
 

University of Pardubice 

Faculty of Transport Engineering 

WAYSIDE DIAGNOSIS OF RUNNING GEAR 

RELATED FAULTS IN RAILWAY VEHICLES 
 

 

 
PhD Student: Onur KILINC, M.Sc. 

 

2017



 

Programme of study: 

P3710 Technique and Technology in Transport and Communications 

 

Branch of study: 

3706V005 Transport Means and Infrastructure 

 

Supervisor: Ing. Jakub Vágner, Ph.D. 

Specialist supervisor:  doc. Ing. Michael Lata, PhD. 

 

Dissertation came into being at department: 

Department of Transport Means and Diagnostics 

  



 

I hereby confirm that: 

 

I have written this dissertation thesis independently. All the reference literature and information 

used in this work are quoted in the list of reference literature. 

 

I hereby acknowledge that all the rights and duties resulting from Act No. 121/2000 Coll., the 

Copyright Act, apply to my written work, especially that the University of Pardubice has the 

right to make a license agreement of use of this written work as a school work pursuant to to § 

60 section 1 of the Copyright act. On the condition that the written work shall be used by me or 

a license shall be provided to another subject for the use hereof, the University of Pardubice 

shall have the right to require from me a relevant contribution to reimburse the costs incurred 

for the making of such work including all relevant costs and total overal expenditure and 

expenses incurred. 

 

I agree with making the work accessible in the University Library. 

 

This work has been accomplished by using technologies of the Educational and Research Centre 

in Transport. 

  

Dated in Pardubice on 7. 4. 2017 

 

          

               ONUR KILINC 

 

  

  



 

  

I would like to thank my supervisors doc. Ing. Michael Lata, PhD and Ing. Jakub Vágner, PhD. 

for helpful approach and precious advice during the writing of my dissertation work. I am also 

thankful to project TAČR TE01020038 for providing data about metros and the maintenance 

information of metro train sets from DP Praha 



 

ANNOTATION 

The work focuses on the diagnosis of running gear faults like wheel defects, wheelset and 

traction motor bearings and gearbox faults using model based and wayside diagnosis techniques 

based on acoustic and vibration sensors. Firstly, a brief background information about railway 

vehicle condition monitoring systems is given. Main aim of the work was proposing the 

methods that are efficient in recognizing vehicle faults. In the next section, proposed methods 

are validated by experimental measurements, real information from maintenance and simulated 

faulty cases of running gear components. With the contribution of advanced pattern recognition 

techniques and model based filtering, an efficient diagnosis framework was proposed. It 

provides a cost effective maintenance for railway vehicles. 
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TITUL 

Diagnostika poruch pojezdu kolejových vozidel měřením na trati 

 

ANOTACE 

Práce se zaměřuje na diagnostiku pojezdu kolejových vozidel jako jsou vady dvojkolí, poruchy 

ložisek nebo mechanické části pojezdu, a to za použití wayside diagnostiky měřením hluku 

a vibrací na trati. V úvodu jsou popsány existující systémy monitorování stavu kolejových 

vozidel. Hlavním cílem práce bylo navrhnout metody pro efektivní rozpoznání poruchy vozidla. 

V další části jsou navržené metody validovány pomocí experimentálních měření, skutečnými 

informacemi z údržby a pomocí simulovaných případů poruch pojezdu vozidla. S přispěním 

moderních technik zpracování signálů jako: advanced pattern recognition techniques and model 

based filtering byl navržen účinný rámec diagnostiky. Ten umožňuje snížit náklady při údržbě 

kolejových vozidel. 

 

KLÍČOVÁ SLOVA 

Wayside diagnostika, údržba, detekce poruch, vibrodiagnostika, analýza signálu v časové 

oblasti, filtrace na základě modelu. 
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INTRODUCTION 

Wayside diagnostics have utmost attention of the researchers due to recent 

advancements in contemporary methods in railway vehicle condition monitoring. 

Understanding the real time or offline evaluation of sensor data tells about the health status of 

some specific mechanical parts of the railway vehicles is vital for low cost maintenance which 

superimpose periodical service of all structures on the train sets at the same time or the necessity 

of on-condition repairs. 

Diagnostics of the running gear of a rail vehicle is the key point of ensuring a railway 

vehicle is running in safe mode.  Ongoing stationary techniques are more focused on laboratory 

experiments including the experiments on a static or dynamic test stand or using on-board 

sensors on the specified points of the vehicle parts. Wayside diagnostics however, is more 

capable of determining dynamic system faults requiring less effort than stationary test 

environments which outperforms the condition based maintenance by means of cost efficiency. 

In addition to cost friendly nature of wayside diagnostics, it may serve real-time monitoring of 

conditions of individual vehicles and their running gear components when an efficient 

evaluation process is maintained. Another discriminative advantage may be counted as, when 

some system parameter such as dynamic response of a bogie significantly changes, which may 

affect the safety of the run and harm other components, these changes can only be observed and 

diagnosed during vehicle is in real world operation. 

Strain based [1], accelerometer sensor based and gyroscope sensor based [2] methods 

are the fundamental way of measuring forces or detect anomalous activity in the run. Other 

advanced techniques are also presented for specialized diagnosis of rail vehicles like sliding 

wheel detectors, acoustic bearing defect detection, hot box detectors, hunting of the vehicle 

detectors which are only limited to a particular parts of the vehicle [3]. 

On-board data driven methods are also a commonly used way of monitoring safety of 

the run. These methods require detailed knowledge about a target vehicle and feasible set of 

sensors and evaluation methodology if multi-condition monitoring is to be achieved [4]. 

Successful application of these methods is not possible unless a very well characterized 

modelling besides appropriate filtering. 

Noise reduction is also a vital step after acquisition process is done especially for 

acoustic sensors are employed. The nature of railway vehicles are significantly noisy and a 

proper signal modelling should be constructed to prevent adverse effects on signals. 
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In this thesis, in order to achieve a complete diagnosis framework for running gear, 

several different examples of diagnosis from model based methods to specific diagnose 

techniques are proposed. Proposed techniques are validated both experimental and simulated 

faulty data by numerous comparisons. 

The organization of this thesis is as follows: The analysis of the current situation in the 

area of dissertation is presented in Section 1. Objectives of the area of dissertation, background 

information of model based faulty frequency calculations for running gear components and test 

environment are explained in Section 2. Proposed methodologies that are capable of detecting 

and simulating faults of rotating machinery on the running gear of railway vehicles are given 

in Section 3. Abnormal signal detection by acoustic and vibration sensors data and method 

validation on a ground truth database in rotating machinery related faults, detecting simulated 

faulty conditions of running gear components and acoustic sensor based diagnosis of traction 

motor bearing faults are given in Section 4 with results and discussion. Own contribution of the 

Ph. D. student including novel methodologies subjected to this thesis is presented in Section 5. 

Finally, the conclusion part that discuss the efficiency of the methods regarding to the results is 

given in Section 6. 
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1 ANALYSIS OF THE CURRENT SITUATION IN THE AREA 

OF DISSERTATION 

Currently, all railway to road vehicles in central Europe have plenty different kinds of 

diagnostic systems. Road transportation diagnosis is based on electronic devices which may 

indicate several problems for the related vehicle. However, condition monitoring via real-time 

or offline diagnostic systems are not common especially in the area of railways that indicates 

condition of some mechanical components of the vehicle. 

Ongoing techniques in the area of Czech Republic is more focused on laboratory 

experiments including the researches on a static or dynamic test stands. Data is collected via 

desired parts of the vehicles with known condition state by performing static or dynamical tests 

in laboratory conditions. Stationary techniques are more focused on laboratory experiments 

whereas wayside diagnostics are more capable in determination of dynamical system faults that 

requires less effort than stationary test environments. Nevertheless, acquired results and 

evaluation processes of signals that are recorded stationary may not help a vehicle in running 

conditions and lack of being real-time. 

An application of wayside diagnostics in Czech railways is so called ASDEK which 

uses sensors mounted on a rail or close to it. The main conditions that can be monitored by the 

techniques of ASDEK include measurement of physical quantities like temperature of bearings, 

vertical force between wheel and rail. Measurements can be done at approximately while the 

velocity of the train is 80 km/h. Moreover, the diagnose of wheelset eccentricity and detection 

of wheel defects like bumping of the wheel are also available and real-time data may be 

provided for warnings or even for decision of stopping the run of the train [5]. 

The measurements of ASDEK belongs to instantaneous load and temperature and the 

application in metros in the area of Czech Republic is not available. 

In the environment of wayside diagnosis, observing the actual response of the running 

gear of the railway vehicles is troublesome due to far from being ideal in comparison to 

modelling. Real world idealization of engineering models have always been a problem for 

mechanical parts and their interaction with each other [6]. Understanding the precise response 

of a particular mechanical system under uncertain conditions needs an exhaustive computation 

and lack of being ideal under circumstances of the stochastic nature of loading on different 

components and vagueness of material structure geometry, besides variations in the operating 

environment and modelling limitations [7]. To deal with uncertainties, each computational 
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component should be well characterized to get rid of the effects of randomness and imprecision 

as well as inability in modelling while maintaining the feasibility and computational efficiency. 

In the passing decades, uncertainty analysis have long been used increasingly due to the 

presence of more powerful computers [8]. Several methods, which can be categorized into four 

main approaches: worst case analysis, interval analysis, probabilistic methods and fuzzy set 

theory, have already been proposed to overcome the unwanted effects of uncertain system 

parameters; means of interval analysis, which is based on the interval mathematic, is used for 

tolerance handling and numerical rounding errors [9] as a simple approach. 

Determining structural system parameters via Kalman filter is also introduced to 

understand the precise solution when the system is linear, [10] otherwise, linearization process 

is required. Kalman filter is developed to compensate the error in the acquisition of sensor data 

and model parameters even if the utilized model is imperfect or noise is present in the 

observation environment. Although, there are some limitations in this filtering process due the 

lack of knowledge in covariance of the observed data [11], Kalman filter is a perfect observer 

and can be applied to both linear and non-linear processes in determination of running 

parameters like suspension or dampers [12] when the vehicle is in operation by creating a 

dynamical model of the vehicle and appropriate placement of the sensors. As a commonly used 

filter, Kalman needs to satisfy two main definitions; the dynamic model which describes the 

propagation of the system in long term run and the stochastic process which describes system 

process noise and errors in the observations. Latter has an urgent outcome by means of 

performance due to uncertainty in covariance parameters of process noise and observation 

errors which affects the weighting of measurement against dynamic model. 

For mechanical vehicle vibrations, ideal theoretical model generation is a tough job 

since the physical character is unpredictable due to imperfections between bodies and the 

environment. Optimization of system parameters like damping factor and stiffness constants 

need further investigation under random theory [13]. 

In vibration diagnostics, it is urgent to use the methods that are suitable for vehicle 

environment. It is known that vehicle vibration signals, in many conditions, behave non-

stationary random characteristics [14]. One fast and suitable technique is short-time Fourier 

transform (STFT), which uses overlapping windows in time, accommodating non-stationary 

signals. However, this method requires several experiments of the same conditions to achieve 

reasonable performance. In comparison with this technique, Continues Wavelet Transform 

(CWT) is also employed [15]. 
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In contrast to general approaches of vibration signal processing, some methods prove 

their efficiency in specific jobs. Gearbox related fault detection using time domain statistics 

like crest factor, kurtosis, the application of discrete wavelet transform and time-synchronous 

averaging, which provides removal of the noise, are reported to be efficient [16]. Diagnosis of 

gear defects is performed via wavelets and Kurtograms [17] or other multi-scale wavelet 

methods [18]. To retrieve periodic faulty gear tooth signals under heavy noise, maximum 

correlated kurtosis deconvolution is also employed [19]. 

First wayside approaches [20] for wheel defect detection was placed in New York which 

is based on impact load measurement in 1983. Afterwards, in 1996, Swedish has used strain 

gages in detection of wheel defects and now they have 190 wayside systems in service. In the 

literature, several different sensors are used to detect wheel defects like out-of-roundness, 

shelling and flats which lead to excessive impact on the rail and can increase the wear and tear 

of the track. In strain gage measurement related to wheel defect diagnosis, the most common 

features of the measured vertical force are average and maximum values [20]. To deal with 

wheel defects by trackside level,  total of 128 strain gages are placed on the rails which cover 

90% circumference of the wheels in different sizes [21] and both vertical and lateral forces are 

measured in 16 points of the rail. According to [22], investigation of wheel position effect is 

performed by using strain gages in a curvature of 484 m radius, while the operation speed is up 

to 100 km/h in a specific research station. Afterwards, lasers and high speed cameras are located 

so that they can retrieve the image of the wheel profiles [23]. This combined method is used for 

decision making for maintenance. 

Fibre-optic sensor technology which is based on the change of the refractive index of 

ultra-violet ray on the targeted small area, is used as an extension of strain-gage measurement. 

The main advantages are electromagnetic immunity, ability of fabrication numerous sensors 

inside a fibre, resolving the recalibration problem and cost-effectiveness, easy installation, 

immunity to environmental temperature change, faster response and reliability referring to the 

study [24]. By using Fibre-optic sensors shear strain of the rail can be determined which is 

proportional to vertical impact force. Moreover, it is also possible to use these sensors to count 

the number of axels for train identification, speed detection, [25] monitoring weight of the train 

and wheel imperfections [26]. However, this methods comes with speed limitations of 15 km/h.  

