Vliv znalostní ekonomiky na rozvoj regionů

Ing. Viktor Prokop

Školitel: doc. Ing. Jan Stejskal, Ph.D.

Disertační práce
2017
PROHLAŠUJI:

Tuto práci jsem vypracoval samostatně. Veškeré literární prameny a informace, které jsem v práci využil, jsou uvedeny v seznamu použité literatury.

Byl jsem seznámen s tím, že se na moji práci vztahují práva a povinnosti vyplývající ze zákona č. 121/2000 Sb., autorský zákon, zejména se skutečností, že Univerzita Pardubice má právo na uzavření licenční smlouvy o užití této práce jako školního díla podle § 60 odst. 1 autorského zákona, a s tím, že pokud dojde k užití této práce mnou nebo bude poskytnuta licence o užití jinému subjektu, je Univerzita Pardubice oprávněna ode mne požadovat přiměřený příspěvek na úhradu nákladů, které na vytvoření díla vynaložila, a to podle okolností až do jejich skutečné výše.

Souhlasím s prezenčním zpřístupněním své práce v Univerzitní knihovně.

V Pardubicích dne 30. 3. 2017

Ing. Viktor Prokop
PODĚKOVÁNÍ:

Tímto bych rád poděkoval svému školiteli doc. Ing. Janu Stejskalovi, Ph.D. za odbornou pomoc a cenné rady při psaní disertační práce a za přístup, kterým mne vedl a motivoval během doktorského studia.

Dále bych chtěl poděkovat svým rodičům za podporu nejen při studiích.

Anotace

Jednotliví ekonomičtí aktéři jsou v současné době častěji nuceni hledat nové zdroje konkurenční výhody – znalostí, za jejichž pomocí se mohou oddělit od konkurence. Je tak možné sledovat posun od využívání tradičních výrobních faktorů, jako je například půda a kapitál, směrem ke znalostem. Zejména od tvrdých faktorů (například infrastruktura) směrem k faktorům měkkým (nehmotným), jako jsou například místní atmosféra, synergické efekty, lidský kapitál a znalostní aktiva. Řada zemí ale při pokusech o posun směrem k tomu být znalostními nebo na znalostech založenými ekonomikami selhává a je neúspěšná v rámci procesů tvorby, využívání, šíření a komercializace znalostí. Tato disertační práce proto analyzuje vliv a efektivitu využívání determinantů znalostní ekonomiky na regionální rozvoj v rámci EU 28.

Klíčová slova

Ekonomický rozvoj, inovace, region, znalosti

Title

Influence of the Knowledge Economy on the Regional Development

Annotation

Nowadays, economic actors more frequently force to seek new sources of competitive advantage – usually knowledge, to help to build the competitive advantage and sufficiently set them apart from the competition. Therefore, we can see a shift from traditional resources, such as work and capital towards knowledge and its use, especially from hard factors (e.g., infrastructure) towards soft (intangible) factors such as local atmosphere, synergetic effects, human capital, and knowledge assets. However, number of countries fail in an attempt to become knowledge or knowledge-based economics and they are not effective during the processes of knowledge creation, use, dissemination and commercialization. This dissertation work analyses the influence of the determinants of the knowledge economy on regional development and the efficiency of using its determinants within EU 28.

Keywords

Economic Development, Innovation, Region, Knowledge
Obsah

<table>
<thead>
<tr>
<th>Obsah</th>
<th>Strana</th>
</tr>
</thead>
<tbody>
<tr>
<td>Úvod</td>
<td>8</td>
</tr>
<tr>
<td>1 Znalostní ekonomika</td>
<td>10</td>
</tr>
<tr>
<td>1.1 Od tradicních zdrojů ke znalostní ekonomice</td>
<td>10</td>
</tr>
<tr>
<td>1.2 Úloha znalostí v ekonomických teoriích</td>
<td>12</td>
</tr>
<tr>
<td>1.3 Definice a vlastnosti znalostní ekonomiky</td>
<td>15</td>
</tr>
<tr>
<td>1.4 Znalostní báze a znalostní aktiva</td>
<td>18</td>
</tr>
<tr>
<td>1.5 TVORBA A ŠÍŘENÍ ZNALOSTÍ</td>
<td>22</td>
</tr>
<tr>
<td>1.6 Měření efektů uplatněných znalostí</td>
<td>27</td>
</tr>
<tr>
<td>2 Přelévání znalostí v ekonomickém systému</td>
<td>32</td>
</tr>
<tr>
<td>2.1 Vznik efektů přelévání</td>
<td>32</td>
</tr>
<tr>
<td>2.2 Definice, typologie a šíření efektů přelévání</td>
<td>34</td>
</tr>
<tr>
<td>2.3 Rostoucí vliv efektů přelévání na tvorbu inovací</td>
<td>37</td>
</tr>
<tr>
<td>2.4 Odlišné vlivy efektů přelévání v meziregionálním srovnání</td>
<td>43</td>
</tr>
<tr>
<td>2.5 Měření efektů přelévání</td>
<td>51</td>
</tr>
<tr>
<td>3 Vědecký cíl a metodika zkoumání</td>
<td>56</td>
</tr>
<tr>
<td>3.1 Vědecký cíl</td>
<td>56</td>
</tr>
<tr>
<td>3.2 Popis výzkumných metod</td>
<td>63</td>
</tr>
<tr>
<td>3.2.1 Analýza datových obalů</td>
<td>64</td>
</tr>
<tr>
<td>3.2.2 Vícnásobná regresní analýza</td>
<td>68</td>
</tr>
<tr>
<td>4 Analýza makroekonomických a mikroekonomických determinantů znalostní ekonomiky</td>
<td>73</td>
</tr>
<tr>
<td>4.1 Analýza efektivnosti působení vybraných makroekonomických determinantů ekonomik</td>
<td>73</td>
</tr>
<tr>
<td>4.1.1 Zvolená analytická metoda a datový soubor</td>
<td>73</td>
</tr>
<tr>
<td>4.1.2 Vybrané makroekonomické determinanty</td>
<td>74</td>
</tr>
<tr>
<td>4.1.3 Výsledky analýzy</td>
<td>77</td>
</tr>
<tr>
<td>4.2 Analýza působení vybraných mikroekonomických determinantů znalostní ekonomiky</td>
<td>83</td>
</tr>
<tr>
<td>4.2.1 Zvolená analytická metoda a datový soubor</td>
<td>84</td>
</tr>
<tr>
<td>4.2.2 Vybrané mikroekonomické determinanty</td>
<td>85</td>
</tr>
<tr>
<td>4.2.3 Výsledky analýzy</td>
<td>86</td>
</tr>
<tr>
<td>4.3 Shrnutí výsledků analýz</td>
<td>93</td>
</tr>
<tr>
<td>Závěr</td>
<td>97</td>
</tr>
<tr>
<td>Použitá literatura</td>
<td>101</td>
</tr>
<tr>
<td>Přehled publikační činnosti</td>
<td>129</td>
</tr>
</tbody>
</table>
SEZNAM TABULEK

Tabulka 1 Přehled teorií regionálního rozvoje institucionálních směrů .. 14
Tabulka 2 Typologie rozdílných znalostních bází ... 19
Tabulka 3 Způsoby spolupráce na úrovni university-industry ... 24
Tabulka 4 Bariéry inovací .. 39
Tabulka 5 Vývoj inovačních modelů z historické perspektivy .. 41
Tabulka 6 Způsoby výměny znalostí v inovačním procesu ... 43
Tabulka 7 Vliv determinantů inovačních aktivit v Rumunsku, Chorvatsku a Slovinsku 47
Tabulka 8 Vliv spolupráce na inovační aktivity v Rumunsku ... 48
Tabulka 9 Vliv spolupráce na inovační aktivity v Chorvatsku .. 49
Tabulka 10 Vliv spolupráce na inovační aktivity ve Slovinsku .. 50
Tabulka 11 Navržená opatření pro podporu inovačních aktivit v Rumunsku, Chorvatsku a Maďarsku ... 51
Tabulka 12 Přehled analýz efektů přelévání mezi roky 1984-1999 .. 52
Tabulka 13 Přehled vybraných analýz efektů přelévání .. 54
Tabulka 14 Přehled vybraných studií efektivnosti znalostních vstupů a výstupů 57
Tabulka 15 Externí a interní determinanty inovací ... 60
Tabulka 16 Zvolené makroekonomické determinanty znalostní ekonomiky 76
Tabulka 17 Výsledky vstupově-orientovaného modelu s variabilními výnosy z rozsahu 78
Tabulka 18 Výsledky výstupově-orientovaného modelu s variabilními výnosy z rozsahu 79
Tabulka 19 Pořadí ekonomik nejefektivněji využívajících zvolených determinantů znalostní ekonomiky ve světovém hodnocení konkurenceschopnosti mezi roky 2012-2017 83
Tabulka 20 Vybraná odvětví pro analýzy .. 85
Tabulka 21 Mikroekonomické determinanty inovačních aktivit podniků 85
Tabulka 22 Působení determinantů inovačních aktivit ve vybraných odvětvích v Německu 87
Tabulka 23 Význam spolupráce na inovacích s klienty nebo zákazníky ze soukromého sektoru v elektroprůmyslu ... 89
Tabulka 24 Působení kombinací mikroekonomických determinantů inovačních aktivit v kovoprůmyslu v Německu .. 90
Tabulka 25 Analýza efektů poskytování finančních prostředků z národních rozpočtů ve strojírenském průmyslu v Německu ... 91
Tabulka 26 Srovnání pokročilých kombinací determinantů inovačních aktivit v chemickém a farmaceutickém a v kovoprůmyslu v Německu ... 92

SEZNAM ILUSTRACÍ

Obrázek 1 Rozdíl mezi znalostním transferem a přeléváním znalostí ... 34
Obrázek 2 Přelévání znalostí na různých ekonomických a geografických úrovních 37
Obrázek 3 Kaskádový výstup inovačních aktivit .. 40
Obrázek 4 Územní inovační model ... 42
Obrázek 5 Inovační výkonnost členských států EU v roce 2015 ... 45
Obrázek 6 Komparace DEA analýzy a regrese .. 65
SEZNAH ZKRÁTEK A ZNAČEK

CIS Community Innovation Survey
CRS Constant returns to scale
DEA Data Envelopment Analysis
DMU Decision Making Unit
EU Evropská Unie
HDP Hrubý domácí produkt
ICT Information and Communication Technologies
KAM Knowledge Assessment Methodology
OECD Organisation for Economic Co-operation and Development
RIS Regional Innovation System
VRS Variable returns to scale
ÚVOD

Role znalostí a znalostní ekonomiky v posledních letech nabývá na svém významu a to zejména proto, že jednotlivé ekonomické subjekty jsou v prostředí otevřené globalizované ekonomiky nuceny hledat nové zdroje konkurenční výhody, kterými znalosti bezpochyby jsou. Tvorba, šíření a schopnost využívat různé druhy znalostí v kombinaci s tvorbou inovací tak představuje klíčovou činnost, jejíž zvládnutí umožňuje mnohým ekonomickým subjektům (zejména podnikům) vytvářet přidanou hodnotu, zvyšovat vlastní konkurenceschopnost a přispívat k dlouhodobému ekonomickému růstu.

