, (10)

The symbol ŷ means that the value is predicted using the
model, while y means measured value of system output.

Again, the set of equations above is transformed into a
matrix form. Note that the predicted and measured parts of
the equations are separated.

Apy = Bpu+Am

[
y(k)

y(k − 1)

]
+Bmu(k− 1) +Cmc, (11)

where Ap =


1 0 0 · · · 0
a1 1 0 · · · 0
a2 a1 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1

 ,

Bp =


b1 0 0 · · · 0
b2 b1 0 · · · 0
0 b2 b1 · · · 0
...

...
...

. . .
...

0 0 0 · · · b1

 , Am =


−a1 −a2
−a2 0
0 0
...

...
0 0

 ,

Bm =


b2
0
0
...
0

 , Cm =


1
1
1
...
1

 .

Now, a predictor equation can be derived.

y = A−1p Bpu+A−1p Am

[
y(k)

y(k − 1)

]
+A−1p Bmu(k − 1) +A−1p Cmc, (12)

and after a particular substitution,

y = Gu+ Fpxp. (13)

In equation above, G = A−1p Bp, Fp consists of three
matrices in a row, i.e. Fp =

[
A−1p Am A−1p Bm A−1p Cm

]
,

and xp =
[
y(k) y(k − 1) u(k − 1) c

]T
.

The predictor is compounded of two components; the term
Gu is called the forced response and the remaining term Fpxp

is titled as the free response. The free response is the system
response assuming that the current and future control actions
are zero. The forced response is the system response due to
the nonzero current and future control actions. Therefore, a
controller is able to affect only the forced response part of the
predictor. For the simplicity of the notation, the free response
is labeled as f in the following equations; i.e. f = Fpxp.

Using (13), the future course y can be predicted with respect
to the control action course u. Thus, eq. (5) can be written as
follows.

J = (Gu+ f −w)
T
(Gu+ f −w) + uTRu (14)

Now, using some basic operations of matrix algebra, the
formulation above can be transformed as follows.

J =
(
uTGT + fT −wT

)
(Gu+ f −w) + uTRu =

uTGTGu+ uTGTf − uTGTw + fTGu+

fTf − fTw −wTGu−wTf +wTw + uTRu. (15)

The previous equation can be formally simplified as follows.

J = uTHu+ uTg + gTu+ k = uTHu+ 2uTg + k, (16)

where H = GTG + R, g = GT (f −w) and k =
(f −w)

T
(f −w).

The cost function (16) can be efficiently minimized by
completing the square, i.e.

J =
(
u+H−1g

)T
H
(
u+H−1g

)
− gTH−1g + k. (17)

Now, assuming that
(
H−1

)T
= H−1 and no constrains,

the cost function (17) can be minimized analytically. The
mentioned assumption is fulfilled - see the definitions of
matrices H and R. Thus,

u = −H−1g =
(
GTG+R

)−1
GT (w − Fpxp) , (18)

or
u = L (w − Fpxp) , (19)

where L =
(
GTG+R

)−1
GT.

Since only the current control action value is required, the
term (19) can be simplified to

u(k) = l (w − Fpxp) , (20)

where l is the first row of the matrix L.
Considering (20), the control loop using a piecewise-linear

neural model of the system and the derived predictive con-
troller can be illustrated as seen in Fig. 3.



� �� �

� �� �� �
	 
���

� �� �
�� � �� �
�� � � �� �
�
�� ��������

� �� �
�����	

� �� �� 
 � �����	

�
�

� �

� ��

Fig. 3. Control loop.

Fig. 4. GUNT RT 050 speed control laboratory system.