Ultrasonic sensors are also presented for wheel defect detection in the literature which 

are based on pulse-echo and pulse transmission. An application of ultrasonic sensor 

employment in wayside for wheel crack detection is based on special sensors which do not 
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require liquid couplings [27]. Other implementations require complex infrastructures and 

limited to constant and slow speed of the run [28], [29] and [30]. 

Acoustic sensors are also an appropriate way of detection wheel defects but again with 

speed limitations. Wheel defects emit a periodic acoustic impulse respect to the speed of speed 

of the run. For detection of the repetitive patterns related to wheel defects, low pass filtering 

and root mean square of the signal is used on 40 ms time windows and Fourier transform is 

followed [31].  

Vibration sensors (accelerometers) also provides an efficient diagnosis of the wheel 

defects like; wheel flat, corrugation upon making comparison of energy levels and investigating 

power cepstrum which is very convenient to show the repetitive patterns of the wheel flat in the 

noisy signal [32]. However, using these technique comes with constant speed limitations. 

Determination of the degree of the failure of the wheel is also possible with fuzzy-logic method 

[33]. To do so, vibration sensors are allocated on the foot of the rail and three urgent parameters; 

center frequency, velocity of the train and vibration amplitude are considered. As a result, it is 

shown that train speed and center frequency have utmost effect in the vibration outputs.  

According to a recent research [34], piezoelectric and accelerometer sensors are mounted on 

the rail and using wavelet based methods and direct thresholding to distinguish the severity 

levels of the wheel flat, is reported to be efficient. 

Using shear bridges, which are consistent of multiple strain gage elements, is reported 

to be more convenient than accelerometer sensors because the measurements are independent 

from train speed and load conditions, according to the study [35]. Nevertheless, using such 

systems require cumbersome calibration complexity and thus additional costs.  

More advanced techniques like utilization of lasers and high speed camera is also 

presented in the literature. In the study [36], it is reviewed that high speed cameras and lasers 

are used in order to analyze the wheel profiles when the operational speed is less than 15 km/h. 

Retrieved profiles are then saved and wear amount of each wheel is monitored. Another 

methodology uses lasers to emit the wheels and cameras which are mounted nearby rails shoot 

the photo of the wheel wheel profile of freight trains while trains are in their operating speed 

up to 160 km/h [37]. These images are then compared to normal wheel profiles of other trains 

to make the decision. 

Wayside diagnosis of the bearings is performed by microphone sensors and Doppler 

effect eliminator method [38]. Vibration based diagnosis of the inner, outer and rolling element 

faults of bearings of varying speeds, which may be suitable to wayside diagnosis, is performed 

by envelope analysis  [39]. According to [40], worn bearing detection and crack detection may 
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be performed by utilizing wavelet features and least square support vector machines. In 

addition, harmonic wavelets are used with ideal band-pass filtration on the vibration signals in 

order to identify bearing defects [41]. Minimum entropy deconvolution is also applied on the 

faulty signals that behaves impulsive characteristics for bearings [42] and then envelope 

analysis is performed. 

A few number of patented condition monitoring systems are existed across Europe for 

railway vehicles which is reviewed in a recent literature [43]. 

GOTCHA is an open wayside monitoring platform which is capable of wheel defect 

detection and load determination for wheels which is founded in Netherlands. The operational 

speed is 15-350 km/h while accuracy of 3% load measurement between 30-70 km/h operational 

speed is reported. Vehicle identification is maintained by Automatic Vehicle Identification 

(AVI) tags. 

In Germany, LASCA makes the detection regarding to the deflection of a laser beam of 

deformation of the loaded rail and determine directional deformation of the rail which is 

proportional to Q-forces. The accuracy of 2-3% is reported in load measurements with 

operational speeds up to 350 km/h. Identification of railway vehicles is provided by ZLV bus. 

MULTIRAIL makes it able to monitor rail safety factors like vertical wheel forces and wheel 

set loads, as well as optimum load distribution. In MULTIRAIL, Radio-Frequency 

Identification (RFID) is present in order to recognize vehicles. 

ARGOS, which is founded in Austria, presents step by step solutions by using strain-

gage sensor based approaches to identify axle loads with a tolerance of 0.5% and measures 

dynamical response which may provide information about wheel irregularities and wheel-rail 

contact forces while the operational speed is 10-40 km/h. In addition to this, it enables 

determination of roundness of the wheel with a precision of 0.01 mm. Identification of the 

vehicles is performed by RFID. Many other techniques in company level are reviewed in the 

literature [44]. 

All in all, most of the trackside diagnosis systems are based on deformations which 

makes it harder to calibrate but easier to evaluate. Among all proposed methods in this section, 

neither an adaptation of a trackside measurement system inside metro tunnels is existed nor the 

proposed approaches belong to vibration based accelerometers or acoustic sensors. 

1.1 Critical assessment and analysis of the current situation 

Mechanical faults have similar behavior which leads to the possibility of same diagnosis 

framework implementation in multi-fault detection. Other systems such as strain gage arrays in 
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diagnosis of running gear provides monitoring however their principle of working is mostly 

based on force measurement which is easier to handle than evaluation of vibration based signals 

since the interaction of different structures and multiple presence of the same components affect 

output badly. However, these systems require dynamic modelling and additional calibration 

which is hard to maintain. 

As well as vibration sensors, in the proposed diagnosis framework, acoustic sensors are 

also introduced. Using such sensors requires advanced filtering before further implementations 

of fault diagnosis may be applied due to heavy noise presence in tunnels. Moreover, other 

diagnostic systems deal with different vehicles that run on the same track passage whereas in 

the experiments related to this thesis all train sets are identical and no significant load change 

is present even if it is fully loaded. 

Fortunately, while retrieving the experimental data obtained from the passages of 

wayside diagnostic environment, it is possible to make measurement of the same train set a few 

times per day, thus abnormal sensor outputs may be ignored in the process and multiple chances 

to diagnose same running gear of the train sets are present. Furthermore, thanks to the number 

of vibration and acoustic sensors in wayside environment provides twice measurements when 

each train passes for a double check. 

Proposed algorithms may help designing a smart diagnosis system of running gear 

related faults like wheel defects, wheelset eccentricity, bearing faults and gearbox faults in 

combination with data driven and model based approaches. The research activity belongs to 

thesis may have attention of the maintenance specialists and engineers that work in condition 

monitoring systems in railway vehicles. 
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2 DEFINITION OF DISSERTATION OBJECTIVES 

Wayside diagnostics have utmost interest of the researchers due to availability of more 

computational power that makes able to use of complex methods in designing vehicle condition 

monitoring systems. Real time or offline evaluation of sensor data may indicate possible 

problems related to some specific mechanical parts of a vehicle which is vital for low cost 

maintenance and superior to periodical service. In addition to cost friendly nature of wayside 

diagnostics, it may serve real-time monitoring of individual train sets and structures when an 

efficient evaluation process is maintained. 

One promising application may be considered as the main subject of this thesis; 

condition monitoring of feasible number of mechanical structures of running gears of the train 

sets of Prague Metro in close complex traffic using several cutting edge techniques. Upon using 

of retrieved acoustic and mounted mono-axial accelerometer sensors that are employed in the 

environment of the passages which provides data for several runs of the same train sets, a cost 

friendly wayside diagnosis of Prague metro type 81-71M is aimed to be achieved. Proposed 

methodologies; Histogram Enhanced LCP Kurtograms (E-LCP-K), different types of wavelet 

energy methods (WPE, W-WAV), time domain statistics, Multipoint Optimal Minimum 

Entropy Deconvolution (MOMEDA) and wavelet denoising, may effectively be used on the 

signals that are segmented from chosen healthy and faulty wheelsets and classification of health 

status of the vehicle or abnormal cases are then determined via state-of-art classifiers and 

combined classifier approaches. 

Another urgent objective is to validate the proposed methods and their efficiency in 

structural health monitoring with measured and simulated faulty data. Since in wayside 

diagnostic systems, retrieval of data of the same train set multiple times is possible, it is vital to 

not to use all sensor data unless it is in expected range. These cases may cause false positive 

errors and ought to be discarded in an appropriate way. 

Main objectives of the thesis are: 

1) Designing an appropriate framework for fault diagnosis of running gear components 

like wheel, wheelset/ traction motor bearings and gearboxes in railway vehicles 

2) Using cutting-edge feature extraction and classification techniques in diagnosis 

3) Application of contemporary digital filtering techniques in signal processing 

4) Validation of the methods both with measurement and simulated faulty data 

5) Maintain a real-time monitoring by accelerometer and acoustic sensors data 
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2.1 Test environment and signal acquisition 

In this research, two different wayside diagnostic measurements are investigated in 

order to build an efficient framework for metro train sets travelling inside the tunnel of Prague 

Metro-A line. Measurements were carrying out in the project Competence Centre of Railway 

Vehicles, No. TAČR TE01020038. 

Firstly, in Malostranská, the passage had been selected just before the transition curve 

approximately 100 m from Malostranská metro station which is directed to Nemocnice Motol. 

The measurement system of the wayside diagnostics system has total of eight sensors; six one-

axial accelerometers (Z1-Z6) of type Kistler 8702B100 which allows measurement up to 100g, 

on the top of feet of the rail, two prepolarized free-field microphones (M1, M2), which allows 

sound recording in 6.3 - 20 000 Hz range of type Brüel & Kjær 4188 are between the rails (same 

horizontal alignment with sensors Z1 and Z2. Two additional optical gates of type Balluff 

BOS016U with 500 Hz sampling rate (GA, GB) that accompany the accelerometer sensors to 

ensure wheel positions, targeting directly to the wheelset centers (Figure 1) [45] had been 

placed approximately 100 m from Malostranská in the direction to Nemocnice Motol metro 

station. Data was recorded by NI-cDAQ-9234 instrument, which provides 51.2 kHz sampling 

rate on all ten channels, during whole day while metros have been passing by. Malostranská 

database includes all passes of metro train sets in one day and always in the same direction just 

before the transition curve which makes it possible to retrieve the data of the same train sets 

more than ones. After having discarded the unusual signals due to environment or sensor 

overloading, total of 160 train passes are available for process. 

Straight

Curve
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z2z5

z4

z1
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side contact rail

 
Figure 1: Sensors localization in wayside diagnostic system Malostranská towards Nemocnice Motol passage 

 

Second experimental environment was located between Dejvická and Bořislavka metro 

stations. The passage was selected in the straight track with positive slope of 40‰ from 
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Dejvická. Five accelerometer sensors, four of which (Z1-Z2-Z3-Z4) were placed on the foot of 

left and right rails to observe vertical vibrations on rails while train sets are passing by. The 

remaining sensor (Z5) was placed on the concrete sideway of the passage. Three microphones 

(M1-M2-M3), one of which (M3) was placed on the tunnel wall, were also allocated in the 

wayside diagnostic system to obtain noise related features of different fault modes. All sensor 

types were identical as it had been in Malostranská wayside measurement system and all data 

recordings were done via NI-cDAQ-9234 instrument as in the same way in Malostranská 

passage with 51.2 kHz for accelerometer sensors and microphones while 500 Hz for optical 

gates (GA, GB) that targets the wheels. One day of recordings show that 226 train passes have 

successfully been retrieved in all channels and prepared for evaluation. Figure 2 shows the 

sensors on the test environment while they are in operation between Dejvická and Bořislavka. 

   

 

Figure 2: Balluff BOS016U optical gate (a),  Kistler 8702B100 acoustic sensor (b), Brüel & Kjær 4188 

vibration sensor (c) (author: Vágner J.) 

  

Sensor localization and related dimensions on the second wayside diagnostic system are 

shown in Figure 3. 

In the wayside experiments, all train sets have five passenger cars which are almost 

identical by means of dynamic behavior. The main difference that influences output signals is 

that they have different wheel diameters and maintenance schedule. 
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Figure 3: Sensor localization in wayside diagnostic system between Dejvická and Bořislavka metro stations 

 

Simplified model with dimensions of metro type 81-71M, which is being used in Metro-

A line in Prague, may be seen in Figure 4 and 3D model of the vehicle and track is given in 

Figure 5. 

 

 

Figure 4: Model and dimensions of metro type 81-71M; side view (left), front view (right) 

 

All train sets running in Prague Metro-A are identical type 81-71M and have five 

passenger cars. Wheelset arrangement of each train set is:

0 0 0 0 0 0 0 0 0 0( ' ') ( ' ') ( ' ') ( ' ') ( ' ')B B B B B B B B B B    . 
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Figure 5: 3D-model of test environment between Dejvická and Bořislavka metro stations; 

MS: the measurement system [46] 

 

2.2 Diagnosis of multiple faulty modes of running gear 

In this section, possible faulty modes that may be identified by wayside measurements 

are characterized and model based approaches to calculate faulty frequencies of different 

structures which are existed in Prague Metros that travel between Depo Hostivař and 

Nemocnice Motol metro stations. These frequencies are vital to investigate in order to design a 

filtering scheme before further implementations are performed since they are distracted by 

heavy noise which is present in the environment of the measurement. 

2.2.1 Wheelset related faults and characteristic frequnecies 

The interaction of railway vehicle and track is mostly affected by the wheel defects and 

consideration of propagation of this frequency is urgent to examine the relationship between 

wheels and nearby structures like gearboxes and bearings. Two main fault types are assumed 

to be most common and significantly diminishes the quality of the run; wheelset eccentricity 

and wheel defects. 