Inovace se tak spolu se znalostmi stávají klíčovými determinanty růstu a vstupují do popředí zájmů jednak firem, ale i tvůrců veřejných politik na všech úrovních. Jejich působení v ekonomice výrazně ovlivňuje i regiony a jejich sociálně-ekonomický rozvoj. Rozvoj regionů je pak dále ovlivňován růstem jejich HDP (příp. přidané hodnoty), růstem inovační aktivity a konkurenceschopnosti ekonomických subjektů působících v daných regionech, ale i růstem jejich znalostní vybavenosti a potenciálu. Inovace, spolu se znalostmi, tak bezpochyby přispívají ke zvyšování celospolečenského blahobytu a je nezbytné se jimi zabývat.

Z výsledků novodobých zahraničních studií je ale zřejmé, že ne každá ekonomika, která využívá znalostí, je ekonomikou znalostní, a ne každá firma, která inovuje, dosahuje lepších ekonomických výsledků. Inovační procesy jsou totiž složité procesy, jež jsou ovlivňovány řadou determinantů, jako je například spolupráce s různými partnery (univerzity, dodavatelé, zákazníci), finanční podpora (národní a evropská), tržní orientace a další. Tyto determinanty pak působí v každém odvětví odlišným způsobem, a proto je obtížné modelovat a předpovídat efekty jejich fungování v synergii a doporučovat jejich plošnou aplikaci v praxi (např. zařazením do Programů rozvoje krajů ad.).

Hlavním vědeckým cílem disertační práce je proto identifikace makroekonomických a mikroekonomických determinantů znalostní ekonomiky, které mají největší vliv na ekonomický rozvoj regionů v současné Evropské unii.

Disertační práce je rozdělena do čtyř částí, přičemž první část mapuje teoretické základy a stav současného poznání zpracovaný převážně ze zahraničních pramenů. Nejdříve je rozebráno samotné pojetí znalostí, jejich vznik a úloha v ekonomických teoriích. Následně je definována znalostní a na znalostech založená ekonomika, jednotlivé znalostní báze a šíření...

1 Použité pojmy, u kterých není doposud ustálen český ekvivalent a jejich překladem by mohlo dojít k zastření jejich původního významu pocházejícího z primárního zdroje, jsou v závorkách uvedeny v angličtině.
znalostí. V poslední části první kapitoly jsou shrnuty způsoby měření efektů uplatněných znalostí.

V druhé části je charakterizován vznik a význam efektů přelévání znalostí v současném ekonomickém systému. Šířením znalostí se v posledních letech zabývala celá řada zahraničních autorů a doposud se nepodařilo přesně zachytit a změřit jeho efekty. Jedná se proto o stále aktuální a analyzované téma. V této části jsou proto tyto efekty přelévání znalostí jednak definovány, dále je uvedena jejich typologie a mimo jiné jsou zde i popsány odlišné vlivy jejich působení v meziregionálním srovnání a to na výsledcích vlastního předešlého výzkumu. V poslední části druhé kapitoly je uveden přehled studií, které se zabývaly problematikou měření efektů přelévání znalostí.

Třetí část je zaměřena na definování hlavního vědeckého cíle, který se skládá ze dvou dílčích cílů, v rámci kterých jsou následně položeny vědecké otázky a definovány výzkumné hypotézy. V této části je dále uveden metodický postup řešení disertační práce a charakterizovány statisticko-matematické metody, které byly využity v analytické části.

Ve čtvrté analytické části jsou provedeny samotné analýzy a to jak na makroekonomické, tak i mikroekonomické úrovni, v souladu s definovaným cílem disertační práce. Tato část obsahuje výsledky analýz a slouží jako podklad pro navržení praktických implikací pro tvůrce veřejných politik v zemích EU 28, ale i pro podniky operující v těchto zemích. Dané implikace jsou uvedeny v závěru disertační práce.
1 ZNALOSTNÍ EKONOMIKA

1.1 Od tradičních zdrojů ke znalostní ekonomice

Pojem znalostní ekonomika nabývá v posledních letech stále více na svém významu. Jsou to právě znalosti, které doplnily a někde též zcela nahradily „původní“ produkční faktory, které zajišťovaly růst konkurenceschopnosti a celkový ekonomický růst. Je totiž zřejmé, a potvrzuje to i řada zahraničních studií (např. Kim, 2015; Snieška a Drakšaitė, 2015; Magnier-Watanabe, 2015; Verba, 2016), že dochází k posunům od tradičních zdrojů, jako byla práce, půda a kapitál, směrem ke znalostem a jejich použití, respektive od tvrdých faktorů (např. infrastruktura), k faktorům měkkým (nehmotným), jako je například inovační prostředí, synergické efekty, lidský kapitál a znalostní aktiva (Becattini, 1990; Camagni, 1991; Camagni a Capello, 2009). Nejvýznamnějšími se ukazují být znalosti, schopnost učit se. Heng a kol. (2012) uvádějí, že znalosti:

- ovlivňují ekonomický růst jednotlivých zemí;
- představují významný produkční faktor;
- jsou příčinou rozdílů v produktivitě zemí.

Je zřejmé, že i v historii bylo nahlíženo na znalosti, jako na znalosti vázané pouze na člověka vykonávajícího danou práci, který byl tím pádem nositelem práce, ale i znalosti. V této disertační práci je ale na znalosti a práci nahlíženo odděleně a za zdroj a nositele znalostí není považován pouze člověk, ale mohou jím být i další procesy, interakce, služby, databáze, přičemž znalost jako taková je potom brána za výsledek jednak aktivního učení (na základě poznání a zkušeností), ale i jako výsledek pasivního učení a interakcí, které mohou být záměrné i náhodné. Jedná se tedy o interakci zkušeností, faktů, vztaň, hodnot, myšlenkových procesů, významů a o kombinaci informací s činy (Truneček, 2004). Celý tento problém popsal Max Boisot (Boisot, 1995, 1998) v tzv. konceptu informačního prostoru (The Information Space Concept), který pracuje s fyzickou i informační (abstraktní) stránkou znalostí, přičemž tyto stránky se mohou vyvíjet v čase a to jednak dohromady, tak i odděleně, a vedou postupně ke vzniku znalostní společnosti (knowledge society), která zpracovává informace a znalosti takovými způsoby, které maximalizují učení se, stimuluji důvtip a vynalézavost, rozvíjejí kreativitu a inovativnost a dále schopnost iniciovat a vyrovnat se se změnami. V rámci těchto aktivit dochází k šesti postupným procesům, jimž je (Kaivo-oya, 2012):

- skenování, kdy jsou poznatky získávány z běžně dostupných (rozptýlených) dat;
- řešení problémů, kdy dochází ke kodifikaci problémů;
- abstrakce, kdy jsou nově kodifikované poznatky zobecněny na širokou škálu situací a znalosti se stávají abstraktními;
- difúze, v rámci které jsou znalosti a nové poznatky sdíleny s cílovou populací v kodifikované a abstraktní formě (stávají se rozptýlenými);
- absorpce, kdy jsou nově kodifikované poznatky aplikovány na různých situacích a dochází k produkci nových zkušeností a znalostí (dochází ke vstřebávání znalostí a vytváření naučeného chování, znalost se stává znalostí tichou, neboli taciní);
- dopady, v rámci kterých se abstraktní znalosti stávají zakotvenými v konkrétních postupech, pravidlech, vzorcích.

Z těchto konceptů vychází i disertační práce, ve které není člověk, jako nositel práce, brán za jediný zdroj a přenositel znalostí, ale je vnímán jako ten, kdo znalosti využívá k tvorbě výstupů produkčních nebo dalších (znalostních) procesů.
Růst mnoha národních ekonomik je proto v současné době mnohem méně závislý na množství přírodních zdrojů, jako tomu bylo dříve, ale je stále více ovlivňován intelektuální kapacitou a kvalitou lidských zdrojů, lidským kapitálem, resp. potenciálem. Jednotliví ekonomičtí aktéři jsou proto stále častěji nuceni hledat nové zdroje – obvykle znalosti, které by jim zajistily konkurenční výhodu, a pomocí kterých by se dostatečně odlišovali od své konkurence. Jako důsledek je možné sledovat kontinuální nárůst produkce znalostí a informací, stejně tak, jako tomu bylo v dřívějších letech například s nárůstem produkce automobilů (Stiglitz, 1999). K této změně docházelo postupně a to s technologickým rozvojem, který byl odstartován v polovině 20. století. Prvním viditelným impulsem bylo rozšíření osobních počítačů, ale k největšímu rozmanu došlo při hromadném používání internetu. Výsledkem země se tak postupem času staly více závislé na produkci a šíření znalostí (Powell a Snellman, 2004), spojených s technologickým pokrokom. To mělo za následek posun od materiálně založené ke znalostně založené tvorbě blahobytu a k většímu uznání role znalostí a technologií v souvislosti s hospodářským růstem. Jednotlivé ekonomiky OECD jsou dnes silně závislé na produkci, distribuci a využívání znalostí, více než kdy dříve, protože produkce/výstup a zaměstnanost se rozšiřují a rostou nejrychleji v technologicky vyspělých odvětvích, jako jsou například počítače, elektronika nebo letecký průmysl (OECD, 1996).