IV. ILLUSTRATIVE EXAMPLE

As an illustrative example, a predictive control of GUNT
RT 050 speed control laboratory system (Fig. 4) is proposed
in the following paragraphs. In simple words, the DC motor
of this laboratory system drives a mass flywheel. The speed
is measured inductively using a speed sensor. The power of
the motor is controlled by the input voltage (0-5 V), while
the speed sensor generates the voltage directly corresponding
with the angular speed of the flywheel (0-10 V) [16]. The static
characteristic of this system is shown in Fig. 5. Consequently,
a set of normalized responses to step functions along various
working points is depicted in Fig. 6 in order to show the system
nonlinearity in dynamics.

A. Piecewise-linear neural model

To transform the nonlinear system described above into
linear submodels according to the algorithm described in [9],
it is necessary to design a neural model of the system, where
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Fig. 5. Static characteristic of the system.
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Fig. 7. Designed neural model.
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Fig. 8. Control response.

neurons in the hidden layer of the used feedforward neural
network contain a linear saturated activation function and
the output neuron contains a linear (identical) activation. The
existence of this neural model is guaranteed by [17] and the
process of a dynamic neural model design was standardized in
many sources [18], [19], [20] or [21]. The process generally
consists of training and testing set acquisition, neural network
training and pruning, and neural model validating.

In this paper, the process of a neural model design is not
described there since it is a generic procedure. As the end of
this procedure, the neural model with the structure shown in
Fig. 7 is designed. Thus, the neural network used inside this
model consists of four inputs (m = 2, n = 2), five neurons
with linear saturated activation functions in hidden layer, and
one output neuron with linear (identical) activation function.
The sampling rate is set to TS = 1s.

B. Control experiments
As mentioned above, the piecewise-linear neural model

provides the parameters a1, a2, b1, b2 and c of the linear
submodel, which is currently valid. Using these parameters,
the vector l and the matrix Fp of the predictive controller can
be determined and the control action u(k) can be computed.
Apparently, the current state of the system as well as the future
course of the reference variable should be known.

One control response is measured for control horizon N =
10 and control action change penalization r = 0.2. The courses
are shown in Fig. 8. The system output y and its reference w
are situated at the top part of the figure, while control action
is at the bottom. In addition, the regions, in which particular
linear models are used, are also marked and numbered. The
numbering corresponds with Table I.

TABLE I
LINEAR SUBMODELS USED FOR PREDICTIVE CONTROLLER, SEE FIG 8

Number a1 a2 b1 b2 c
1 0.0780 -0.1520 0.1720 0.0060 0.0450
2 -1.2900 0.4890 0.0530 0.0120 0.8680
3 -1.2980 0.3920 0.1100 0.0090 0.3220
4 -1.2980 0.3920 0.1100 0.0090 0.2610
5 -1.2190 0.2400 0.2820 0.0150 -0.3520
6 -1.3160 0.3720 0.3950 -0.0250 -0.1300
7 -1.3160 0.3720 0.3950 -0.0250 -0.0690
8 -1.2120 0.3370 0.2260 0.0180 0.2550
9 -1.2120 0.3370 0.2260 0.0180 0.1940

Considering Fig. 8, the control response is quick and
smooth. Switching between linear submodels does not bring
any significant disturbances. The small steady-state control
error is caused by the combination of the non-ideal model
of the system and missing integral part of the predictive
controller.

Naturally, the control response can be tuned by the control
action change penalization r. In Fig. 9, the control responses
for several values of r are shown, keeping the other features
unmodified.

V. CONCLUSION

As it is presented in this paper, a locally valid linear
submodel provided by a piecewise-linear neural model can be
used for control action evaluation without any customization.
The family of predictive control techniques offers many tools
these days to deal with various kinds of special and nonstan-
dard systems and models. One particular predictive controller
is developed in this paper. Its special feature is that it deals
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with a particular linear submodel provided by a piecewise-
linear neural model in a very satisfactory way, as it is shown
in illustrative example above. Note, that the point of the
development was to keep the controller as simple as possible
to keep the contribution synoptic. However, the controller can
be improved on other interesting features such as an integral
part, prediction error evaluation, constraint satisfaction, etc.
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