In the construction or mounting phase, the balance between axes of the wheelsets and 

wheels may be interrupted. This is due to the shift of the center of the wheelset and fails staying 

in the same axis of rotation. These failure is so called unbalanced eccentricity (Figure 6) and 

may also be observed overtime due to wear and fatigue. 
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Figure 6: Wheelset eccentricity related failures 

 

Wheelset eccentricity related faults have the same frequency as the rotation of the wheel 

itself. The formulation of this fail mode frequency is shown in Eq. (1) where v  is the 

translational velocity of the train and 
kD  is wheel diameter which may be assumed as the 

average value of right and left wheels. 
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Since the minimum and maximum speed of the run in Malostranská passage is known, 

an interval of expected frequencies may be calculated which may be seen in Table 1. 

 

Table 1: Wheelset eccentricity faulty frequency range for train set 81-71M 

Location 

Wheel diameter 

[mm] 
Frequency [Hz] 

Dmin Dmax v [m/s] fws max fws min 

Malostranská 

730 785 

15 6.5 6.1 

20 8.7 8.1 

Dejvická 
15 6.5 6.1 

22.2 9.7 9.0 

 

Wheelset eccentricity related faults have the same frequency as the wheel itself. The 

formulation of this fail mode is shown in Eq. (1). 

Another fail type on the wheelset is known as wheel defects which means the 

degradation of the wheel material along the surface of the wheel. These defects are harmful to 

both running performance of the train set and the rail itself. It is possible to identify those faults 

by utilizing a wayside diagnostic system with accelerometers on a passage of the passing of the 
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train set [47]. This fault type characteristic frequency is also harmonic with the rotation of the 

wheel wsf  and the same procedure in Eq. (1) may be applied for speed-specific frequency 

identification. An example figure showing the profile related defects may be seen in Figure 7. 

 

 

Figure 7: Wheelset defects due to degradation 

 

2.2.2 Condition of normal and faulty gearboxes 

Numerous number of fault types in connection to gearboxes, which are located to the 

nearby locations of the wheelsets, are existed. Gear related mechanical faults include tooth 

meshing faults, misalignment, cracked or worn teeth, eccentric gears while rotor and shaft 

related faults may also be observed; unbalance, bent shaft, misalignment, loose components 

and cracked shaft [16]. All given possible fault types have different symptoms by means of 

vibration analysis. It is known that the most important vibration signal frequency is gear 

meshing frequency and its harmonics. When this harmonic components increase one can imply 

that gearbox condition is not healthy. Heathy gearbox tooth frequency can be calculated via Eq. 

(2), where 1z  is number of teeth of smaller gear, 2z  is number of teeth of larger gear, 
TMf  is 

the frequency of traction motor and wsf  is the frequency of rotational frequency of the 

wheelset. 

 

 1 2. .z TM wsf z f z f   (2) 

 

Calculation of different failure mode frequencies are demonstrated in Table 2 for Prague 

Metro type 81-71M in Malostranská location where k is the number of harmonics that related 

failure produces in frequency domain. 
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Table 2: Model based characteristic frequencies of gearboxes for metro type 81-71M 

Parameters 81-71M Explanation 

Dk [m] 
Worn wheel New wheel 

Diameter of the wheel 
0.730 0.780 

v [m/s] 
vmax vmin 

Wheelset rotation speed 
20 15 

z2 - 80 Number of teeth on bigger wheel 

z1 - 15 Number of teeth on smaller wheel 

Fault Mode Frequency Explanation 

fws [Hz] 8.7 6.1 Wheelset defects 

fTM [Hz] 46.5 32.6 Traction motor eccentricity 

fz [Hz] 698 490 Tooth frequency 

fzh [Hz] k∙698 k∙490 Tooth wear 

fzmws [Hz] 698 ± k∙8.7 490 ± k∙6.1 Modulation of tooth frequency by fws 

fzmTM [Hz] 698 ± k∙46.5 490 ± k∙32.6 Modulation of tooth frequency by fTM 

 

Gearboxes that transmit mechanical force to the wheelsets of metro 81-71M are also 

identical in each bogie. The gearboxes are suspended by a rubber spring which is illustrated in 

Figure 8. 

 

 

Figure 8: Gearbox drawing of metro type 81-71M bogie 
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Since gearbox and traction motor is always in interaction, it is urgent to consider the 

connection between traction motor and the gearbox which is shown in Figure 9. 

 

 

Figure 9: Gearbox interaction with traction motor of metro type 81-71M bogie; top view (Section A-A), side 

view (Section B-B) 

 

The connections between bogie and traction motor and as well as gearbox are shown in 

Figure 10 and Figure 11 for metro type 81-71M. 

 

 

Figure 10: Traction motor localization on the bogie for metro type 81-71M (author: Vágner J.) 
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Figure 11: Traction motor connection on the bogie for metro type 81-71M (author: Vágner J.) 

 

2.2.3 Condition of healthy and faulty bearings 

Determining faulty states of rotating element bearings may be maintained via model 

based approaches. In rotating machinery, rolling element bearings generally has two rings; 

interior and exterior. Between the rings, rolling elements, which enables uniform spacing and 

prevents direct touch of the roller, within a cage are existed. Typical failures occur in those 

structures due to defects in one or more of the elements. These defects may be generated by 

material imperfections of the material, lubricant failure, misaligned load or excessive stress in 

the contacts and can be formulated using the geometry of the bearing which is formulated in 

Eqs. (3)-(6), [48] 
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where 0d  is the ball diameter and sd  is the distance between the center of opposing 

balls and  is the ball contact angle. 

In the experimental environment of Prague Metro-A line, wheelset bearings of train sets 

have double cylindrical bearings of type FAG 566612 and FAG 566613 which are shown in 

Figure 12 while traction motor bearings of train sets are type NH 310 MC3 and NH 313 MC3 

which are shown in Figure 13. 

 

     

Figure 12: Schematics of bearings type FAG 566612, FAG 566613 [49] 

 

     

Figure 13: Schematics of bearings type NH 310 MC3, NH 313 MC3 [50] 
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Calculation of characteristic frequencies according to given speed interval of possible 

fault types of bearings that are used in Prague Metro-A are shown in Table 3. 

 

Table 3: Model based characteristic frequencies of wheelset and traction motor bearings for metro 81-71M 

Parameters FAG 566612 NH 310 MC3 

Dk  wheel diameter mm 785 730 785 730 

v  speed m/s 15 20 15 20 

fws  wheelset frequency Hz 6.1 8.7 6.1 8.7 

d0  rolling element diameter mm 26 16 

ds  pitch diameter  mm 161 97 

n  number of elements - 15 13 

fBPFO   outer race fault freq. Hz 38.3 54.8 33.1 47.2 

fBPFI   inner race fault freq. Hz 53.0 76.0 46.2 65.9 

fBSF      rotating element fault freq. Hz 18.3 26.3 17.9 25.6 

fFT        cage fault freq. Hz 2.6 3.7 2.5 3.6 
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3 OVERVIEW OF SUPPOSEDLY SELECTED METHODS 

The optimal implementation of mechanical models and diagnosis of mechanical 

problems have always idealization problems due to the error in observed data, which could be 

realized in a better way, utilizing the following methodologies. 

3.1 Wavelet denoising 

Vibration and acoustic signals are badly affected by the noise, which can be modelled 

as Gaussian white noise, impulsive noise or normal distributed Gaussian noise. One common 

way of denoising such signals is using wavelet techniques, which is based on discrete wavelet 

transform, which divides the signal into desired number of scales and makes single or multi-

level noise estimation and carry out the thresholding process with the specified thresholding 

algorithm to adjust coefficients of the decomposed signal. 

3.1.1 Discrete wavelet transform 

In most of the signal processing applications, Discrete Wavelet Transform (DWT), 

which is a time-scale representation of the discrete data with multiple scales, is used for non-

stationary signals [51]. Numerous wavelet functions are introduced in the process of wavelet 

transform Haar, Daubechies, Symlets etc. [52] which are the modified versions of the mother 

wavelet function (Figure 14). 

 

 

Figure 14: Examples of wavelet functions of DWT 
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The mathematical description of the DWT for discrete signal [n]x   is shown in Eq. (7)

and (8) 

 a,b
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where [n]  is the wavelet function that is used in the analysis and a  and b  are the 

dilation and location parameters, respectively. DWT is based on using filter banks that describe 

frequency content of the signal for time intervals. For this purpose low-pass filter (LPF) and 

high-pass filter (HPF) are employed. The coefficients of the LPF is called approximation 

coefficients (A) while for HPF they are called detail coefficients (D). The filtering algorithm is 

shown for a two level wavelet decomposition for a discrete signal [ ]x n . 

 

 

Figure 15: Two level wavelet decomposition for a discrete signal x[n] 

 

3.1.2 Denoising with maximal overlap DWT 

The maximal overlap DWT (MODWT) is a translation invariant modification of DWT 

[53]. Similar to DWT, linear filtering operations and scaling coefficients respect to time are to 

be calculated. MODWT is more convenient than DWT since it does not require the signal length 

( )N  to be a multiple of 2n  for n  level decomposition [54] preserving translational invariance. 

Applying MODWT on a discrete signal needs the determination of wavelet filter and 

the maximum number of scale. Once these parameters adjusted, coefficients can be determined 

by applying MODWT on a time-series signal [ ]x n . After acquiring MODWT wavelet 

coefficients, one can start denoising operation for the signal by using a thresholding for the 

coefficients for eliminating unnecessary information on the signal. 
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In the proposed wavelet denoising algorithm subjected to this thesis, number of 

composition level is chosen empirically as 4 which preserves wheel defect faulty signal better 

and ‘soft thresholding” is applied on the signal as in the literature [55]. Wavelet function is 

chosen as Daubechies (db2) due to being efficient in bearing fault diagnosis as preferred in the 

research [56]. Throughout the process multi-level noise estimation is used as it is in the research 

[57]. 

Upon discarding unwanted information on the signal inverse MODWT is used to 

reconstruct the denoised signal. 

3.2 Wavelet packet analysis 

In signal processing, one common approach to extract features of non-stationary 

vibration signals is a Short Time Fourier Transform based method so called wavelet packet 

analysis is introduced. Wavelet packaging divides the Fourier spectrum of the signal into 

desired number of frequency bands which leads to different frequency resolution. Referring to 

the number of levels wL   while 2L
wn    where n  represents the number of components in 

Wavelet Packet Transform (WPT). Afterwards, filtering is carried out on the signal to obtain 

low and high frequency components which is followed by downsampling to achieve next level. 

Referring to Figure 16, since being not time-invariant [58], energy calculation of each wavelet 

package is performed to rise its immunity to detection of the transients in non-stationary nature 

of railway vibration signals and Wavelet Packet Energy (WPE) coefficients are achieved 

(Figure 17). 

 

 

Figure 16: Transient signals shifted in time-domain (left), resultant eight level WPT (right) 
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Figure 17: Eight level quantized WPE for the signals in Figure 16 

 

In the proposed methodologies based on wavelet packet energy for the fault diagnosis, 

two different forms of WPE are used; three and five levels of wavelet packet energy (WPE_3, 

WPE_5), Weighted Wavelet Energy (W-WAV) [59]. The latter, which has proven its efficiency 

in motor related fault diagnosis is consistent of weighted energy of 2-step DWT coefficients; 

Low-High ( LH ), High-Low ( HL ) and High-High ( HH ) as shown in Eq. (9). 

 

 (W- WAV)
2

HH
LH HL     (9) 

 

Wavelet packet energy calculation is not time consuming since it is a direct approach 

and one can easily understand the frequency amount of the interested fault type with the 

specified frequency resolution. Thus, it may be a simple and comparable approach which can 

be used in faulty diagnosis of rotating machinery faults in railway vehicle diagnostic. 

3.3 Kurtogram based methodologies 

One of the state-of-art diagnosis techniques in condition monitoring is so called 

Kurtogram which is an extended method based on spectral kurtosis [60] that had been proposed 

long before in the literature. 

Kurtogram approach provides a further and faster computation of transforming the 

signal into frequency-delta frequency spectrum. Even it is less time consuming than old spectral 
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kurtosis, another method Fast Kurtogram (FK) [61] is also introduced which divides the signal 

in low and high frequency bands as in the way of STFT but with different order to emphasize 

where spectral kurtosis is maximum on a grid view of frequency-delta frequency domain 

boosting its operation by a few thousand times than regular spectral kurtosis. 

3.3.1 Spectral kurtosis and complex envelope 

In the frequency domain, investigation of kurtosis leads to a very good indication of 

periodic transient determination which is connected to the faults of the rotating machinery, 

mostly. 

Spectral kurtosis and complex envelope analysis is considered to be a proven and 

cutting-edge methodology for rolling element bearing fault diagnosis [62]. When the frequency 

of the fault for each faulty mode is known for the operating speed of the rolling element, FK 

approach may filter out the transients according to the level and frequency band. In Figure 18, 

Kurtogram calculation of 5-level for a wheel flat signal sample is shown with 51.2 kHz sample 

rate (more intensity on the Kurtogram refers to higher kurtosis in that decomposition level). 

 

 

Figure 18: 5-level kurtogram of a faulty signal of a metro wheel flat. 