Smith (2000) uvádí, že samotné znalosti jsou jako vstup kvantitativně a v určitém smyslu i kvalitativně významnější, než dříve; a vyjmenovává některé důvody, proč tomu tak je:

- role znalostí, v porovnání s přírodními zdroji, fyzickým kapitálelem a nekvalifikovanou pracovní silou, nabyla největšího významu; a všechny ekonomiky OECD se postupně (rozdílným tempem) stávají znalostně založenými;

- znalosti jsou určitým způsobem mnohem důležitější jako produkt, než tomu bylo doposud a to z důvodu, že je možné sledovat vzestup nových forem činností/aktivit založených na obchodování se znalostními produkty.

Znalosti tedy bezpochyby reprezentují jeden z nových zdrojů ekonomického růstu, nicméně jejich využívání z ekonomické perspektivy není novou záležitostí (Snieška a Bruneckienė, 2009). Byl to totiž Schumpeter, který již okolo roku 1911 přišel s myšlenkou využívání znalostí a jejich kombinaci, jako základu inovativních činností a podnikání (Cooke a Leydesdorff, 2006). To vedlo k postupnému nárůstu významu tvorby inovací, jako klíčové hncí síly regionálního růstu, životní úrovně a mezinárodní konkurenceschopnosti (Acs a kol., 2002). Role znalostí a jejich vazba na inovace a ekonomickou výkonnost představuje předmět zájmu stále většího počtu výzkumníků - řada studií tak na jedné straně zkoumala vztah mezi
tvorbou znalostí a inovacemi (např. Shapira a kol., 2006; Martín-de Castro, 2015; Osoro a kol., 2015) a na druhé straně vztah mezi znalostmi, tvorbou inovací a výkonností firem, potažmo ekonomickým růstem (např. Capello a Lenzi, 2015; Rodríguez- Pose a Villarreal Peralta, 2015; Aghion a Jaravel, 2015; Fidel a kol., 2015). Je totiž zřejmé, že ekonomického růstu nelze dosahovat stejnými způsoby, jako tomu bylo v minulosti, tedy najímáním stále většího počtu pracovníků reprezentujících vstupní zdroje nebo zvýšením poptávky spotřebitelů (Pulic, 1998; Chen a kol., 2004). Historický vývoj ekonomických teorií pracujících se zdroji konkurenceschopnosti dokazuje, že ekonomické subjekty musely vždy hledat další (nové) cesty, jak naplňit své firemní strategie a vyrovnat se tempu rychlých změn (Stejskal a Hájek, 2015).

1.2 Úloha znalostí v ekonomických teoriích

Obdobně, jako se v průběhu let formovalo ekonomické myšlení, formovaly se i přístupy a teorie ekonomického (dlouhodobého), potažmo regionálního, růstu a úloha znalostí, jako dnes již všeobecně uznávané zdroje konkurenceschopnosti a růstu firem a regionů (národních ekonomik). Ekonomickým růstem na národní (ale i regionální) úrovni se zabývají ekonomové již více než 200 let (Klenow a Rodriguez-Clare, 1997), ale až v posledních třiceti letech došlo k enormnímu nárůstu zájmu o tuto problematiku a zároveň o úlohu měkkých faktorů (znalosti, místní atmosféra, synergické efekty a jiné) a následně tak k formování řady nových teorií. Důvodů, proč k tomuto formování docházelo a dochází, je celá řada. Mezi hlavní důvody patří (Volejníková, 2005):

- polarizace bohatství a chudoby na úrovni jednotlivců i států;
- změna podílů jednotlivých sektorů v národním hospodárství;
- globalizace;
- novinky v bankovnictví a na finančních trzích;
- informační technologie, věda a výzkum;

přičemž existence těchto faktorů vede k tomu, že dnes známá ekonomická teorie některé těchto problémů vysvětlit. Pokud ano, tak s obtížemi, případně jen částečně. Zatímco v období 50. -60. let 20. století byl dlouhodobý ekonomický růst, prostřednictvím Solowova neoklasického modelu, determinován exogenně, tedy vnějšími faktory, jimiž byl lidský kapitál a technologie, v 80. letech 20. století se začaly formovat nové teorie, v rámci nichž byly tyto faktory považovány za endogenní a byly tedy včleněny do modelů ekonomického růstu. Důvodem, proč k tomuto formování docházelo, byl fakt, že ekonomický
růst byl stále větší měrou ovlivňován právě doposud nevysvětleným a nedefinovaným exogenním vstupem, který tak začínal nabývat na svém významu (Capelo a Nijkamp, 2010). Mezi nejvýznamnější a jednu z prvních teorií je řazena nová teorie (endogenního) růstu, jejímž hlavními představiteli jsou Romer a Lucas. V rámci této teorie představují znalosti, technologie, lidský kapitál a inovace klíčové motory růstu, přičemž v průběhu ekonomického vývoje pak může docházet jak ke konvergenci, tak i divergenci, mezi zeměmi a regiony. Mezi hlavní mechanismy způsobující konvergenci či divergenci patří rostoucí výnosy ze znalostí, respektive akumulace znalostí a externí úspory, zejména v oblasti tvorby a šíření znalostí (Uhlíř a Blažek, 2011). Příčinami rozdílů jsou pak především odlišná kvalita lidských zdrojů a rozdílné technologické a behaviorální parametry.

V období posledních 20 let 20. století docházelo k rozvoji dalších proudů ekonomického myšlení. Za velmi přínosný při objasňování vzniku a vývoje ekonomických rozdílů mezi zeměmi a regiony a při objasňování mechanismů evolučních změn v ekonomice a pochopení dynamiky hospodářství je považován směr institucionální i neoinstitucionální ekonomie, který se od 90. let 20. století začal rozvíjet i v České republice (Volejníková, 2005; Uhlíř a Blažek, 2011). Institucioní směry postulovaly tezi, že v tradičním pojetí ekonomie existují problémové oblasti, kterým doposud nebyla věnována dostatečná pozornost, i přesto, že představují hlavní faktory pochopení rozdílného ekonomického růstu. Mezi tyto oblasti patří (Uhlíř a Blažek, 2011):

- technologie a technologické inovace, přičemž inovace a proces učení se představují v zásadě proces trvalého narušování rovnováhy trhu;
- pojetí firem, kdy Richard Nelson, jako jeden z hlavních představitelů institucionální ekonomie, tvrdil, že ekonomové doposud neusilovali o pochopení principů fungování firem a jejich vztahů ke konkurenci, dodavatelům, ale i rozdílům ve vnitropodnikové organizaci práce;
- instituce, jako formální instituce (např. odborové organizace, proexportní organizace a jiné), ale také především jako neformální instituce (institucionalizované praktiky, zrutinizované chování, zvyklosti a jiné).

Z výše popsaných oblastí následně vycházejí i tzv. institucionální směry teorie regionálního rozvoje, které se zabývají všemi nebo pouze vybranými oblastmi a z jejichž poznání a teorii je vycházeno i v rámci disertační práce. Uhlíř a Blažek (2011) vypracovali souhrn jednotlivých teorií regionálního rozvoje institucionálních směrů.
<table>
<thead>
<tr>
<th>Název teorie</th>
<th>Podstrata teorie</th>
<th>Hlavní autoři</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teorie flexibilní specializace (flexibilní akumulace)</td>
<td>V rámci této teorie dochází k ústupu od masové výroby a hlavním motorem mezinárodních rozdílů jsou rozdíly v kulturním rámci pro organizaci výroby i pro chování podniků. Za příčiny konvergence (divergence) jsou považovány např. externí úspory, aglomerační výhody nebo týmová práce. Hlavními aktéry této teorie jsou malé firmy v málo industrializovaných oblastech.</td>
<td>Piore, Sabel, Scott</td>
</tr>
<tr>
<td>Teorie výrobního okrsku</td>
<td>Za základ prosperity regionu jsou považovány zejména kvalitní sociální, kulturní a institucionální struktury. Za hlavní mechanismus způsobující konvergenci (divergenci) je považován networking (sítě důvěry, spolupráce, řízení) a dále například úspory z rozsahu a specializace, sdílení informací, inovace. Hlavními aktéry této teorie jsou sítě malých firem a podpůrných institucí.</td>
<td>Brusco, Becattini, Bagnasco</td>
</tr>
<tr>
<td>Teorie učících se regionů</td>
<td>Hlavní tezí této teorie je tvrzení, že konkurenceschopnost je založena na lepší schopnosti se dále učit a k mezinárodním rozdílům vedou sociokulturní a institucionální rozdíly. Ke konvergenci (divergenci) vede především existence pozitivních zpětných vazeb v oblasti učení, přejímání nových technologií a postupů, případně výměna informací (tržní i mimotržní) a existence technologické infrastruktury.</td>
<td>Lundvall, Florida</td>
</tr>
<tr>
<td>Triple helix (trojitá šroubovice)</td>
<td>V této teorii je tvorba inovací, která je považována za motor regionálního rozvoje, determinována vzájemnou spoluprací a vznikem synergických vazeb mezi relevantními aktéry (firmy, veřejný sektor, akademické instituce). Přičinou mezinárodních rozdílů je různá kvalita vztahů uvnitř každé ze tří šroubovice (aktérů) a mezi hlavní mechanismy konvergence (divergence) patří promyšlená rozhodnutí jednotlivců i jejich skupin, ale i náhodné jevy.</td>
<td>Etzkowitz, Leydesdorff</td>
</tr>
<tr>
<td>Klastry</td>
<td>Úspěch firem je v rámci této teorie závislý mimo jiné i na kvalitě okolního prostředí, přičemž lokalizace jednotlivých aktivit představuje strategickou otázkou. Za hlavní důvody mezinárodních rozdílů jsou považovány firemní strategie, charakter konkurence mezi firmami, kvalita a cena vstupu, náročnost trhů a kvalita navázaných a podpůrných odvětví. Ke konvergenci (divergenci) dochází díky aglomerační úsporám determinovaným vznikem dostatečné zásoby kvalifikované pracovní síly, vybudováním specializované infrastruktury a vznikem specializovaných dodavatelů.</td>
<td>Porter</td>
</tr>
<tr>
<td>Regionální inovační systémy</td>
<td>Tyto systémy jsou tvořeny 2 subsystémy, přičemž první subsystém je zaměřen na produkci znalostí (výzkumné a vývojové instituce) a druhý subsystém (firmy) tyto znalosti následně využívá, přičemž člená podpora konkonvergencechopnosti a upgradingu firem prostřednictvím RIS představuje podstatný doplněk existujících spontánních (i náhodných) synergických efektů. Na vznik mezinárodních rozdílů má vliv především různá kvalita institucí výzkumu a vývoje, různá schopnost firem vytvářet a absorbovat inovace, ale i různá kvalita vzájemného propojení obou subsystémů. Za hlavní mechanismus způsobující konvergenci (divergenci) je považována zejména různá míra konektivity a důvěry mezi aktéry v rámci a mezi oběma subsystémy.</td>
<td>Cooke</td>
</tr>
<tr>
<td>Globální komoditní (hodnotové) řetězce, globální produkční sítě</td>
<td>Jádrem této teorie je snaha o pochopení faktorů, motivů a procesů utvářejících podobu současné globální ekonomiky, přičemž možnosti a chování firem jsou ovlivněny jejich pozicí a postavením v rámci těchto řetězců a sítí organizovaných zejména velkými nadnárodními firmami. Hlavní příčinou mezinárodních rozdílů je pak asymetrie v moci vedoucích firem a dodavatelů, přičemž na konvergenci (divergenci) má</td>
<td>Hopkins, Wallerstein, Gereffi</td>
</tr>
</tbody>
</table>

Zdroj: zpracováno podle Uhlíř a Blažek (2011)

Z předchozího textu je zřejmé, že postupem času došlo k posunu v ekonomickém chápání ekonomického růstu i k odlišnému chápání znalostí a úlohy lidského kapitálu. V posledních 20 letech tak analýza problematiky využívání znalostí a lidského kapitálu nabyla na ústřední roli v rámci diskusí týkajících se růstu a úspěchu národů, regionů a firem a to zejména proto, že vyspělé společnosti začaly čím dál více směřovat směrem ke znalostní ekonomice (Capello a Nijkamp, 2010). Problematika znalostní ekonomiky je rozebrána v následující části této práce.

1.3 Definice a vlastnosti znalostní ekonomiky

V soudobé literatuře je velmi obtížné najít sjednocující definici znalostní ekonomiky. Každý z autorů přidává svůj vlastní pohled a význam tomuto pojetí. Brinkley (2006) se pokusil o nalezení a sjednocení definic znalostní ekonomiky a uvádí následující z nich:

• Jedná se o ekonomiku, ve které tvorba a využívání znalostí mají dominantní roli při tvorbě bohatství/blahobytu. Tato ekonomika je založena na co nejefektivnějším využívání všech druhů znalostí v rámci ekonomických aktivit.

• Hlavní myšlenka znalostní ekonomiky je založena na popsání nových zdrojů konkurenční výhody (znalostí), které mohou být využity všemi firmami, ve všech regionech a v každém odvětví, od zemědělství až po biotechnologii*.

• Hospodářský úspěch je stále častěji založen na efektivním využití nehmotných aktiv, jako jsou znalosti, zkušenosti a inovační potenciál. Tato aktiva představují klíčové prvky pro získání konkurenční výhody. Pojem znalostní ekonomika je pak využíván k popsání této nastupující hospodářské struktury*.

• Znalostní ekonomika a znalostní společnost představují větší koncept, než jen zvýšenou pozornost směrem k výzkumu a vývoji. Zahrnují totiž každý aspekt současné ekonomiky, ve které znalosti představují základ přidané hodnoty a to od high-tech průmyslu a ICT, přes znalostně intenzivní odvětví až po kreativní/tvůrčí odvětví, jako jsou média a architektura.

Brinkley a kol. (2009) později dodává, že termín znalostní ekonomika je využíván v řadě případů, ale málokdy je definován, proto také přichází s vlastním pojetím. Jedná se o
transformovanou ekonomiku, ve které dominují investice do aktiv založených na znalostech (výzkum a vývoj, design, software, lidský a organizační kapitál), a to v porovnání s investicemi do fyzických aktiv (stroje, zařízení, budovy a vozidla). Znalostní ekonomika tak zachycuje postupně změněnou průmyslovou strukturu, způsoby práce a bázi, na které organizace mezi sebou soutěží. Disertační práce bude vycházet zejména z 2. a 3. bodu definice znalostní ekonomiky (označených *) a bude zkoumat vliv nových zdrojů konkurenční výhody (např. znalosti, zkušenosti, inovační potenciál ad.) v mezinárodním srovnání, ale i napříč odvětvími v rámci jednotlivých států.

Hendarman a Tjakraatmadja (2012) postulují, že znalostní ekonomika je ekonomika založená na tvorbě, hodnocení a obchodování se znalostmi. Znalostní ekonomika tak představuje výrobu a služby, které jsou založeny na činnostech náročných na znalosti přispívajících ke zrychlenému tempu technologického a vědecko-technického pokroku, tak jako k jejich rychlému zastarávání. Mezi klíčové znaky znalostní ekonomiky následně patří větší závislost na intelektuálních schopnostech než na fyzických vstupech nebo přírodních zdrojích, společně v kombinaci s úsilím o integraci zlepšení v každé fázi výrobního procesu: z laboratoře pro výzkum a vývoj, přes továrnu až po komunikaci se zákazníky (Powell a Snellman, 2004).

V současné informační společnosti, ve které znalosti představují jeden z nejdůležitějších prvků pro získávání přidané hodnoty, dochází ke značné konverze v schopnostech jejich užívání (Mortazavi a Bahrami, 2012). Literatura proto odlišuje dva pojmy, jimiž je znalostní ekonomika (knowledge economy) a na znalostech založená ekonomika (knowledge-based economy), které jsou v řadě případů mylně užívány jako synonyma. Kořeny znalostní ekonomiky sahají přibližně do období 50. let 20. století. Znalostní ekonomika byla v počátcích zaměřena zejména na vhodné skladbě různě vzdělané pracovní síly, zatímco ekonomika založená na znalostech rozšiřuje původně používaný termín o strukturální aspekty technologických trajektorií a režimů ze systémové perspektivy. Tato perspektiva vede například k diskusím o právech k duševnímu vlastnictví, jako další formě kapitálu (Cooke a Leydesdorff, 2006). Zjednodušeně lze konstatovat, že znalostní ekonomika je ekonomika produkující výrobky a služby založené na znalostně intenzivních aktivitách přispívajících ke zrychlenému tempu technického a vědecko-technického pokroku, stejně jako k rychlejšímu zastarávání. Klíčovou složkou znalostní ekonomiky je větší spoléhání na intelektuální schopnosti než na fyzické vstupy nebo přírodní zdroje (Powell a Snellman, 2004). Na druhé straně ekonomika založená na znalostech je ekonomikou, která je přímo založena na výrobě, distribuci a využívání znalostí a informací (OECD, 1996) a má čtyři základní pilíře, jimiž jsou: (1)
innovace; (2) vzdělávání; (3) hospodářský a institucionální režim; (4) informační infrastruktura (Popovic a kol., 2009).

Brinkley (2006) doplňuje definice znalostní ekonomiky o řadu klíčových vlastností:

- znalostní ekonomika disponuje vysokou stále rostoucí intenzitou využívání informačních a komunikačních technologií ze strany vzdělaných znalostních pracovníků (jedná se o pracovníky s vysokou hladinou zkušeností, která je indikována diplomem nebo ekvivalentní kvalifikací; tito pracovníci vykonávají úkoly vyžadující expertní myšlení a komplexní komunikační schopnosti, často i s pomocí počítačů; jedná se většinou o pracovníky na nejvyšších pozicích – manažeři, odborníci, profesionálové);

- ve znalostní ekonomice dochází k rostoucímu podílu HDP věnovanému do znalostně nehmotných aktiv ve srovnání s fyzickým kapitálem;

- znalostní ekonomika se skládá z inovujících organizací využívajících nových technologií k zavádění nových inovací (např. procesních, produktových nebo organizačních);

- firmy ve znalostní ekonomice přeorganizovávají práci takovým způsobem, aby mohly manipulovat, ukládat a sdílet informace prostřednictvím managementu znalostí (management znalostí popisuje, jak organizace sledují, měří, sdílí a využívají nehmotná aktiva, jako například schopnost zaměstnance myslet a rychle reagovat v krizi; mezi klíčové postupy při řízení znalostí patří: (i) vytvoření kultury sdílení znalostí; (ii) motivační politika k udržení zaměstnanců; (iii) aliance pro získávání znalostí; (iv) písemná koncepce řízení znalostí);

- znalostní ekonomika je přítomna ve všech odvětvích hospodářství, nejen pouze ve znalostně náročných odvětvích.

Na poslední bod navazuje i Knowledge Economy Index Report (2014), který uvádí, že stejně, jako neexistuje jedna ucelená definice znalostní ekonomiky, tak ani nejsou přesně vyčleněny sektory a aktivity, které by do ní patřily. V tomto reportu jsou pak znalostní ekonomiky definovány jako ekonomiky složené z jednotlivců, podniků a odvětví vytvářejících, vyvíjejících, ověřujících a komercializujících nové a vznikající nápady, technologie, procesy a produkty, které jsou pak následně exportovány po celém světě. Firmy se neustále snaží, v zájmu snahy o zachování konkurenční výhody, zůstávat v čele svých odvětví prostřednictvím: (i) náboru vysoce kvalifikovaných jedinců; (ii) investic do výzkumu.
a vývoje; (iii) zavádění inovací; (iv) podpory kreativity; (v) marketingu; (vi) hledáním nových trhů. Znalostní ekonomika tím pádem představuje důležitý prvek každé vyspělé ekonomiky po celém světě, protože posiluje a přispívá ke zvyšování jejich globální konkurenceschopnosti, což má za následek hospodářský růst. Mezi sektory patřící do znalostní ekonomiky jsou řazeny:

- Farmacie a biotechnologie;
- Výroba lékařských zařízení;
- Software a digitální obsah;
- IT služby;
- Telekomunikace;
- Výpočetní technika a pokročilá elektronika;
- Tvůrčí obsah a digitální média;
- Ostatní technické služby;
- Letectví a další dopravní prostředky.