 

It is obvious that highest spectral kurtosis is present on the fifth level of the FK. In the 

proposed algorithms subjected to this thesis, real part of fifth level of FK complex envelope 

(KURT-ENV) is used in the diagnosis of different faulty modes like wheel defects, rotating 

element bearing faults, gear tooth fault and traction motor eccentricity. Posterior features of the 

KURT-ENV also investigated in the diagnosis which are based on time-domain statistics or 

wavelet packet analysis. 
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3.3.2 Histogram enhanced LCP-Kurtograms 

This novel method is based on Local Binary Pattern (LBP) [63] which is an efficient 

feature extraction tool that is used in pattern recognition especially for extracting textural 

features and requires the Kurtogram image of the signal to make the feature extraction. 

LBP approach maximizes the mutual information by labeling the intensities of a two-

dimensional (2D) signal. By using a thresholding in a window of given radius for the 

neighborhood of each pixel intensity regarding to center pixel, it evaluates a binary number for 

each segment for the whole signal which may be seen in Eq. (10) [64] 

 

  
1

0

, ( )2i c

P
i

i

LBP P R u g g




    (10) 

 

where P  is the number of pixels, cg  is the center pixel and ig  belongs to 
thi  pixel 

intensity level. LBP approach is capable of working in conditions when color map is different 

in an efficient way. 

Another variant of LBP is so called Local Configuration Patterns (LCP) is also presented 

in the contemporary literature. LCP descriptor provides local information and circularly shifted 

histogram of pattern occurrences which makes 2D input signal rotation invariant [65]. 

Combination of microscopic features and local features which represent the binary pattern 

occurrences constructs the feature vectors of LCP which is shown in Figure 19 [66]. 

 

 

Figure 19: Schematic of the algorithm of LCP 

 

Histogram equalization (HE) is a well-known enhancement technique that is introduced 

in pattern recognition literature [67]. HE normalizes pixel values according to the distribution 

frequencies of each intensity level and reconstruct the 2D signal in a way that reproduced pixels 

emphasize the differences in a much more distinctive way. 
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In the proposed algorithm, Kurtogram is firstly resized into 128 x 128 pixels by bi-cubic 

interpolation [68]. Afterwards, using three algorithms that is told in this section, the novel 

methodology is produced so called Histogram Enhanced LCP-Kurtogram (E-LCP-K) which is 

demonstrated in Figure 20 [69] and without HE it is called as LCP-K. 

 

 

Figure 20: Procedure of Enhanced LCP-Kurtogram of five level FK 

 

E-LCP-K method makes 2D signal processing tools and pattern recognition approaches 

able to use on 1D signals. Feature matrix is fixed to a feasible value of 81x1 due to the nature 

of LCP which may be assumed as an efficient dimension reduction independent from the input 

signal size. 

3.4 Time-domain features 

In vibration based signal processing, faulty signals show similar characteristics not only 

in Fourier domain but also in time domain. The simplest way is to use statistical features of 

related faulty signals that spans time-domain. In order to identify representative faulty patterns, 

statistical time-domain feature extraction methods are present in contemporary studies in 

mechanical fault diagnosis [70], [71]. 

For this purpose, statistical time-domain features; energy, mean ( ), standard deviation 

( ), maximum (max), minimum (min), kurtosis, skewness and crest factor are calculated from 

each sample as preferred in a research [72] which especially used in bearing fault diagnosis. 

For a discrete signal ( )x n  with length N , the formulation of these features can be calculated 

as in Eqs. (11) and (12). 
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In addition to these time domain features, three features, which may help diagnosis of 

mechanical faults, are also introduced; spike energy [73], impulse factor [74] and center 

frequency [75]. 

In the proposed feature extraction methods based on time-domain data statistics, three 

different combination are used; STATS (Eq. (13)), TDF (Eq. (14)), TDFs (Eq. (15)). 

 

 [ ]5x1STATS = mean,standard deviation,mode,minimum,maximum   (13) 

 

 

8x1

energy,mean,standard deviation,max,
TDF =

min,kurtosis,skewness,crest factor
   

 
 
 

  (14) 

 

 

11x1

energy,mean,std dev,max,min,kurtosis,skewness,
TDFs =

crest factor,impulse factor,spikeenergy,center frequency

 
 
 

  (15) 

 

3.5 Multipoint optimal minimum entropy deconvolution adjusted 

This method is an extension of an iterative algorithm so called Minimum Entropy 

Deconvolution (MED) [76] which is used in fault diagnosis of bearings and gearboxes. 

MED is capable of deconvolving a single impulse not lack of deconvolving impulse 

trains. Since not being computationally efficient due to being an iterative algorithm, a non-

iterative optimal solution for the deconvolution filter, optimal MED (OMED) is developed [77]. 

The problem of OMED is that it has a discontinuity problem due to the assumption of zero input 

in its initial phase. Overcoming this issue is performed by utilization of an adaptive recursive 

(AR) filtering which leads to OMEDA. Nevertheless, it is inefficient to determine periodic 

impulses of faulty modes of rotating machinery. For this reason, a cutting-edge method, 

Multipoint Optimal Minimum Entropy Deconvolution Adjusted (MOMEDA), is presented in 

the literature which provides deconvolution of infinite number of impulses without the 

necessity of iterative operation [78]. MOMEDA is able to solve this problem with optimized 

computation. In the mathematical perspective, MOMEDA introduces a non-iterative filtering 

window t   which can be determined by period of the fault as shown in Eq. (16). 

 

 [0 0 0 1 0 0 0 1 0 0] ( 4)T

ft n    (16) 

 

where 
fn  is the example impulse period associated to the frequency of the fault mode. 



43 
 

 

 

1 2

0

1 1 1

1 2 3 1
[ 1]

m m m

mm m

m
m mby

L L L N

LL L N

N L
L N L

X

x x x x

x x x x

x x x x

 

  

 
 

 
 
 
 
 
 
 

   (17) 

  

For the vibration measurement signal 0X , which may be assumed as the summation of 

dynamic system response, environmental noise and faulty transients of the related fault mode, 

while filter size is mL , output response of the filter is [ 1]mN L   in length as shown in Eq. 

(17). The filtering function for 0X , can be shown in the matrix form as in Eq. (18) 

 

 
1

0 0 0(X X ) XT tf    (18) 

  

 and output signal y  of the filtering operation can be represented as shown in Eq. (19) 

 

 0X T fy    (19) 

 

Spectral features may also be investigated after MOMEDA is applied. Frequency 

spectrum of MOMEDA is an essential tool for identification of the faulty frequencies which 

leads to the consideration of spectral feature extraction in the area of rotating machinery. For 

the maximized efficiency identification of rotating machinery faults, at least five periods of the 

rotating element is recommended to be used as an input signal and preferred filter size may vary 

between 500-2000 while the signal is to be investigated is at least two times in length. 

 MOMEDA feature extraction methodology requires the determination of faulty 

frequencies and this may be achieved by the measurement of speed of the rotating machine and 

using a model based approach related to that model. 

In the proposed methodologies for running gear fault detection associated with this 

thesis, for every individual investigation, filter size is chosen as quarter to one-tenth of the 

length of the input signals according to empirical investigation before filtering takes place. 
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3.6 Adaptive synthetic sampling 

In wayside railway vehicle fault diagnosis most of the measurement data is healthy and 

that leads to having far more normal signal samples than faulty ones. Besides, acquiring faulty 

samples for the same type of vehicle is so much limited unless a real-time measuring is 

applicable. These problems affect fault diagnosis framework, which is based on classifier 

performances, very badly due to the fact that most classifiers require fixed sample sizes in each 

classes. 

In the perspective of feature extraction, normally the number observations ( )om  for each 

class must be longer than the size of the feature vector ( )on ; otherwise it is called insufficient 

case ( m )o on   [79]. Insufficient case occurs especially in voice and signature recognition 

applications since the number of observed samples are too much limited. Misclassification of 

faulty samples as normal may be irreversibly costly and data points between faulty samples are 

prior to avoid false negatives. Despite maintaining the optimal solution of this problem may 

vary in a significant level, the simplest approach to overcome this problem is to interpolate 

samples in a proper way. 

To deal with imbalanced dataset problems synthetic minority over-sampling technique 

(SMOTE) is proposed in the recent literature [80] which uses linear interpolation between 

existing feature vectors of the minority class and create additional vectors. However, SMOTE 

methodology is limited to minority class and it lacks of consideration the boundaries between 

classes and results less realistic oversampling. 

In the proposed methodology associated with this thesis, an extension of SMOTE; 

Adaptive Synthetic Sampling (ADASYN) [81], which generates more samples between the 

class boundaries adaptively, is used in order to oversample minority classes. 

 

 

Figure 21: Synthesizing by ADASYN from minority class to balance with majority class by means of number of 

vectors in each class 
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In Figure 21 the oversampling operation of the feature vectors representing wheel 

defects from 16 observations (
0 16Faultym  ) to the number of observations of the normal class 

(
0 128Normalm  ) (only adaptive sample generation of two dimensions of the given feature 

vectors of the minority class is shown). According to the resultant feature sets; normal and 

faulty classes are balanced so that 
0 0 256Normal Faultym m  . 

It is important to emphasize that, ADASYN does oversampling for every separate 

feature in the minority class. Utilizing ADASYN for generating additional feature vectors from 

minority class is considered to be a realistic way since synthetic samples accumulated mostly 

in the boundary, which makes the dataset more challenging and also diminish the outlier effect 

rather than using only in-class interpolation. 

3.7 Feature selection and dimensionless feature optimization 

In pattern recognition, feature selection (FS) has a crucial role in the performance of the 

classification. The idea of feature selection is to filter out the, misleading, irrelevant or 

redundant features in each vector. It is a combinatorial optimization problem which tries to 

figure out which features minimizes the error in the classification [82]. Besides, discarding 

unnecessary features is more computationally efficient with high-dimensional data. 

In general FS may be done in the following ways: filter approaches like, correlation-

based FS [83], embedded approaches like Least Absolute Shrinkage and Selection Operator 

(LASSO) [84] , wrapper approaches, which uses predictive methods, like; ensemble –based 

wrapper FS which uses more than one classifier like random forest method [85]. 

To achieve a proper FS, each base classifier tries to determine the training data in the 

best way with the given feature set and choses the best features and combine them for resultant 

selected feature subset. This procedure is repeated according to either of the following methods: 

forward sequential selection, backwards sequential selection or hill climbing (until a criterion 

like number of iterations is satisfied) [86]. 

In the proposed method belonging to this thesis forward sequential selection using 1-

knn (FSS-KNN-1) is used. In FSS-KNN-1 the training data is divided by each feature until best 

features are identified which is described in Eq. (20) and (21). 

 

 1 1[ ] ,...,
oN x ntvc c

training training trainingraw
N NF F F   (20) 

 
1 1[ ] ,...,N xtvc cfs

training training trainingFS
nN NF F F   (21) 
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where on  is the size of the feature vectors in each class in the training set, cN  is the 

number of classes, Ntv  is the number of training vectors in each class and 
fs

n  is the number of 

features that is selected by FSS-KNN-1 according to the criterion; best two features (
fs

n =2)  or 

best number of features1 ofs
n n  . After feature selection of training data process is 

completed, same mapping can be used to testing vectors before the testing procedure is started. 

Dimensionless feature normalization is a feature optimization technique that helps 

improving sensitivity in bearing fault diagnosis (true positive rate) by adjusting magnitudes of 

the features in the datasets to avoid one or more individual features to suppress the remaining 

ones [71]. Commonly used dimensionless approaches are shown in Table 4. 

 

Table 4: Dimensionless methods that is commonly used for feature optimization 

Dimensionless methods Formulation 
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where ijy  is the normalized data after no-dimension analysis,  ijx is the data belongs to 

the feature vectors before dimensionless analysis, ijx is the average value of the observed data 

for each feature and js  refers to the standard deviation of observed samples for each feature. 
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The average dimensionless method is capable of keeping the consistency of the raw data 

and correlation dimension. Thus, in the proposed framework associated with this thesis, the 

average dimensionless method is employed. Dimensionless feature normalization is a feature 

optimization. Throughout feature optimization process, combination of dimensionless analysis 

and feature selection is also employed to achieve better results. 

3.8 Simulating running gear faults 

In the investigation of wayside diagnosis of running gear faults, it is cumbersome to 

acquire all faulty types related to running gear components. It is vital to test the proposed 

approaches on different faulty conditions. For this purpose, a simulating scheme for running 

gear related faults with respect to model based frequencies is proposed in this section.  

The method for simulating transients for vibration signals is inspired from the research 

[87] in the recent literature. In this method, rotating machinery defects are considered as a 

sequence of impulsive transients and each transients have 10 samples for sample rate of 

6.4 kHz. Each transient is a composition of random number of sinusoidal functions with random 

frequency and random initial phase as shown in Eq. (22) 

 

 
1

v ( ) sin( )
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i if
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

    (22) 

 

where iA  is a random amplitude, 1 10U   is a random integer, i  is a random 

frequency and i  is the random initial phase. Figure 22 shows the generated faulty transient of 

frequency of 20 Hz signal for 51,2 kHz sample rate by utilizing the proposed methodology. 

Finally, generated faulty transient is to be multiplied by a constant to adjust the output amplitude 

for further use. 

 

 

Figure 22: Simulated fault transient at 20 Hz using proposed random phase shifting technique 
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Simulating a fault type referring to its model based frequency is not sufficient due to 

measurements are not performed under constant speed. To deal with this problem, before 

burying the generated faults to the measurements data, each frequency for each fault type of 

running gear components is calculated exactly according to the wheelset speed while passing 

on sensors. After these adjustments, summing operation of retrieved data and faulty simulated 

signal are performed. In Figure 23, measurement signal which is retrieved from the test 

environment between Dejvická and Bořislavka, by vibration sensors while wheelset-3 of ID-

108 train set with healthy condition is passing by. 