Z výše uvedeného je zřejmé, že znalostní ekonomika se prolíná napříč jednotlivými odvětvími národního hospodářství a znalostní stupy a výstupy představují hlavní zdroj konkurenční výhody firmy i regionů, které jsou závislé na schopnosti využívat znalostního potenciálu – vlastního i cizího, v kombinaci s investicemi do výzkumu a vývoje. Je ale zřejmé, že ne každý ekonomický subjekt dokáže stejně efektivně a ve stejné míře využívat daných zdrojů. Na toto tvrzení navazuje i fakt, že ne každý druh znalostí je stejný a aplikovatelný v každém odvětví. Proto jsou rozlišovány 3 druhy znalostních bází – analytické, syntetické a symbolické, které jsou blíže charakterizovány v následující části.

1.4 Znalostní báze a znalostní aktiva

Význam znalostí a jejich vliv na výkonnost firem a ekonomický růst byl ozřejmen v předcházející části. Zahraniční studie (např. Fitjar a Rodríguez-Pose, 2015; Arvanitis a kol., 2015; Woo a kol., 2015) ale upozorňují na fakt, že vliv a dopady znalostí jsou odlišné v závislosti na různých odvětvích národního hospodářství. Obecně lze říci, že díky globalizaci, představují inovace hlavní motor firem při získávání a udržení konkurenceschopnosti výhody. Toto tvrzení podtrhuje i fakt, že tvorba inovací je spojována se schopností firem absorbovat externí informace, znalostí a technologie (tento fakt je potvrzen řadou
Asheim a Coenen (2005) nejdříve rozlišovali pouze první dvě znalostní báze – analytickou neboli vědeckou a syntetickou. Symbolická znalostní báze byla definována až postupem času. Typologie jednotlivých znalostních bází je zachycena v tabulce 2. Problematikou znalostních bází se nejvíce ve svých pracích, spolu s dalšími autory, zabýval právě Asheim (např. Asheim a Coenen, 2005; Asheim a Coenen, 2006; Asheim a Hansen, 2009; Asheim a kol., 2011). Na základě jejich studií lze jednotlivé druhy těchto bází definovat takto:

![Table 2 Typologie rozdílných znalostních bází](image)

3 Tacitní znalosti jsou takové znalosti, které nebyly nikde zaznamenány v explicitní formě, a proto nemohou být ani jednoduše přenášeny mezi jednotlivými subjekty – jedná se zejména o zkušenosti a know-how. Naopak kodifikované (explicitní) znalosti jsou znalosti, které je možné zaznamenat a mohou tak být snadněji interpretovány a přenášeny – jedná se například o příručky nebo návody (Neef a kol., 1998).
Analytická znalostní báze se vztahuje k průmyslovým prostředím, ve kterých jsou nejdůležitější vědecká poznání a znalosti a kde je tvorba znalostí často založena na kognitivních a racionálních postupech nebo na formálních modelech (např. genetika, biotechnologie, informační technologie). Základní a aplikovaný výzkum, stejně jako systematický vývoj produktů a procesů, jsou relevantními činnostmi. Firmy sice mají vlastní VaV oddělení, ale i přesto se spoléhají/jsou při svých inovačních procesech závislé na výzkumných výsledcích univerzit a ostatních výzkumných organizací. Spolupráce, vazby a sítě na úrovni „university-industry“, tedy mezi univerzitami a průmyslovými podniky jsou důležité a mnohem častější než u ostatních typů znalostních bází. U analytické znalostní báze dochází frekventovaněji k výskytu kodifikovaných znalostí (na vstupe i výstupu), než u ostatních typů znalostních bází, a to z několika důvodů:

- znalostní vstupy jsou často založeny na hodnocení existujících studií;
- generace znalostí je založena na aplikaci vědeckých zásad a metod;
- znalostní procesy jsou více formálně organizovány (např. ve VaV centrech);
- výstupy mají tendenci být zdokumentovány v reportech/závěrečných zprávách, elektronických dokumentech nebo prostřednictvím patentů. Znalosti jsou aplikovány ve formě nových produktů nebo procesů a mají za následek mnohem radikálnější inovace než u ostatních typů znalostí.

získaných na pracovišti a prostřednictvím praktických úloh využívajících vzájemných
interakci. Inovační proces je poté nejčastěji orientován na efektivnost a spolehlivost nových
řešení nebo na praktickou užitečnost a uživatelskou přívětivost/komfort produktů z pohledu
zákazníků. Celkově tak dochází k poněkud kumulativnímu vzniku inovací, jejichž
dominantou jsou modifikace stávajících produktů a procesů.

Symbolická znalostní báze se vztahuje k tvorbě estetických vlastností produktů, tvorbě
designu, obrázků a symbolů a k ekonomickému využití takovýchto forem kulturních
artefaktů. Rostoucí význam tohoto typu znalostí je indikován dynamickým rozvojem kulturní
produkce, jako jsou média (filmová tvorba, publikování a hudba), reklama, design, značky a
móda. Tato výroba je náročná na inovace svým vlastním způsobem. Zásadní podíl práce je
věnován vytvoření nových myšlenek, nápadů a obrazů, zatímco skutečný fyzický výrobní
proces je odsouván do pozadí. Konkurence je tak víc přesouvána od užitné hodnoty
(hmotných) produktů k viditelné hodnotě (nehmotných) značek. Vstupy jsou tedy spíše
estetického rázu nežli kognitivní kvality. U této báze jsou poptávány spíše specializované
vlastností a kreativita než „pouhé“ zpracovávání informací; a vyznačuje se značnou mírou
tacitních složek. Nonaka a kol. (2000) uvádí, že další nedílnou součástí úspěšného procesu
tvorby a využívání znalostí firem jsou takzvaná znalostní aktiva. Tato aktiva jsou definována
jako specifické řešení zdroje nezbytné pro tvorbu firemní přidané hodnoty. Obecně jsou
rozlišovány čtyři hlavní skupiny znalostních aktiv:

• zkušenostní znalostní aktiva – jsou tvořeny tacitními znalostmi šířenými
prostřednictvím společných zkušeností (př. zkušenosti a know-how jednotlivců, péče,
důvěra, bezpečnost, energie, vášeň, napětí);

• konceptuální znalostní aktiva – tvořeny explicitními znalostmi artikulovanými skrze
obrázky, symboly, jazyk (př. design, hodnota značky, koncepty výrobků);

• rutinní znalostní aktiva – tvořeny tacitními znalostmi, které jsou rutinní a vloženy do
běžných akcí a postupů (know-how v denních operacích, organizační rutiny,
organizační kultura);

• systémová znalostní aktiva – systematizující a zabalené explicitní znalosti
(dokumenty, specifikace, manuály, databáze, patenty a licence).

Znalostní báze a aktiva, respektive znalosti a schopnost jejích přeměny (například
v inovace) se stávají podstatou jednotlivých ekonomických systémů regionů či států. Ty se
často snaží finančně i nefinančně podporovat jejich generování, akvizici a transfer. Šíření
znalostí se tak stává jednou z klíčových aktivit ve znalostní ekonomice, přičemž k němu může docházet řadou způsobů, které jsou popsány v části 1.5.

1.5 Tvorba a šíření znalostí

V současné době představuje tvorba a šíření znalostí jednu z klíčových aktivit, které musí většina ekonomických aktérů řešit. Existuje totiž celá řada způsobů, jak může docházet právě k tvorbě (nových) a šíření (nových i stávajících) znalostí. Frenz a Ietto-Gillies (2009) uvádějí čtyři zdroje, které mohou být využívány:

- vlastní generace znalostí;
- nákup znalostí;
- vnitropodnikové zdroje (přenos znalostí v rámci jedné společnosti);
- spolupráce.

Poslední zmíněná, tedy spolupráce nabývá v posledních letech na stále větším významu (Miozzo a kol., 2016; González-Benito a kol., 2016). Lze říci, že spolupráce je v současné době nezbytnou, pokud chce daný subjekt růst a konkurovat na trhu. Je totiž jasné, že zatímco se nespolupracující podniky zaměřují na své vlastní zdroje a na rozvoj klíčových kompetencí, znalosti se aktualizují stále rychlejším tempem a dochází k zastarávání technologií, s čímž je spojeno nezbytné zvyšování investic a rostoucí náklady na tvorbu znalostí. V důsledku těchto faktorů je pro firmu téměř nemožné, aby vytvořila a nashromáždila veškeré znalosti potřebné pro její přežití a prosperitu individuálně. Důležitým nástrojem podniků se tak stává právě účast ve spolupráci, díky které mohou daní účastníci vzájemně podpořit své znalosti a vytvářet znalosti nové. Firmy tak do těchto kolaborací přinášejí jednak předchozí znalosti (prior knowledge), které tvoří zejména patenty a know-how nabyte před danou spoluprací, a jednak současné snahy o vytvoření znalostí, pod které spadá finanční kapitál, fyzické a lidské zdroje (Ding a Huang, 2010). Zatímco explicitní znalosti mohou být šířeny na úrovni individuální, firemní nebo mezinárodní, tak tacitní znalosti je možné získávat pouze na nejnižší, tedy individuální úrovni. K přenosu explicitních znalostí pak může docházet prostřednictvím technologií, dokumentů, produktů a procesů (firemní úroveň) nebo mnohostranných dohod o převodu technologií, vzdělávání a odborné přípravy, přímého vývozu a dovozu produktů (mezinárodní úroveň). Na druhé straně výměna tacitních znalostí na individuální úrovni může probíhat jednak prostřednictvím záměrného přenosu/transferu.
znalostí nebo prostřednictvím neúmyslných efektů přelévání⁴. Fallah a Ibrahim (2004) uvádějí tři úrovně efektů přelévání znalostí:

- individuální (mezi lidmi): znalost je neúmyslně vyměňována mezi lidmi. Jednotlivci mají kontrolu nad jejich tacitními znalostmi a mohou je sdílet s kýmkoli, když se to stane jejich chtěním nebo potřebou. K efektu přelévání znalostí může dojít nejčastěji v důsledku nevědomosti nebo ignorance, nebo když je tacitní znalost externalizována k jejímu využití. Jednotlivci sice mohou využít patenty nebo autorská práva, aby znalosti ochránili, nicméně jakmile se jednou stane z tacitní znalostí znalost explicitní, začne se přelévat i k ostatním. Zatímco sdílení znalostí například v rámci členů týmu pracujících společně (uvnitř jedné firmy nebo prostřednictvím spolupráce mezi podniky nebo například ve vztahu zákazník-dodavatel) není považováno za přelévání, protože v tomto případě získává daný tým právě za účelem sdílení znalostí. Naopak neúmyslné sdílení znalostí, které nebyly primárně určeny pro danou skupinu, popřípadě sdílení znalostí skupiny s lidmi mimo skupinu (vně organizací) je považováno za efekty přelévání znalostí;

- firemní (mezi firmami): v tomto případě dochází k výměně znalostí mezi společnostmi a to jednak mezi sousedními firmami (často se nacházejícími v těsné blízkosti) nebo v rámci společného podnikání zapojených firem. Stejně, jako v předchozím případě, pokud se jedná o úmyslnou výměnu znalostí, lze tento proces nazývat jako sdílení nebo znalostní transfer. Jakákoliv informace, která není sdílena úmyslně, potom představuje efekt přelévání;

- globální (mezi zeměmi): k efektům přelévání znalostí dochází při neúmyslném sdílení znalostí mezi jednotlivými zeměmi. K tomuto sdílení může docházet jednak mezi sousedními zeměmi, tak i mezi zeměmi, které spolu obchodují (např. doprovodný proces při transferu technologií).

V současné době vstupují do popředí další úrovně, na kterých může docházet k efektům přelévání znalostí mezi firmami a dalšími subjekty, jimiž jsou:

- university-industry: v tomto případě vzniká spolupráce mezi univerzitami a podniky, která nabývá na významu a je zkoumána stále větším počtem výzkumníků (např. Siegel a kol., 2003; Ponds a kol., 2010; Maietta, 2015). Perkmann a Walsh (2007) uvádějí různé způsoby, jimiž může k této spolupráci docházet (tabulka 3);

⁴ Efekty přelévání představují proces přímého (i nepřímého) přenosu znalostí z jedné strany na druhou, často i na stranu třetí, která není přímo zapojena do daných procesů, a jedná se o projev pozitivní externality. Problematice efektů přelévání je věnována druhá kapitola.

Tabulka 3 Způsoby spolupráce na úrovni university-industry

<table>
<thead>
<tr>
<th>Druh spolupráce</th>
<th>Způsob spolupráce</th>
</tr>
</thead>
<tbody>
<tr>
<td>Výzkumná partnerství</td>
<td>Mezi-firemní opatření k prohloubení spolupráce v oblasti výzkumu a vývoje</td>
</tr>
<tr>
<td>Výzkumné služby</td>
<td>Aktivity najímané ze strany průmyslových klientů zahrnující smluvní výzkum a poradenství</td>
</tr>
<tr>
<td>Academic entrepreneurship</td>
<td>Vývoj a komerční využití technologií vytvořených akademickými vynálezci (academic inventors) prostředním fírem, které (částečně) vlastní</td>
</tr>
<tr>
<td>Informal interactions</td>
<td>Vytváření sociálních vztahů a sítí například na konferencích</td>
</tr>
<tr>
<td>Komercializace vlastnických práv</td>
<td>Převod vlastnických práv univerzit k duševnímu vlastnictví (např. patenty) fíra, například prostředním licencí</td>
</tr>
<tr>
<td>Transfer lidských zdrojů</td>
<td>Prostředním multifunkčního výukového mechanismu (např. školení průmyslových zaměstnanců, postgraduální vzdělávání v průmyslu, stáže a jiné)</td>
</tr>
<tr>
<td>Vědecké publikace</td>
<td>Využití kodifikovaných vědeckých poznatků v průmyslu</td>
</tr>
</tbody>
</table>

Zdroj: Perkmann a Walsh (2007)

Objevují se i další studie, které se zabývají vlivem kooperace a z ní plynoucích efektů přelévání znalostí. Konkrétně jde o vztahy mezi konkurenty, dodavateli i zákazníky (např. Dai Bin a Hongwei, 2011; Classen a kol., 2012; Belderbos a kol., 2014).

Popsané možnosti jsou pak hojně diskufované i v praxi. Jednotlivé firmy jsou nuceny rozhodovat, zda budou realizovat svůj výzkum a vývoj: (i) samostatně; (ii) v rámci výzkumných aliancí s jinými firmami (univerzitami nebo vládními laboratořemi); (iii) smluvně skrze specifické výzkumné a vývojové projekty; (iv) najímáním výzkumníků z jiných firem nebo výzkumných pracovišť (Mueller, 2006). Výzkumné a vývojové aktivity totiž s sebou kromě generování inovací přinášejí i řadu dalších možností – zvyšují schopnost identifikovat, přizpůsobit a využít externě vytvořené znalosti; a to má za následek možnost využívání vyšší úrovně výzkumných a vývojových aktivit, větší absorpční kapacity a poolu znalostí (knowledge pool).

I přes zřejmé výhody, které spolupráce a šíření znalostí přinášejí, existuje řada firem, které se spoluprací neúčastní nebo které nejsou schopny naplno využít jejich výhod. Iammarino a McCann (2006) poukazují na dvě odlišné perspektivy znalostních efektů přelévání, kterými jsou znalostní přítoky (knowledge inflows) a znalostní odtoky (knowledge outflows). Znalostní
přítoky - jsou firmami hodnoceny - jako pozitivní. Na druhé straně, neplánované znalostní odtoky mohou mit jak pozitivní, tak i negativní dopad na firmy. Jedním z hlavních negativ neúmyslného odtoču znalostí pro původní firmy je únik cenného intelektuálního kapitálu a nehmotných aktiv. Naopak potenciálně pozitivní efekt neúmyslného úniku znalostí je spatřován v povaze znalostí jako veřejného statku. Tento odliv by pak byl důležitý v situaci, kdy by dopomohl k posílení lokální znalostní báze a tím pádem by se dané území stalo více atraktivní pro ostatní inovativní společnosti, což by mělo za následek větší znalostní přítok v budoucnosti. Záleží tak zejména na individuálním posouzení přínosů efektů přelévání znalostí pro jednotlivé firmy, tedy relativního významu těchto dvou efektů. Tato úvaha se momentálně jeví jako dosti složitá, protože neexistuje jedna univerzální metoda, která by poskytla firmám možnost ke změření velikostí znalostních odtoků a přitoků a s tím spojených efektů.

Některé firmy navíc nejsou schopny zcela využít získaných znalostí (Mueller, 2006). Jedním z možných důvodů je fakt, že řada zaběhlých firem není ochotna podstupovat riziko spojené se zaváděním nových produktů a procesů. Tyto firmy se raději zaměřují na generování zisku z jejich daného lety odzkoušeného výrobního programu a nemají zájem o hledání nových možností a jejich realizaci. U řady firem je tento problém způsoben averzi managementu firmy k riziku. Řada firem tak nemá ambicí, aby se stala leader inovačních aktivit nebo aby se účastnila spolupráce. Dalším z problémů je nedostatek financí, popřípadě přemíra byrokracie spojená s realizací veřejných projektů, neodbornost posuzovatelů žádostí o dotace na výzkumné projekty a velké časové zpoždění mezi produkci znalostí a její komerčizací (jde o významnou překážku spolupráce typu industry-university z důvodu zcela dichotomních cílů). Firmy proto od řady projektů a spoluprací raději odstupují nebo čekají, až je budou moci realizovat z vlastních zdrojů. V případě, že firmy nejsou brzděny žádným z těchto důvodů, nastupuje další problém – dostupnost dostatečně kvalifikované pracovní síly. Její dostupnost představuje problém, se kterým se potýká drtivá většina firem napříč jednotlivými odvětvími.

Detailní analyza znalostních toků, efektů přelévání, jejich příčin a následků se jeví jako nezbytná pro analýzu kooperativních vazeb, jejichž cílem je tvorba inovace. Tyto vazby slouží k šíření a užívání znalostí v sítích, což do značné míry pozitivně ovlivňuje celkovou výkonnost firem. De Faria a kol. (2010) objevil příčinný/signifikantní vztah mezi tokem externích informací a znalostí a rozhodnutím spolupracovat na výzkumných a vývojových

5 Autor disertační práce se v roce 2015 zúčastnil 2. a 3. kola projektu „INKA – Inovační kapacity 2014+“ realizovaného Technologickou Agenturou ČR, v rámci kterého prováděl rozhovory s řediteli, popřípadě členy vedení, nejvýznamnějších firem v České republice (nejvýznamnějších z hlediska inovaci, exportu a růstu obratu).
aktivitách. Firmy, které hodnotí všeobecnou dostupnost příchozích efektů přelévání znalostí jako důležitý vstup do jejich inovačních procesů, jsou s největší pravděpodobností zapojovány do dohod o spolupráci na výzkumných a vývojových aktivitách. Taktéž firmy, které efektivněji osvojují výsledky z jejich inovativních procesů, jsou častěji zapojeny do spolupráci na výzkumu a vývoji. Z toho plyne, že management příchozích efektů přelévání znalostí a jejich osvojení má významné efekty – firmy, které jsou schopnější získat/zachytit znalosti z externích zdrojů a zároveň jsou lépe připraveny chránit jejich vlastní znalosti, jsou mnohem častěji (s vyšší pravděpodobností) zapojeny do spolupráci na výzkumu a vývoji. Mezi hlavní faktory, které poté ovlivňují rozhodování firem o spolupráci, patří:

- angažovanost ve výzkumu a vývoji;
- kvalifikovanost lidských zdrojů (ve vztahu k absorpční kapacitě a schopnosti optimalizovat efekty přelévání);
- velikost firmy;
- konkurenceschopnost.