 

 

Figure 23: Vibration signal that is measured from ID-108 metro train set (left) transient locations that the 

simulated faults are added (right) 

 

In the simulated fault investigations, ID-119 train set normal data which is measured 

from all of the sensors for each wheelset passing, according to the window length with respect 

to speed and wheel diameter, is used to generate faulty cases of running gear components like 

wheel defects, wheelset bearing faults, gear tooth fault and traction motor eccentricity. 
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4 RESULTS AND DISCUSSION 

This section examines four main analyses subjected to the diagnosis of running gear 

faults. The purposes of these analysis may be categorized as follows: Discarding signals in the 

database that is retrieved by abnormal sensor activity (Section 4.1), validation of the proposed 

feature extraction methods on a ground truth database of bearing faults (Sections 4.2 and 4.6), 

detection of wheel defects and traction motor bearing faults of metros using validated 

techniques on the signals that are recorded in the wayside passages which are placed between 

metro stations of Prague along line A (Section 4.3), simulating model based faults and diagnose 

of the simulated faults of running gear components like wheel defects, wheelset bearing faults, 

gearbox faults and traction motor eccentricity (Section 4.5). 

4.1 Detecting anomalies in sensor data 

In wayside diagnostics, operation parameters differs significantly due to variations 

dependent to vehicles and unexpected environmental conditions. In addition, there may be some 

sensor related miscalibrations or uncorrelated response in comparison to other runs of the same 

vehicle in the environment of the measurement system. 

Sensor data in many applications is degraded by environmental noise that can 

commonly be modelled as Gaussian additive or white noise. In wayside measurement 

environment of railway vehicles, the noise is heavy besides the effects of the irregularities on 

the rail which may be modelled as impulse noise, should also be considered. Besides, there may 

be some unwanted behavior in one of the components, acts as noise, which may not be easily 

removed or modelled because of their random characteristics. It may not be handy to utilize 

further processes when the obtained sensor data is more related to anomalies rather than 

expected signal characteristics. 

In order to enhance signal characteristics while building a database for each individual 

train set, an experimental analysis is performed on the gathered data in the passage of 

Malostranská to Nemocnice Motol direction which is explained in Section 2.1. The 

investigation contains two sensors among eight; one accelerometer (Z2) and one microphone 

(M1). After having applied thresholding in optical gates GA and GB, sample numbers which 

inform about the exact location of each bogie wheelset respect to optical gates, are marked. 

Marked points are used to determine exact window size ( sW ) in each run due to velocity 

variations for segmentation. For each sensor Z2 and M1, sampling is performed in the interval 

of before and after first ( 1WS ) and last wheelset ( 20WS ) according to the rule in Eq. (23) 
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where mini  is the sample number difference of centers 1WS  and 
2WS  passing on optical 

sensor GA. 

Since the output is not uniform, further transformations are needed to examine 

anomalous information in the segmented signals. Abnormal signals are determined empirically 

after the investigation of Kurtograms which are obtained by using FK algorithm of five-levels 

which is explained in Section 3.3.2  and the collected database is divided into two classes; 238 

normal and 62 abnormal. It is worth to note that if any sensor data related to the same run is 

marked as abnormal, data from all other runs of the same train sets from all sensors are 

nominated as abnormal too. Finally, database is reorganized so that 60 normal signals against 

60 abnormal ones. 

4.1.1 Extraction of features to sense anomalies 

In the feature extraction period of anomaly detection in the run, four different methods 

are used; time-domain features, wavelet packet energy, HE LCP-K and LCP-K without HE as 

a preprocessing. 

Firstly, statistical time-domain features (STATS) that are selected for this duty are 

shown in Eq. (24) and have 5x1 length by calculating each value and concatenate in the same 

row. They may assumed to be the most time efficient in the process of classification. 

 

 STATS = [mean,standard deviation,mode,minimum,maximum]   (24) 

 

Secondly, wavelet packet transform is applied on all signals and then WPE coefficients 

are calculated for three and five levels. These features have the length of 2L   while L  is the 

number of levels in wavelet packet transform. Using different levels of WPE features make the 

results more comparable. 

Thirdly, for all signals five level FK is applied and resultant Kurtograms are treated as 

2D signals E-LCP-K is applied to finalize feature matrix as suggested in Figure 20. In addition 

to this, LCP is directly applied without histogram equalization process for comparison. Final 

feature vector sizes are equal and have 81x1 in length. Figure 24 shows Kurtograms of the 

signals of healthy and abnormal cases where MKurt is the maximum corraleted kurtosis, Bw is 

the bandwidth of the transients and cf  is the carrier frequency. 
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Figure 24: Resultant five level kurtograms of anomaly signal sample (left) and normal case (right) 

 

4.1.2 Results and conclusion of anomaly classification 

In the analysis, each feature that is extracted from the signals in our databases provides 

dimension reduction while preserving the signal characteristic components. Each feature 

extraction method is labeled as follows: Statistical time-domain features (STATS); mean, 

standard deviation, minimum, maximum, root mean square (RMS), WPE features are created 

both in three level (WPE_3) and five level (WPE_5), enhanced LCP of Kurtograms with 

(E_LCP-K) and without (LCP-K) histogram equalization [69]. 

Maintaining reliability in the results is vital and 6-fold cross validation is performed in 

the classification phase, which FLDA [88] is used, for more reliable results. Table 5 shows the 

classification performance of the abnormal signals. 

 

Table 5: The average recognition accuracies of sensing anomalies with their standard deviation values obtained 

by 6-fold cross validation 

FLDA  Classification Success (%) 

Test Data LCP-K STATS  E_LCP-K WPE_3 WPE_5 

1-10 70 45 65 50 70 

11-20 75 50 75 50 80 

21-30 75 50 70 50 85 

31-40 65 80 90 85 80 

41-50 65 100 80 100 55 

51-60 90 95 75 90 45 

Average  73.3 70.0 75.8 70.8 69.2 

Std. Dev. 9.3 24.7 8.6 23.3 15.9 
 

According to the results, highlighted LCP-K and E-LCP-K methods are clearly better 

than others by means of average classification performance and standard deviation. 
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In this analysis, a two-class classification is performed on an empirically created 

database in consistence of signals retrieved from both accelerometer based and acoustic sensors 

which are employed for condition monitoring. Despite using these two differently characterized 

sensor outputs, a combined feature extraction attempt is carried out by application of five 

different methods on the signals. The proposed novel E-LCP-K algorithm outperforms not only 

in average classification performance but also stability in the results, with respect to standard 

deviation and six-fold cross validation. 

It may be considered that using higher levels of WPE does not boost the classification 

performance but diminishes without any preprocessing. It is also remarkable to say that 

Kurtogram approach may assumed to have as much information as other methods even a 

challenging database with combined sensor data, especially when histogram equalization is 

applied just before LCP phase. 

Analyses in this part also indicates that there is a high correlation between an 

accelerometer based vibration sensor on the rail and a microphone which is aligned vertically, 

by means of frequencies observed thus the database is managed to be classified more than 50%. 

Future study may be carried out in order to confirm the results by using more sensor 

data that has abnormalities. Consequently, proposed E-LCP-K approach may be used in 

diagnosis of other types of faults when an appropriate filtering is applied in the preprocessing 

according to corresponding fault mode. 

4.2 One-period analysis in bearing fault diagnosis 

This investigation presents several number of methods which are efficient of extracting 

representative features in fault diagnosis of a rotating element bearing with the contribution of 

one-period analysis. 

Rotating element bearing (REB) faults are the most common mechanical component 

that is used in rotating machinery [89]. Failure modes of REB related faults may be 

characterized into four groups; inner ring faults, outer ring faults, rotating element bearing fault 

and cage fault. Among them, bearing rolling element fault is the most dominant failure mode 

[90]. The diagnosis of such failures are maintained by data driven and model based methods. 

Plenty of methods have already been proposed for fault detection of REBs in the recent 

literature. Continuous Wavelet Transform, Gabor wavelets and wavelet transform [41], Hilbert 

Huang Transform in connection with support vector machines [72], time-domain analysis and 

application of fuzzy C-means [70], Kurtogram and envelope analysis [61], statistical features 

[71]. 
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The analysis throughout this section proposes several methods for diagnosis of REBs 

multi-fault conditions in early phase and severity classification of bearing rotating element 

faults on a database that is highly focused by the researchers over the last decade [89]. 

4.2.1 Database and feature Extraction in bearing fault diagnosis 

Thanks to Case Western Reserve University (CWRU) that provides a database which 

includes accelerometer based vibration signals that are retrieved by a test rig in laboratory 

environment. 

The database has four main classes; healthy case (HC), ball faults (BF), inner race faults 

(IRF) and outer race faults (ORF) that allows up to four level of severity classification (0.18, 

0.36, 0,53, 0,71 mm in diameter) and multi-fault diagnosis of rotating machinery bearings [91]. 

The datasets utilized in this research include faulty signals which are collected by accelerometer 

sensors, localized at drive end of deep groove ball bearings of the type 6205-2RSJEM, recorded 

at 12 kHz and healthy signals of 48 kHz, which then downsampled to 12k sampling rate, may 

be seen in Table 6 [92]. In the segmentation process, three different approaches taken into 

account; Dataset A is constructed covering five periods of rotation of the motor (5T) which is 

inspired by the study in [72] and includes 2000 data points in each sample. Datasets B, C and 

D are generated by preserving one (T) and one and a half period (1,5 T) of rotation of the motor 

in each sample. 

 

Table 6: Description of classified cases and datasets; T refers to one period analysis 

Dataset 
Fault 

Type 
Severity 

Segment 

Period 

Rotation 

Speed 

(RPM) 

Total 

Samples 
Label 

A 

HC - 

5T 1797 

60 A1 

BF 0.18 mm 60 A2 

BF 0.36 mm 60 A3 

BF 0.53 mm 60 A4 

BF 0.71 mm 60 A5 

B 

HC - 

T 1797 

300 B1 

BF 0.18 mm 300 B2 

BF 0.36 mm 300 B3 

BF 0.53 mm 300 B4 

BF 0.71 mm 300 B5 

C 

HC - 

1,5T 1797 

200 C1 

BF 0.18 mm 200 C2 

BF 0.36 mm 200 C3 

BF 0.53 mm 200 C4 

BF 0.71 mm 200 C5 

D 

HC - 

T 1797 

300 D1 

BF 0.18 mm 300 D2 

IRF 0.18 mm 300 D3 

ORF 0.18 mm 300 D4 
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In the feature extraction stage, several techniques that are subjected to fault 

classification of REBs are employed in the preparation of feature extraction matrices. 

Firstly, wavelet packet transform is applied in order to calculate energy coefficients to 

detect faults in translation invariant mode. Three and five level WPE features are used which 

results 8x1 and 32x1 sized feature matrices, respectively. 

Secondly, time domain signals are used as input vectors and eight statistical time-

domain features (TDF);  energy, mean, standard deviation, maximum, minimum, kurtosis, 

skewness and crest factor  are calculated and concatenated into a 8x1 matrix as preferred in the 

research [72]. 

Thirdly, a model based MOMEDA feature extraction scheme is followed and pre-

calculated model based faulty frequencies for different types of failures of REB according to 

rotation speed of the motor are used for extraction of MOMEDA features (Table 7). In the 

experiments, window size is chosen as 100 for T -1,5T period analyses and 500 for 5T analysis. 

An example faulty signal of ball bearings and resulting MOMEDA in the feature extraction 

phase for the purpose of this investigation is shown in Figure 25. 

 

Table 7: Fault frequencies of bearing type 6205-2RS JEM at drive end 

6205-2RS JEM 
Inner Ring 

( BFBIf ) 

Outer Ring 

( BPFOf ) 

Cage Train 

( FTf ) 

Rolling 

Element 

( BSFf ) 

Defect Freq. (Hz) 5.4125 3.5848 0.3983 4.7135 

Operating Freq. (Hz) 162.01 107.31 11.922 141.10 

 

Lastly, implementation of autoregressive (AR) filtering [93] with window size of 50 for 

pre-whitening the signal before MOMEDA method is applied to increase its efficiency by 

means of fault detection of 5T segmented signals and MOMEDA-AR features created. 

 

 

Figure 25: Faulty signal sample of medium severity level (left), resulting MOMEDA signal (right) 
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4.2.2 Analysis results of REB fault diagnosis 

In the analyses, two main objectives are considered. Firstly, severity classification of 

the rotating elements of bearing faults are investigated including early faults, depending on the 

period of the rotation of the motor by using Dataset A, B and C. Secondly, a multi-fault 

diagnosis of early faults of rotating elements is performed on Dataset D using one-period 

analysis to show its efficiency. Feature extraction includes two different levels of wavelet 

packet energy (WPE_3, WPE_5), time-domain features (TDF), MOMEDA with AR 

(MOMEDA-AR) and without (MOMEDA) AR filtering. Two state of art classifiers; Support 

Vector Machine with linear (SVM-I) and second-order (SVM-II) kernel in addition to Fisher 

Linear Discriminant Analysis (FLDA) are employed and evaluation process is performed using 

five (Dataset C) and six (Dataset A,B,D) fold cross-validation which is shown in Table 8. In 

addition, another experiment is carried out to achieve best results. In the testing process of 

Dataset A, each sample is tested against remaining ones and average classification accuracy is 

calculated as seen in Table 9. 