Firmy, které se následně rozhodují o spolupráci, hledají nejrůznější možnosti, jak vytvořit co nejpříznivější prostředí, ve kterém by mohly spolupracovat a využívat efektů přelévání znalostí. Jednou z možností, jak podpořit jejich vznik a s ním spojený pozitivní vliv na firemní výzkum, vývoj a inovace, je vznik regionálních inovačních systémů nebo průmyslových klastrů a jejich iniciativ, které jsou charakteristické prostorovou koncentraci a odvětvovou specializací (Tsai, 2005). Je zřejmé a uvádí to i řada zahraničních autorů, například Baptista a Swann (1998), že firemní výzkum a vývoj nevzniká v izolaci, respektive je mnohem efektivnější, pokud je podporován (v každé fázi) externími zdroji. Velmi často hraje důležitou roli právě geografická blízkost těchto zdrojů – je to dáno kumulativní povahou znalostí (znalosti se obecně šíří mnohem snadněji na kratší vzdálenosti), a proto u firem se sídly v silně inovativních oblastech byl zpravidla zaznamenáván rychlejší růst a snadnější generace nových znalostí a dalších inovativních výstupů. Důležitým determinancem je také regionální politika, která napomáhá utvářet příznivé ekonomické (podnikatelské) prostředí pro jednotlivé ekonomické subjekty a taky v současně době ve velké míře ovlivňuje systémy veřejného financování. To mělo za následek vznik a růst významu umělých regionů, inovačních systémů nebo nadregionálních průmyslových klastrů.

Posouzení efektivnosti těchto kroků je však velmi obtížné. Neexistují totiž standardizované metody k měření efektů uplatněných znalostí či jejich přelévání (Kitson, Martin a Tyler, 2004). Různé studie polemizují nad tím, zda jsou znalostní báze ekonomik
měřitelné, případně jak měřit výstupy znalostní ekonomiky, které jsou nezbytné pro různé ekonomické analýzy (např. Leydesdorff, Dolfsma a Van der Panne, 2006; Shapira a kol., 2006).

1.6 Měření efektů uplatněných znalostí

Již bylo zmíněno, že existuje problém měřitelnosti efektů vyplývající z uplatnění znalostí. Výzkumníci v této oblasti čelí stále častěji otázkám, jakým způsobem je možné znalosti a znalostní vstupy a výstupy měřit, a jsou-li vůbec měřitelné. Na jedné straně dochází k odmítání možnosti znalostí měřit a to z řady důvodů, například proto, že toto měření by představovalo velmi složitý proces, zejména na regionální úrovni (Chen, Huang a Cheng, 2009) nebo neschopnost ekonomických subjektů poskytnout vhodná data. Na druhé straně se řada autorů snaží vytvořit systémy a postupy, pomocí kterých by bylo možné znalosti a jejich efekty měřit, zejména za pomoci kompozitních indikátorů (Nelson, 2009; Méndez a Moral, 2011; Dubina, Carayannis a Campbell, 2012; Leydesdorff a Zhou, 2014).

• absence stabilních produkčních schémat pro přeměnu znalostních vstupů do znalostních výstupů;
• vstupy pro tvorbu znalostní jsou velmi obtížně zmapovatelné;
• u znalostí je postrádán systematický cenový systém, který by sloužil jako základ pro agregaci poznatků, které jsou v podstatě jedinečné;
• nová tvorba znalostí nemusí vždy znamenat zvýšení poznatkové základny a zastarávání jednotlivých znalostí v této základně není přesně zdokumentováno.

Vlastní způsob možného řešení nabízí Světová banka, která poskytuje spektrum faktorů znalostní ekonomiky, které jsou využívány pro analýzy jejího rozvoje - Knowledge Assessment Methodology (KAM). Jde o interaktivní srovnávací nástroj, který má jednotlivým zemím pomoci identifikovat výzvy a přiležitosti, kterým čelí během přechodu ke znalostní ekonomice. KAM výzkumníkům poskytuje určité základní zhodnocení zemí a regionů a jejich připravenosti na znalostní ekonomiku, přičemž unikátnost a síla této metody spočívá ve faktu, že představuje širokou škálu faktorů charakterizujících znalostní ekonomiku (Chen a Dahlman, 2005). Tato metodologie je složena ze 148 strukturálních a kvalitativních proměnných umožňujících celkem 146 zemím měřit jejich výkonnost v jednotlivých piliřích znalostní ekonomiky (The World Bank, 2015). Tyto piliře jsou rozděleny do čtyř částí, kterými jsou (i) ekonomický stimul a institucionální režim; (ii) vzdělání a kvalifikování pracovníci; (iii) efektivní inovační systém; (iv) odpovídající informační infrastruktura (Chen a Dahlman, 2005). Výhodou KAM je fakt, že je přístupná celkem v šesti různých módech a to (i) základní hodnotící listina; (ii) vlastní hodnotící listina; (iii) indexy znalostní ekonomiky; (iv) časová srovnání; (v) mezistátní srovnání; (vi) světová mapa hodnotící připravenost zemí na znalostní ekonomiku.

sběru dat; jsou dostupné po poměrně dlouhou dobu; zahnuju podstatné a významné informace, jimiž je například jméno a adresa vynálezce, vlastník dané inovace, popis inovací a jejich vztah k předchozím inovacím reprezentovaným patenty.

Na druhé straně existují studie, které tento způsob měření kritizují a to zejména proto, že ne všechny inovace jsou patentovány. Je ovšem pouze otázkou spekulací, jak velké množství inovativních výstupů je patentováno a kolik z těchto výstupů není. Fontana a kol. (2013) postuluje názor, že existují tři druhy důvodů, proč se vynálezci rozhodují nepatentovat svoje výstupy:

- inovace jsou nepatentovatelné – vynálezce je přesvědčen o tom, že daný výstup není potřeba patentovat;
- inovace sice je patentovatelná, ale tvůrce předpokládá, že tvůrči kroky jeho inovačních procesů nejsou natolik velké, aby byly hodny patentu;
- vynálezce se rozhodne nepatentovat svůj výstup, protože preferuje uchování dané inovace v tajnosti.

otázkou, kolik patentovatelných inovací bylo doopravdy patentováno. Tento výzkum byl prováděn na náhodném vzorku velkých amerických firem z různých odvětví. Výsledky tohoto výzkumu ukázaly, že v odvětvích, ve kterých není patentování považováno za příliš efektivní mechanismus (elektrická zařízení, nástroje, kancelářské potřeby, motorová vozidla a jiné) přibližně 34 % patentovatelných vynálezů nebylo patentováno. Naopak v odvětvích, ve kterých je považováno patentování za účinné a efektivní (farmaceutický, chemický, ropný, strojní, hutní a kovodělný průmysl) bylo toto procento nižší a to okolo 16 % (Fontana a kol., 2013). Další výzkum prováděli Arundel a Kabla (1998) a Arundel (2001). Tento výzkum zkoumal situaci firem v 19 průmyslových odvětvích a jejich procentuální sklon k podávání patentových žádostí. Výsledky ukázaly, že průměrný sklon k patentování produktových inovací je 35.9 % (tento sklon leží mezi 8.9 % procenty u textilního průmyslu až 79.2 % procenty pro průmysl farmaceutický). U procesních inovací byl tento sklon poněkud nižší a to přibližně okolo 24.8 % (opět ležící mezi 8.1 % u textilního průmyslu a 46.8 % pro oblast výroby citlivých/precizních nástrojů). Dané analýzy taktéž poskytly další zajímavý výsledek a to, že pouze u čtyř sektorů byl tento sklon u obou druhů inovací vyšší než 50 %.

Z výše uvedeného vyplývá, že znalosti (v kombinaci s tradičními produkčními faktory) dnes pro většinu zemí představují klíčový element ekonomického růstu a to i přesto, že dosud neexistuje ucelená všem využívaná metoda jejich měření. S příchodem znalostní a na znalostech založené ekonomiky se směřování jednotlivých analýz posunulo od technologických změn směrem k inovacím. Znalosti se tak oficiálně staly jedním z nejvýznamnějších strategických zdrojů a proces učení se stal jedním z nejvýznamnějších procesů dnešní doby (Tappeiner a kol., 2008). Zatímco v rámci Nové růstové teorie byl význam znalostí spojován se stimulací technologického progresu a následným růstem productivity, Romer a Lucas vysvětlovali, že k ekonomickému růstu dochází prostřednictvím akumulace a přelévání technologických znalostí (Mueller, 2006). Blažek a Uhlíř (2011) vytvořili rámec teorii regionálního rozvoje, v jehož závěru se pokusili nalézt „zázačný recept“ a praktický návod pro regionální politiku vedenou snahou vytvořit a posílit regionální konkurenceschopnost v době znalostní ekonomiky. Tento rámec zahrnuje celkem 8 oblastí, jimiž jsou:

- excelentní výzkum a špičkové rozhraní mezi výzkumem a podnikovou sférou;
- podpora talentů;
- podnikatelská kultura a role vzorů;
- inteligentní peníze a kvalifikované poradenství;
kontakty, sítě a klastry;
řízení a regulační rámec;
kvalita života a atraktivita regionu;
dopravní dostupnost.

V současné době ale nabývá na významu další faktor, kterým jsou efekty přelévání znalostí. Přelévání znalostí představuje složitý proces ovlivňující ekonomický systém jednak v rovině mikroekonomické (v rámci jednotlivých firem a jejich výstupů), tak i v rovině makroekonomické (například prostřednictvím působení na hrubý domácí produkt). Následující kapitola je proto zaměřena jednak na popsání efektů přelévání ve znalostní ekonomice a na rozbor metod jejich měření.
2 PŘELÉVÁNÍ ZNALOSTÍ V EKONOMICKÉM SYSTÉMU

Dříve byla popsána problematika znalostní ekonomiky a úlohy znalostí v současné globalizované společnosti, přičemž za jednu z prvních teorií, v rámci které jsou znalosti, technologie, lidský kapitál a inovace považovány za klíčové motory růstu je nová teorie (endogenního) růstu. Příznivci tohoto směru se zabývali dvěma základní problémy a to, zda je technologická změna výsledkem vědomých hospodářských investic a explicitních rozhodnutí mnoha různých ekonomických subjektů a zda existence významných externalit, efektů přelévání znalostí a ostatních zdrojů rostoucích výnosů může vést ke konstantnímu (neklesajícímu) ekonomickému růstu (Griliches, 1991). První otázkou se zabývala řada významných ekonomů v období 60. let 20 století jako např. Schultz (1953), Griliches (1957), Mansfield (1968). Druhá otázka a tedy problematika efektů přelévání znalostí začala nabývat na svém významu zejména v posledních 20 letech, kdy bylo v řádě studií zaznamenáno, že pozitivní efekty z šíření znalostí a zavádění inovací nejsou využívány pouze samotnými aktéry těchto procesů, ale také třetími stranami (third parties), které nejsou přímo zapojeny do daných aktivit. Je tomu tak právě díky vzniku efektů přelévání znalostí, které mají významný vliv zejména na firemní inovativní procesy, ekonomický rozvoj zemí (Mueller, 2006) a jejich tvorba, tok a kapitalizace výraznou měrou přispívají k odlišnému tempu růstu jednotlivých regionů (Fritsch a Franke, 2004) - v rámci zemí i v mezinárodním srovnání. Záměrem této kapitoly je definovat efekty přelévání, popsat jejich vznik a vztah k inovativním aktivitám a následně zachytit odlišný vliv jejich působení v jednotlivých zemích. Poslední část je poté zaměřena na problematiku měření efektů přelévání, protože doposud se efekty přelévání znalostí nepodařilo přesně zachytit a změřit a je tak stále otázkou, jakých metod k tomuto měření využít.