  

Table 8: Classification performance for segmented datasets A, B, C and D (* represents that using that classifier 

is either not applicable or dataset is already classified with 100% success rate with less computational effort) 

 Average classification accuracy (%) 

 MOMEDA WPE_3 WPE_5 TDF Labels 

FLDA 

100 94.3 100 93.0 100 96.3 100 96.0 A(1,2) | A(1-5) 

100 84.5 100 90.0 100 91.8 100 75.0 B(1,2) | B(1-5) 

100 81.2 100 91.0 100 94.4 100 80.6 C(1,2) | C(1-5) 

* 100 * 99.8 * 99.8 * 96.8 D(1,2) | D(1-4) 

SVM-I 

100 98 100 93.0 100 99.3 100 95.0 A(1,2) | A(1-5) 

100 * 100 95.0 100 97.3 100 75.3 B(1,2) | B(1-5) 

100 94.0 100 97.2 100 98.0 100 77.8 C(1,2) | C(1-5) 

* * * * * * * * D(1,2) | D(1-4) 

SVM-II 

* 98.7 * 96.7 * 98.7 * 97.3 A(1,2) | A(1-5) 

100 * 100 * 100 * 100 * B(1,2) | B(1-5) 

100 94.0 100 96.2 100 95.0 100 94.0 C(1,2) | C(1-5) 

* * * * * * * * D(1,2) | D(1-4) 

 

Table 9: Classification performance for severity classification for Dataset A; one against rest 

 Average classification accuracy (%)  

 
MOMEDA 

AR 
MOMEDA WPE_3 WPE_5 TDF Labels 

FLDA 98.3 96.3 93.0 97.7 96.3 A(1-5) 

SVM-I 99.3 98.3 99.0 99.0 94.7 A(1-5) 

SVM-II 99.7 99.3 98.0 99.0 97.0 A(1-5) 

 

Proposed methodology to obtain best results in early diagnosis; Dataset A(1,2), B(1,2), 

C(1,2) and multi-class classification; A(1-5), B(1-5), C(1-5), D(1-4) is illustrated in Figure 26. 
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Figure 26: Proposed fault severity and early fault classification scheme of ball bearings of rotating machinery 

 

 In this section, several methods which have proven its efficiency in rotating machinery 

fault diagnosis by using accelerometer based vibration sensors are presented. Throughout the 

process, Wavelet Packet Energy (WPE), Time-domain features and Multipoint Optimal 

Minimum Entropy Deconvolution Adjusted (MOMEDA) feature extraction methods are used 

with three different sample segmentations to diagnose fault severity levels of ball bearings and 

early-faults. 

Condition monitoring of rotating machinery is examined upon sub-segmentation of 

healthy and faulty signals in the database retrieved from CWRU. 

According to the results, early fault detection including multi faults by the use of 

MOMEDA features, reaches a highest possible accuracy of 100% even in one-period analysis. 

However, in five level severity classification, one-period analysis is not sufficient and 

maximum of 97.3% classification success is observed. 

Another investigation is carried out by using 1,5T analysis and detection success is 

increased to 98% on the same dataset with linear SVM kernel. Finally, by utilizing one test 

sample against all training samples using SVM-II, maximum average accuracy of 99.7% is 

reached in bearing fault severity detection, which may be nominated as the most challenging 

among all RPM levels and fault types according to Table. 6 in the recent study [72]. 

Proposed methodology for severity classification of ball bearings outperforms the state-

of-art techniques specialized for bearing fault diagnosis by means of classification performance 

and simplicity. 

4.3 Detecting wheel defects via one-period analysis 

In vibration based wayside railway vehicle diagnosis, the interaction of wheels and 

vibration sensors are the most dominant which makes wheelset related faults easier to identify. 
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If one can gather the healthy information from a ground truth case of sufficient amount of data, 

an efficient diagnostic framework may be designed. 

This section investigates three feature extraction methods in combination with four 

state-of-art classifiers; FLDA, SVM [88], decision tree (Dec. Tree) [94] and a neural-network 

classifier; linear perceptron (PERLC) [95]  to detect a faulty conditions of a metro wheel; 

wavelet packet energy, time-domain features and utilization of LCP-K. 

Database that is used in the investigation of wheel defects retrieved from wayside 

measurement system between Dejvická to Bořislavka which is told in Section 2.1. Throughout 

the process, one-period analysis is used in the segmentation phase on the signals which are 

recorded by Z1-Z2 accelerometer and M1-M2 acoustic sensors. 

Known faulty data is substantial to ensure certainty in the results. Thanks to unhealthy 

ground truth data which is provided by ID-108 train set which has wheel defects of flat type on 

both left and right wheels on the seventh wheelset. The defect which was on the center of 

contact zone may be seen in Figure 27. 

 

 

Figure 27: Wheel flat which is present on the seventh wheelset on train set ID-108 

 

These types of defects are generally caused by blockage or partial blocking of a wheelset 

while the vehicle is travelling at speed; as the wheel slides along the rail, friction heats the 

wheel-rail contact patch in local areas [47]. 

Healthy data is gathered from either a newly revisioned train (two months before 

measurements); train set ID-119 or healthy wheelsets of ID-108. Since multiple passes of those 

train sets are available, it is possible to construct a database consisting of larger number of faulty 

cases even if only two faulty wheels are present. In Table 10, different combinations of healthy 
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and faulty signals are described which is used in model evaluation of classification framework 

special for wheel defect detection. 

 

Table 10: Description of classes of wheel defect detection of faulty wheels of ID-108 

TRAIN

IDs 

Measured 

Faulty 

Samples 

Synth. 

Faulty 

Samples 

Total 

Normal 

Samples 

Faulty 

Wheelset 

Interval 

Normal 

Wheelset 

Interval 

Sensors  Label 

108, 119 16 0 16 7 2-17 (ID-119) Z1-Z2 A1 

108 

8 0 8 7 1-4, 11-14 M1-M2 A2 

16 112 128 7 1-4, 11-14 Z1-Z2 SA1 

8 56 64 7 1-4, 11-14 M1-M2 SA2 

 

Since number of features are shorter than observation of number of faulty signals in 

datasets A1-A2, which is so called “insufficient case”, a more reliable approach, adaptive 

synthesizing (ADASYN) [81] is used to generate additional faulty samples properly and SA1, 

SA2 are constructed to perform classification. 

One-period analysis is performed on the signals to retrieve relevant data from the 

sensors; each wheel perimeter is calculated according to their last known exact radius ( r ) and 

sample interval is selected so that it covers all points along L  which is shown in Figure 28. 

 

 

Figure 28: Segmentation using one-period analysis in the center of optical gate GA 

 

4.3.1 Feature extraction for wheel defects 

In the process of achieving representative features of faulty cases, three different 

methodologies are employed on the samples in our dataset. 

Firstly, fifth order wavelet packet analysis and energy calculation of each wavelet packet 

is performed to achieve WPE_5 features which are 32x1 in length for each sample. 
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Secondly, time-domain features (TDF) which are efficient in rotating machinery fault 

diagnosis is performed as in the way that is shown in Eq. (25) which are 8x1 in length. 

 

 
8 1[ , , . , , , , ] xTDF energy mean std dev max,min kurtosis skewness crest factor   (25) 

 

Lastly, with direct calculation of LCP on five-level Kurtograms without any pre-

processing like HE, LCP-K feature matrices are created for each sample which are 81x1 sized. 

In Figure 29, five-level Kurtograms are shown for both normal and faulty signals samples with 

51,2 kHz sample rate which are segmented from faulty wheels of ID-108 and healthy wheels 

of ID-108, respectively (higher intensity levels refers to greater kurtosis in those frequency 

bands). 

 

  

Figure 29: Resultant five level kurtograms of sample signal with wheel defect (left), health case (right) 

 

4.3.2 Analysis results of diagnosis of wheel defects 

Several different number of cross-validation are performed in diagnosis of wheel defects 

by proposed feature extraction and classification techniques. 

Best results are obtained by 16-fold cross validation for SA1 accelerometer sensors 

datasets while 8-fold cross validation for SA2 microphone signals datasets and 8-fold cross 

validation for A1 accelerometer sensors datasets while 4-fold cross validation for A2. 

Recognition accuracies for microphone sensors (M1-M2) are given in Table 11 for proposed 

classifiers; Support Vector Machine, Linear Perceptron, Decision Tree and Fisher Linear 

Discriminant Analysis in combination with three proposed feature extraction techniques. 
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Table 11: The average recognition accuracies of wheel defects of measured and synthesized faults using M1-M2 

sensors 

Classifier 
 Classification Accuracy (%) 

Classifier 
 Classification Accuracy (%) Class 

Label 
WPE_5 TDF LCP-K WPE_5 TDF LCP-K 

SVM-I 

(4-fold) 
 

Dec. Tree 

(4-fold) 
 

A2 
Average  68.80 62.50 81.25 Average 87.50 68.75 87.50 

Std. Dev. 12.5 14.4 12.5 Std. Dev. 14.4 23.9 14.4 

FLDA 

(4-fold) 
 

PERLC 

(4-fold) 
 

A2 
Average  62.50 56.25 62.50 Average 68.75 75.00 81.25 

Std. Dev. 32.3 23.9 14.4 Std. Dev. 12.5 37.8 12.5 

SVM-I 

(8-fold) 
 

Dec. Tree 

(8-fold) 
 

SA2 
Average  82.80 85.90 93.00 Average 87.50 85.20 87.50 

Std. Dev. 14.5 5.5 7.0 Std. Dev. 9.5 8.1 6.7 

FLDA 

(8-fold) 
 

PERLC 

(8-fold) 
 

SA2 
Average  82.00 93.00 87.50 Average 76.60 89.80 89.90 

Std. Dev. 10.3 7.0 8.2 Std. Dev. 16.6 4.7 6.6 

 

According to the results, using M1-M2 sensors have less accuracy in all classifiers in 

the absence of synthetically generated faulty samples (A2) and classification success reaches to 

93% with both SVM-I and FLDA with LCP-K and TDF feature extraction techniques, 

respectively. It is also notable that LCP-K algorithm works the best for both insufficient case 

(A2) and adaptively generated minority (faulty) samples case (SA2). 

In Table 12, recognition rates for accelerometer sensors are given. Referring to the 

results, using Z1-Z2, it may clearly be seen that TDF feature extraction is the leading one with 

best possible classification accuracy of 100% in classifying wheel flats on A1 dataset. WPE_5 

and LCP-K are also promising despite using no preprocessing or filtering before feature 

extraction is carried out. 

Upon generating faulty samples, the model is investigated in a more reliable way and 

classification of SA1 dataset shows that TDF feature extraction is still the best among all 

proposed feature extraction techniques when using SVM-I and Decision Tree classifier. 

Further model evaluation may be carried out to increase the results with different ground 

truth data whenever it is available. 
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Table 12: The average recognition accuracies of wheel defects of measured and synthesized faults using Z1-Z2 

sensors 

Classifier 

Classification Accuracy (%) 
Dataset 

Label 
WPE_5 TDF LCP-K 

SVM-I 

(16-fold)  
 

SA1 
Average  99.60 100 97.30 

Std. Dev. 2.2 0.0 5.2 

FLDA 

(16-fold)  
 

SA1 
Average  95.70 99.20 97.30 

Std. Dev. 6.8 3.0 6.0 

Dec. Tree 

(16-fold)  
 

SA1 
Average  98.10 100 89.10 

Std. Dev. 5.6 0.0 11.2 

PERLC 

(16-fold)  
 

SA1 
Average  98.40 99.20 97.30 

Std. Dev. 5.3 3.0 5.2 

SVM-I 

(8-fold)  
90.6 100 90.6 A1 

FLDA 

(8-fold) 
68.6 100 96.9 A1 

 

As a result, it may be considered that wayside diagnosis of wheel flats is possible by 

utilizing proposed feature extraction and pattern recognition techniques without pre-processing 

or additional filtering. 

4.4 Efficiency of one-period analysis in comparison to fixed sampling 

In previous sections, signal segmentation is done according to the rule of one-period 

analysis to construct datasets of healthy and faulty cases of metro wheelsets. This investigation 

is carried out to understand the advantages and disadvantages of wheel defect detection with 

one-period analysis against the implementation of fixed diameter when retrieving signals. 

In this investigation, instead of using k-fold cross validation, randomly chosen faulty 

and healthy samples are used in order to diagnose wheelset faults. In addition, a feature 

optimizing technique; forward sequential feature selection according to FSS-KNN-I [86] and 

an additional classifier combining method; Product Combiner [96] is used to increase accuracy. 

Throughout the classifier combining approach, five state-of-art classifiers are employed; SVM-

I, FLDA, Dec. Tree, Naive Bayes (N-Bayes), PERLC and product combining of them (Prod. 

comb). 
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Signals that are used in this analysis are retrieved from ID-108 train set and the database 

segmentation is shown in Table 13. 

 

Table 13: Description of classes of faults and datasets; T refers to one period analysis and AVG refers to 

average diameter sampling 

Dataset 
Fault 

Type 
Sensors 

Segment 

Period 

Num. 

Training 

Num. 

Testing 

Class 

Label 

A3 
HC 

Z1-Z2 AVG 
8 8 A31 

WF 8 8 A32 

A4 
HC 

M1-M2 AVG 
8 8 A41 

WF 8 8 A42 

A5 
HC 

Z1-Z2 T 
8 8 A51 

WF 8 8 A52 

A6 
HC 

M1-M2 T 
8 8 A61 

WF 8 8 A62 

 

In the preparation of A3-A4 datasets, each test sample is retrieved according to velocity 

of individual wheelset as it is in one-period analysis. However, instead of using individual 

wheel diameters in the operation, which may vary in 730 – 790 mm range, average value of 

minimum and maximum of wheel diameters; 760 mm is used. Figure 30 shows the difference 

between utilization of average diameter sampling in comparison to one-period approach nearby 

optical gate GA. When the diameter of the measured wheel is greater than the average value, 

2L r   samples are acquired whereas on condition that the measured wheel has smaller 

diameter, 2L r   samples are employed where r  refers to the difference of the radius in the 

measured wheel and fixed average diameter. Similar to one-period analysis, operation speed of 

each wheel (V) is considered to diminish the adverse effects of fluctuating speed conditions. 

 

 

Figure 30: Difference between one-period analysis and fixed diameter sampling 
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4.4.1 Feature extraction for comparative sampling 

In the diagnosis of wheel defects with different sampling techniques, time-domain 

features are extracted from the retrieved health and faulty signals and concatenated in a matrix 

as in Eq. (26). 

 

 

11 1

energy,mean,stddev,max,min,kurtosis,skewness,

crest factor,impulsefactor,spikeenergy,center frequency
x

TDFs
 

  
 

  (26) 

 

Despite of the fact that one may not sense which element in TDFs matrix is more 

beneficial to classification result, sequential k-nn feature selection [86] is performed to get more 

relevant features and two features that distinguish the classes of training data best, are chosen. 

4.4.2 Analysis results of comparative sampling 

Detection of faults may strongly depends on the relevancy of the features and classifier 

capabilities. In this investigation, five different classifiers and the combined version of them; 

Product combiner is used to observe classification accuracy of randomly chosen data from the 

wheelsets ID-108 train set. Classification results for Product Combiner for A3-A5 and A4-A6 

may be seen in Table 14. 

 

Table 14: Classification performance for fixed average diameter sampling in comparison to one-period analysis 

with insufficient dataset 

(%) Average classification accuracy 

Feature 

Selection 
TDFs 

Number of 

Training Vectors 

Number of Test 

Vectors 

Dataset 

Labels 

NO 
93.8 93.8 8 8 A3-A5 

50.0 37.5 8 8 A4-A6  

YES 
100 93.8 8 8 A3-A5 

37.5 81.3 8 8 A4-A6  

 

It is urgent to determine the best classifier to ensure the best fault detection performance. 

The resulting graphs include Receiver Operator Characteristics (ROC), which is the indication 

of false positive ratio respect to true positive detection, Area under ROC Curve (AUC) and 

classification accuracy (ACC). Classification results for A3-A5 datasets, which belongs to 

vibration sensors are shown in Figure 31 and Figure 32. 
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Figure 31: Classification results of A3-A5 datasets using Product Combiner classifier 

 

 

Figure 32: Classification results of A3-A5 datasets using Product Combiner classifier with feature selection 

 

Referring to the results, without feature selection, both one-period and fixed average 

sampling has exactly the same classification performance. However, when feature selection is 

performed, using average diameter approach is managed to classify all test data properly. 

 

 

Figure 33: Scatter of the test data in A3 (left), A6 (right) datasets and Product Combiner curve 



65 
 

Figure 33 shows the distribution of healthy and faulty test data with splitting curve of 

Product Combiner classifier for A3 and A6 datasets with feature selection. 

Classification of A4-A6, which belongs to microphone sensors data, is not promising 

when no feature selection is performed according to Figure 34 and Figure 35. 

 

 

Figure 34: Classification results of A4-A6 datasets using Product Combiner classifier 

 

 

Figure 35: Classification results of A4-A6 datasets using Product Combiner classifier with feature selection 

 

Although being not very promising, after feature selection, classification rate of A6 

dataset, which is retrieved by one-period approach, is risen fairly to 81,25%. Distribution of the 

test data in A6 dataset classification is shown in Figure 33. 

4.5 Diagnosis of simulated faulty cases of running gear components 

Wayside diagnosis of running gear components requires faulty ground truth data for 

each component. Although there are some available problematic components like wheel flat 

and traction motor bearing faults, acquiring these samples is challenging while continuous real-
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time measurement is not present. In order to validate the proposed methods in detection of 

different fault types, a model based fault simulation is performed. 

Simulated faults include wheel and rail faults, wheelset bearing faults and gearbox 

faults. It is known that those faults have impulsive characteristics and in the process of 

simulating fault types of vibration signals are generated according to random sinus wave 

amplitude and phase shifting which the frequency is determined according to fault mode and 

operational speed of the passing bogie as told in Section 3.8. 

To clarify how fault simulation and detection are performed, schematic of the algorithm 

is given in Figure 36. 

 

 

Figure 36: Proposed algorithm for simulating faults diagnosis for running gear components 

 

4.5.1 Feature extraction for diagnosis of simulated faulty cases of running gear 

compononets 

Three different feature extraction techniques are used to achieve representative features 

for simulated fault diagnosis; five-level Wavelet Packet Energy (WPE_5) which has a size of 

32x1, W-WAV that is 3x1 in length and finally Time-domain features (TDFs) which includes 

eleven features as shown in Eq. (27). 

 

 

11 x1

energy,mean,std dev,max,min,kurtosis,skewness,
TDFs =

crest factor,impulse factor,spikeenergy,center frequency

 
 
 

  (27) 
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4.5.2 Preparation of the datasets of simulated faults of running gear components 

In the diagnosis of simulated faults, measurement data of all three passes of a ground 

truth healthy train set, ID-119, is used to construct healthy and faulty classes. Table 15 describes 

the classes of different conditions of the components; healthy case (HC), wheel and rail profile 

faults (WRF), wheelset bearing outer race fault (ORF), wheelset bearing inner race fault (IRF), 

traction motor eccentricity (F-TM), gear tooth fault (F-z). 

 

Table 15: Description of classified faults and datasets including simulated faults of running gear components of 

metro type 81-71M 

Datasets 
Fault 

Type 

Segment 

Period 

Num. 

Training 

Num. 

Testing 
Sensors 

Class 

Labels 

A1 
HC 

T 
120 120 

Z1-Z4 
A11 

WRF 120 120 A12 

A2 
HC 

T 
60 60 

M1-M2 
A21 

WRF 60 60 A22 

B1 
HC 

T 
120 120 

Z1-Z4 
B11 

ORF 120 120 B12 

B2 
HC 

T 
120 120 

Z1-Z4 
B21 

IRF 120 120 B22 

B3 
HC 

T 
60 60 

M1-M2 
B31 

IRF 60 60 B32 

C1 
HC 

T 
120 120 

Z1-Z4 
C11 

F-TM 120 120 C12 

C2 
HC 

T 
120 120 

Z1-Z4 
C21 

F-z 120 120 C22 

C3 
HC 

T 
60 60 

M1-M2 
C31 

F-z 60 60 C32 

 

Throughout the process, one-period approach is used to retrieve samples from the 

sensors M1-M2 and Z1-Z4 and same number of wheelset samples are used in the same way for 

each method to observe classification results. In addition, Kurtogram Envelope (KURT-ENV) 

and MOMEDA are employed. Moreover, dimensionless approach, feature selection and 

classifier combining of SVM-I, FLDA, Decision tree, Naive Bayes and Linear Perceptron; 

Product Combiner, are also carried out if the result may increase into higher levels. 

Example simulated faulty signals for wheel defects, wheelset bearings and traction 

motor are shown in Figure 37, Figure 38 and Figure 39 with respect to normal signal that is 

retrieved by measurement. 
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Figure 37: Measured normal vibration signal from ID-119 (left), simulated faulty signal of wheel defects that is 

buried into normal measurement data from ID-119 (right) 
 

  

Figure 38: Measured normal vibration signal from ID-119 after MOMEDA filtering (left), simulated outer race 

fault signal that is buried into normal measurement data from ID-119 after MOMEDA filtering (right) 
 

  

Figure 39: Measured normal vibration signal from ID-119 after MOMEDA filtering (left), simulated traction 

motor eccentricity fault buried into normal measurement data from ID-119 after MOMEDA (right) 

 

4.5.3 Classification results for simulated faults of running gear components 

Classification results of datasets in Table 15 are shown in Table 16 and Table 17 without 

and with feature selection, respectively. 
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Table 16: Classification performance for normal and simulated faults using three runs of ID-119 healthy trainset 

without feature selection with Product Combiner classifier (*: dimensionless approach is used due to achiving 

better classification accuracy) 

 Average classification accuracy (%) 

 WPE_5 TDFs W-WAV Dataset Labels 

No-filter 

*88.8 *98.3 99.2 90.8 *69.6 100 A1-A2  

x x x x x x B1 | B2 

x x x B3 

x x x x x x C1 | C2 

x x x C3 

Wavelet 

*95.0 100 *70.0 *70.9 96.3 100 A1-A2  

x x x x x x B1 | B2 

x x x B3 

x x x x x x C1 | C2 

x x x C3 

KURT-ENV 

96.3 95.0 *94.5 96.7 *82.5 83.3 A1-A2  

93.8 96.3 94.2 97.1 *75.0 *87.0 B1 | B2 

100  100  100  B3 
*87.9 96.7 78.3 100 78.3 100 C1 | C2 

*97.5  100  100  C3 

MOMEDA 

92.1 *93.3 100 100 88.3 98.3 A1-A2  

79.2 74.5 100 98.3 80.0 86.7 B1 | B2 
*71.7  100  100  B3 

*86.7 *88.75 99.2 100 78.3 100 C1 | C2 
*85.0  100  100  C3 

 

Table 17: Classification performance for normal and simulated faults using three runs of ID-119 healthy trainset 

with feature selection and Product Combiner classifier (*: dimensionless approach is used due to achiving better 

classification accuracy) 

 Average classification accuracy (%) 

 WPE_5 TDFs W-WAV Dataset Labels 

No-filter 

*86.3 *96.7 99.6 89.2 69.6 *85.0 A1-A2  

x x x x x x B1 | B2 

x x x B3 

x x x x x x C1 | C2 

x x x C3 

Wavelet 

*93.8 100 82.9 *71.7 *96.3 100 A1-A2  

x x x x x x B1 | B2 

x x x B3 

x x x x x x C1 | C2 

x x x C3 

KURT-ENV 

*94.1 94.2 94.2 96.7 *83.3 85.8 A1-A2  
*93.3 *98.8 94.2 97.1 *76.7 85.0 B1 | B2 

x  97.5  x  B3 

86.7 *97.1 76.7 100 76.7 100 C1 | C2 

95.8  100  100  C3 

MOMEDA 

66.3 77.5 98.8 100 *88.75 98.3 A1-A2  

68.8 67.9 *99.2 97.1 72.9 *85 B1 | B2 

57.5 99.2 100  B3 
*72.5 76.7 99.2 100 73.8 100 C1 | C2 

74.2  100  100  C3 
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Without utilization of any filters, best possible method is considered to be TDFs for 

dataset A1 (99.6% with feature selection) and W-WAV (100%) for dataset A2 with respect to 

the results. WPE_5 method is also managed to classify all test samples in A2 correctly after 

wavelet filtering is performed. Best results for classification of A1-A2 datasets without 

filtering, are shown in Figure 40 and Figure 41 with distribution of test data when feature 

selection has higher results. 

 

 

Figure 40: Classification results and ROC curve for A1 dataset with feature selection without filtering (left) for 

TDFs, scattering of test data (right) 

 

 

Figure 41: Classification results and ROC curve for A2 dataset without filtering; WPE_5 (left), W-WAV (right) 

 

When wavelet denoising is performed before feature extraction phase, the efficiency of 

TDFs decreases dramatically whereas performance of WPE_5 and W-WAV increases 

significantly on dataset A1. 

Upon using model based filtering, classification of A1-A2 datasets are increased to 

100% with MOMEDA-TDFs without any feature selection or dimensionless feature 

normalization which (Figure 42). 
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Figure 42: Classification results and ROC curves for A1 and A2 datasets by MOMEDA-TDFs 

 

In bearing fault diagnosis, MOMEDA-TDFs still leads with 100% and 98.8% success 

in classification of B1 (ORF) and B2 (IRF), respectively (Figure 43). B3 (IRF) is classified by 

100% rate with both KURT-ENV and MOMEDA features (Figure 44 and Figure 45). 

 

 

Figure 43: Classification results and ROC curves for B1 and B2 datasets by MOMEDA-TDFs 

 

 

Figure 44: Classification results for B3 dataset using KURT-ENV-W-WAV (left), scattiring of test data (right) 
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Figure 45: Classification results for B3 dataset using MOMEDA-W-WAV (left), scattiring of test data (right) 

 

In the classification of C2-C3 (gear tooth faults), both MOMEDA and KURT-ENV 

works well by succeeding in classifying all test samples properly (Figure 47 and Figure 48). 

However, classification of C1 (traction motor eccentricity) can only be done to its highest rate 

by MOMEDA-TDFs up to 99.2% with and without feature selection (Figure 46). 

 

  

Figure 46: Classification results for C1 dataset using MOMEDA-TDFs (left), scattiring of test data (right) 
 

 

Figure 47: Classification results for C2 dataset using MOMEDA-TDFs (left), scattiring of test data (right) 
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Figure 48: Classification results for C3 dataset using KURT-ENV-W-WAV (left), scattiring of test data (right) 

 

It is concluded that using Product Combiner classifier in most cases share the best 

performance with the most successful classifier for the related faulty mode and simulated faulty 

cases on both microphone and vibration signals may successfully classified without any false 

positive (AUC=1.000), according to ROC curves with the proposed algorithms in this section. 

4.6 Detection of traction motor bearing faults using acoustic sensors 

Final investigation is focused on traction motor bearing fault detection using acoustic 

sensors. For this purpose, prior knowledge of a faulty traction motor bearing from ID-131 metro 

train set is used. In the investigation, two validated methods from simulated fault detection; 

KURT-ENV-TDFs and MOMEDA-TDFs are employed in combination with one-period 

analysis as in Section 4.5. 

In the classification phase, five classifiers; SVM-I, FLDA, Decision Tree, Naive Bayes, 

Linear Perceptron and combined classifier method (Product Combiner) are used in training and 

testing phases. 

The database used in this analysis include normal samples of ID-119 healthy train set 

and faulty samples of train set ID-131 which has inner race faults (TM-IRF) and outer race 

faults (TM-ORF) on two separate traction motors. Dataset descriptions are shown in Table 18. 

 

Table 18: Description of database that is used for traction motor bearing fault diagnosis 

TRAIN 

IDs 
Condition 

Nearby 

Wheelset 

Numbers 

Number of 

Training 

Vectors 

Number of 

Test 

Vectors 

Sensors 
Class 

Labels 

119 
Healthy IR 

1-20 
7 8 

M1-M2 
D1(1,1) 

Healthy OR 7 8 D2(1,1) 

131 
TM-IRF 

12, 19, 20 
7 8 

M1-M2 
D1(1,2) 

TM-ORF 7 8 D2(1,2) 
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The process of bearing fault diagnosis for traction motors is described in Figure 49. 

 

 

Figure 49: Proposed algorithms for detection of traction motor bearing faults 

 

Examples of measured faulty signals and normal traction motor bearing acoustic signal 

after MOMEDA filtering are shown in Figure 50. 

  

 

Figure 50: Normal traction motor bearing signal from ID-119 after MOMEDA filtering on acoustic sensor (left), 

measured signal nearby wheelset-19 from ID-131 after MOMEDA on an acoustic sensor filtering (right) 
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The results of traction motor bearing fault detection both for inner and outer race faults 

are shown in Table 19 using Product Combiner classifier. Best results, are shown in a more 

detailed way in Figure 51 and Figure 52 for KURT-ENV-TDFs and Figure 53 and Figure 54. 

 

Table 19: Classification performance proposed methods in TM bearing fault diagnosis using Product Combiner 

(*: dimensionless process carried out due to better success) 

Classifier 

Average classification accuracy (%) 

Feature 

Selection 

MOMEDA 

TDFs 

KURT-ENV-

TDFs 

Dataset 

Labels 

Fault 

Mode 

Prod. 

Comb. 

NO 99,18 75 D1 IRF 

YES 100 87,5 D1 IRF 

NO 100 62,5 D2 ORF 

YES *93,8 *100 D2  ORF 

 

  

Figure 51: Detailed results of traction motor IRF (dataset D1) with KURT-ENV-TDFs method after feature 

selection (left), scattering of test data and division by Product Combiner classifer (right) 

 

  

Figure 52: Detailed results of traction motor ORF (dataset D2) with KURT-ENV-TDFs method after feature 

selection and dimensionless normalization (left), scattering of test data and division by Product Combiner 

classifer (right) 
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Figure 53: Detailed results of traction motor IRF (dataset D1) with MOMEDA-TDFs method after feature 

selection and dimensionless normalization (left), scattering of test data and division by Product Combiner 

classifer (right) 

 

  

Figure 54: Detailed results of traction motor ORF (dataset D2) with MOMEDA-TDFs method (left); ROC curve 

for Product Combiner classifer (right) 

 

Referring to the results, both KURT-ENV-TDFs and MOMEDA-TDFs feature 

extraction approaches are managed to classify all cases properly when a convenient feature 

selection method and the proper classifier is used. Furthermore, using classifier combination 

has superior results than any of individual classifier in KURT-ENV-TDFs method such as in 

Figure 52. 

In this investigation, prepared set of data include both IRF and ORF faulty conditions 

of traction motor bearings and by using acoustic sensors data M1-M2, diagnosis of those may 

efficiently be performed by proposed algorithms in this section in a very efficient way up to 

100%. 
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5 OWN CONTRIBUTION OF THE PHD. STUDENT 

Automatic identification of the faults and real time condition monitoring are the key 

points of this thesis which the proper consistency of statistical methods throughout wavelet 

based methods and other cutting-edge techniques are to be employed as well as filtering in the 

preprocessing on vibration and acoustic signals. 

The main objective of this thesis is to design an adaptive fault diagnosis framework that 

can diagnose running gear faults like wheel defects, wheelset bearing faults and gearbox faults. 

In order to do so, a multi-functional MATLAB software is created with a user-friendly graphical 

user interface (GUI) that can read meta data of each measurement and segment signals referring 

to their train set ID, make a filtration and feature extraction automatically for the given intervals,  

from wayside diagnosis measurements. 

Thanks to the contribution of a ground truth database which is provided by CWRU. 

With it, efficiency of the algorithms like WPE, TDF and MOMEDA with the proposed novel 

one-period analysis in bearing fault detection is validated. 

In the case of wheel defect detection of metro train sets, with the contribution of one-

period analysis, which requires wheel diameters and individual speed calculation, diagnosis of 

wheel flats is performed by 100% accuracy with different methods. Further validation is done 

by synthetically oversampling of the faulty class with ADASYN and with different bogie 

wheelset samples from different train IDs, by utilizing one period analysis and average fixed 

sampling. Best results obtained by TDFs method up to 100% and proposed novel E-LCP-K has 

also promising results up to 96.9% in insufficient case. 

In simulated faulty modes section, faulty signal frequencies are calculated according to 

the model based approaches given in Section 2.2 by a speed adaptive way both for normal and 

faulty samples for bearings and gearboxes. Kurtogram envelope is used to filter out the 

transients in the fifth scale which is based on speed adaptive determination of rotating 

machinery components. Noise removal is applied by using wavelet denoising and detection 

accuracy of the faults improve significantly in W-WAV and WPE_5 wavelet energy methods. 

In all classification results both dimensionless feature normalization and best feature selection 

are investigated to achieve better results which in some cases aid improving overall 

classification accuracy of several feature extraction techniques. It is observed the novel 

combined methodologies; MOMEDA-TDFs and KURT-ENV-W-WAV techniques have 

outstanding classification accuracies; wheel defects by 100%, wheelset bearing IRF by 100%, 
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ORF by 98.8%, TM-eccentricity by 99.2% with the vibration sensor data and both wheelset 

bearing IRF and gear tooth faults by 100% by the acoustic sensor data. 

In the classification stage, the novel classifier combination is done by the involvement 

of five different classifiers; SVM-I, FLDA, Dec. tree [97], N-Bayes and PERLC [95] and 

Product Combiner classifier is constructed. Product combiner, which is considered to be the 

most convenient way since classification accuracy for different classifiers vary significantly in 

different faulty modes, helps improving the performance in distinguishing classes. 

Final investigation is subjected to classifying real faulty cases of traction motor 

bearings; TM-IRF and TM-ORF. Faulty data is provided by maintenance information from 

Prague metro that ID-131 metro has faulty bearings in two of its bogies. The analysis results 

show that validated techniques of simulated faulty cases; KURT-ENV-TDFs and MOMEDA-

TDFs are appropriate way of diagnosing TM-IRF and TM-ORF in the real environment by 

acoustic sensor data with the contribution of one period analysis up to 100% when proper 

classifiers are used. 
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6 CONCLUSION 

Wayside diagnosis of running gear of railway vehicles has a crucial role by means of 

cost efficiency in comparison to scheduled or on-condition maintenance. The investigation 

subjected to this problematic in the area of this thesis includes the evaluation of the data 

obtained from two passages of Prague metros that runs on metro line-A via instrumentation 

device that can handle meta-data information and raw signal recording that are measured by 

acoustic, accelerometer and optical sensors. Processing all data that are measured in these two 

passages is done according to the wheelset positions of each wheelset during all passes of the 

metro train sets. 

After checking the validation of the signals, two main database are constructed from the 

passages of Malostranská and Dejvická. In the former one, since the speed of the run varies 

significantly and the existence of a transition curve along the measurement, some signal 

samples are out of the range of the accelerometers and abnormal activity is observed in both 

accelerometer and acoustic sensors due to the presence of random heavy flange noise. 

Firstly, to discard the unwanted signal outputs, an empirical approach is proposed in 

combination with the novel LCP-K variants as well as WPE and TDFs. According to the results, 

E-LCP-K may nominated to be the best way of solving the problem when both acoustic and 

vibration based signals are used. 

Secondly, an attempt to validate the efficiency of the proposed algorithms WPE, TDF 

MOMEDA and MOMEDA-AR, is made by utilizing FLDA and SVM for classifying the signal 

classes of up to five different levels of severity and early fault diagnosis of three different fault 

types; IRF, ORF, BF, belong to ball bearings on a trusted database which is retrieved from 

CWRU. Early-fault diagnosis of three types of faults is succeeded by MOMEDA with FLDA 

as 100%. Furthermore, even other WPE-3, WPE-5 and TDF feature extraction techniques have 

promising results. MOMEDA-AR with SVM-II outperforms in classifying 5-class severity 

levels of the rolling element faults of ball bearings by a rate of 99.7%. 

Thirdly, the vibration signals retrieved from Dejvická passage are used to identify the 

wheel defects and outstanding results are observed up to 100% by TDF with both FLDA and 

SVM classifiers. Further investigations are carried out with the measured data from Dejvická 

metro station. Two more classifiers; Dec. tree and PERLC are added in the classifying stage. 

Both acoustic and vibration sensor information are evaluated with the proposed techniques in 

non-stationary signal processing. Further, measured raw data in comparison to synthetically 

oversampled data using ADASYN is also examined to see real detection rates in a more reliable 
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way. According to the results, 100% detection of wheel flats is possible by using vibration 

sensor data with TDF and 93% with LCP-K and acoustic sensors. 

Fourthly, one-period analysis and fixed average sampling are examined in comparison. 

In the investigation, feature selection is also performed and referring to the results one-period 

analysis outperforms the average diameter sampling in acoustic sensor diagnosis whereas fixed 

sampling approach has higher results in vibration sensor data up to 100%. This is because the 

examined flat wheel have smaller diameter than the average metro wheel diameter. However, 

if the investigated wheel had a bigger diameter than average diameter, the diagnosis success of 

fixed diameter sampling could have far worse. Besides, it may highly likely that false positive 

rates would have improved in other wheelset samples. 

Fifthly, since some of the faults are far less frequent, model based fault simulation 

approach is also carried out to see the performance of the proposed techniques in recognition 

of several fault types like; wheel and rail faults, wheelset bearing faults, gear tooth fault and 

traction motor eccentricity. For this purpose, simulated faults are buried into the measurement 

signals of ID-119, which is marked as healthy, using one-period analysis. In the classification, 

half of the sensor information is used in training and remaining vectors are used in testing and 

five different classifiers and classifier combining approach are also employed. 

Upon using wavelet denoising, efficiency of wavelet energy features like WPE_5 and 

W-WAV has significantly improved in detecting wheel and rail faults. However, results with 

TDFs dropped dramatically. Using TDFs with feature selection slightly improved the 

recognition rates to 99.6% from 99.2% with vibration sensors data. Nevertheless, a model based 

filtering scheme MOMEDA-TDFs outperforms by recognizing all simulated wheel and rail 

type faults as 100% with vibration sensors data.  

When it comes to bearing fault diagnosis, both KURT-ENV (with all feature extraction 

techniques; WPE_5, TDFs and W-WAV) and MOMEDA-TDFs have outstanding results in 

detecting wheelset IRF by acoustic sensors as 100%. Wheelset IRF can also be detected by 

MOMEDA-TDFs and vibration sensors flawlessly and recognition of wheelset ORF reaches at 

98.8% with feature selection. 

Furthermore, traction motor eccentricity and gear tooth fault can be detected 

respectively, up to 99.2% and 100% by utilizing MOMEDA-TDFs in the simulated faulty cases. 

Lastly, final investigation is performed to diagnose real faulty cases of TM-IRFs and 

TM-ORFs using acoustic sensors. According to the results, both MOMEDA-TDFs and KURT-

ENV-TDFs have outstanding performances in detecting both TM-ORFs and TM-IRFs as 100% 

when the appropriate classifier is used. 
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The study belonging to this thesis includes both real and simulated validations of 

proposed methodologies and in most cases the results are considered to be outstanding. The 

proposed schemes are efficient in wayside fault diagnosis of running gear related faults of 

railway vehicles by using vibration and acoustic sensors and accompanying optical gates for 

wheelset position detection. 

As a result, the research that is subjected to this thesis may aid specialist who are focused 

on the condition monitoring systems or maintenance. Further adjustments and improvements 

may be done when more faulty data information is available and the framework may work in a 

better performance. 
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