2.1 Vznik efektů přelévání

V předchozí části byla popsána problematika znalostní a na znalostech založené ekonomiky, v rámci které byly postupem času rozlišovány čtyři základní pojmy, kterými jsou (OECD, 1996; Fallah a Ibrahim, 2004):

• znalostní produkce (knowledge production), která je realizována prostřednictvím výzkumu a vývoje;

• znalostní přenos (knowledge transmission), ke kterému dochází v rámci vzdělávání a odborné přípravy;
• znalostní transfer (*knowledge transfer*), v rámci kterého dochází k zamýšlené výměně znalostí mezi lidmi nebo organizacemi;

• přelévání znalostí (*knowledge spillover*), nezamýšlený přenos znalostí.

Cestu znalostí od jejich vlastníka až po příjemce znalostí, stejně jako rozdíl mezi znalostním transferem a přeléváním znalostí, zachytil Fallah a Ibrahim (2004) na obr. 1. Z něj je patrné, že prvním krokem při přenosu znalostí z vlastníka na příjemce je tak zvaná externalizace, neboli proces, kdy dochází k vyslovení znalostí a k jejich přeměně na znalosti explicitní. V dalším kroku se vlastnik znalostí rozhoduje, s kým bude danou znalost sdílet (*transfer*). K přenosu znalostí ovšem může dojít i nezamýšleně (*přeléváním*). V rámci tohoto procesu tak může nastat situace, kdy osoba vlastnící znalost nemá kontrolu nad jejím šířením. Obecně platí, že čím více je znalost kodifikována, tím menší možnost kontroly má její vlastník nad tím, kdo nakonec danou znalost obdrží a bude ji využívat, protože její přenos může být ovlivněn i ostatními subjekty. To ovšem neznamená, že k efektům přelévání nemůže docházet u nekodifikovaných znalostí. Tento přenos je ale mnohem složitější.

Je proto zřejmé, že proces přelévání znalostí nabývá na významu a to zejména díky svému potenciálu přinášet přidanou hodnotu do výrobních procesů. Jedná se ale o proces obtížně zachytitelný, analyzovatelný, u kterého se výsledky dostavují až v dlouhém období. Příkladem mohou být praxe studentů na odborných pracovištích nebo proces přípravy lékařů před atestací, přičemž takovýto druh učení se velmi úzce souvisí s absorpční kapacitou (schopností) jednotlivých ekonomických subjektů přijímat znalosti. Schopnost firem absorbovat znalosti tak závisí zejména na zkušenostech a odborné přípravě jejich zaměstnanců. U jednotlivců je absorpční capacita ovlivněna, mimo jiné, jejich bystrostí (*sagacious knowledge*). Mueller (2006) popisuje absorpční kapacitu firem jako schopnost produkovat, identifikovat a využívat znalosti, přičemž tato schopnost závisí na existujících znalostních zásobách (*knowledge stock*) a absorpční kapacitě subjektů (zaměstnanci ve firmách nebo výzkumníci na univerzitách, popřípadě výzkumných ústavech). Je proto zřejmé, že pokud se ke dvěma odlišným subjektům dostanou nové informace (stejně pro oba), tak jeden z nich může tyto informace propojit se znalostmi a vědomostmi, které nabyl v dřívější době a využít je inovativním způsobem. Naopak druhá osoba si nemusí všimnout výskytu těchto znalostí a dále je využívat. Bystrost a využití tacitních znalostí proto ovlivňují způsob, jakým jsou znalosti získávány a internalizovány.
2.2 Definice, typologie a šíření efektů přelévání

Problematika přelévání znalostí a z něho plynoucí efekty jsou vnímány řadou autorů odlišně a tudíž neexistuje jedna ustálená definice. Gilbert a kol. (2008) definuje efekt přelévání znalostí jako přímý nebo nepřímý přenos znalostí z jedné strany na druhou, respektive z jednoho ekonomického subjektu na druhý. Tyto znalosti jsou obvykle generovány firmami účastnicemi se inovačních aktivit a jsou velmi ceněny, protože poskytují znalosti a poznatky, které jsou zcela nové pro přijímající firmu (firmu, která využívá těchto pozitivních externit). V případě technologických efektů přelévání znalostí jsou firmy vybaveny specifickými průmyslovými znalostmi, které jim umožňují vědět: (i) jaké technologické aktivity prováděli ostatní; (ii) jaké aktivity provádějí v současné době; (iii) jaké úrovně úspěchu firmy dosáhly v rámci těchto aktivit. U technologického efektu přelévání se tak předpokládá, že dopomůže firmám využívat nejnovější technologie a konkurovat na nejatraktivnějších trzích.
Kesidou a Romijn (2008) uvádějí, že přelévání znalostí bylo ekonomy definováno jako znalostní toky, které vznikají a vyskytují se zcela spontánně a bez jakékoliv kompenzace vůči zdroji znalostí. Autoři ovšem uvádějí, že k přelévání znalostí může do jisté míry docházet i záměrně prostřednictvím vzájemné interakce mezi zúčastněnými stranami (firmy, univerzity, vývojová centra a jiné). Důležitým rysem těchto efektů (externalit) je ale fakt, že vznikají mimo trh a mají přímý vliv na produkční funkce firem, na rozdíl od peněžních externalit, které vyvíjejí nepřímý vliv prostřednictvím změn cen.

Další ze způsobů dělení efektů přelévání je na vertikální a horizontální (De Faria a kol., 2010). Vertikální přelévání je spojeno s interakcí s dodavateli a zákazníky a má významnější vliv na výzkumné a vývojové aktivity. K horizontálnímu přelévání dochází při interakcích s
univerzitami, výzkumnými ústavy a konkurenty. Spolupráce s rozdílnými partnery nabývá na svém významu a dle řady zahraničních studií pozitivně ovlivňuje inovativní aktivity a celkovou výkonnost firem. Volba partnerů, zejména při tvorbě inovací pak představuje klíčový proces pro dosažení strategických cílů podniků. De Faria a kol. (2010) zdůraznil, že pro úspěch při zavádění různých druhů inovací je vždy zapotřebí volby vhodných partnerů pro spolupráci. Zatímco klíčem k úspěchu při zavádění produktových inovací jsou hlavními partnery spolupráce zákazníci a instituce veřejného sektoru, tak dodavatelé a univerzity mají pozitivní vliv na úspěch procesních inovací. Spolupráce s dodavateli a konkurenty má značný vliv na růst produktivity práce, zatímco spolupráce s univerzitami, výzkumnými ústavy a konkurenty pozitivně ovlivňuje růst tržeb na zaměstnance z produktů a služeb, které jsou nové na trhu.

Cantù (2016) dokázal, že k efektivním přelévání může taktéž docházet napříč jednotlivými ekonomickými úrovněmi (mikro, mezo a makro) a na rozdílné geografické vzdálenosti (obr. 2), přičemž na jednotlivých úrovních dochází k vytváření různě silných vazeb mezi danými subjekty.

Je tedy zřejmé, že při dosahování strategických podnikových cílů a při tvorbě inovací dochází k rostoucímu významu efektů přelévání znalostí: (i) na jednotlivých ekonomických úrovních; (ii) v rámci spolupráce s různými partnery. Inovativní aktivity přitom jsou v současné době vnímány jako jeden z klíčových prvků, který jednotlivým ekonomickým subjektům napomáhá při dosahování konkurenční výhody, tvorbě přidané hodnoty, ale i při dosahování ekonomického růstu. Nicméně samotný proces zavádění inovací je složitý a skládá se z několika částí, které je zapotřebí zvládnout, aby došlo k uplatnění konečné inovace, ať již v rámci firmy, tak zejména na trhu (často mezinárodním). Bylo poté řadou studií dokázáno (Maidique a Zirger, 1984; Martin Jr a Horne, 1993; Lengyel a Leydesdorff, 2011; Scarbrough a kol., 2015), že stejně, jako ne každá ekonomika využívající znalostí, je ekonomikou znalostní, tak ani ne každý podnik, který inovuje, je podnikem inovativním a posilujícím svoji konkurenční výhodu, či jiný strategický cíl, ale naopak selhává v rámci svých inovativních procesů. Následující část je proto zaměřena na význam efektů přelévání znalostí ve vztahu k inovativním aktivitám.
2.3 Rostoucí vliv efektů přelévání na tvorbu inovací

Působení efektů přelévání v současných nejvyspělejších ekonomikách se stalo jednou z klíčových otázek pro řadu vědců (např. Coe a Helpman, 1995; Baicker, 2005; Sun a kol., 2015) a to při zkoumání jejich vlivu na ekonomický růst, firemní produktivitu, nabídku a poptávku, ale i na inovace. Inovace totiž představují hnací motory nejen podniků, ale i celých ekonomik a mají za následek růst konkurenceschopnosti a ekonomické výkonnosti, přičemž inovační politika nabývá na stále větším významu a je považována za klíčovou v současném dynamickém tržním prostředí (Tödtling a Trippl, 2005; Seidler-de Alwis a Hartmann, 2008; Kraft a Kraftová, 2012)⁶. Tvorba, šíření, využívání a zejména přelévání znalostí totiž představují klíčové procesy, které pomáhají firmám s jejich inovativními aktivitami. Tvorba

⁶ Taktéž v ČR, kde je významným nástrojem pro podporu českých podnikatelů z fondů Evropské unie v programovacím období 2014-2020 Operační program Podnikání a inovace pro konkurenceschopnost, jehož cílem je dosažení konkurenceschopné a udržitelné ekonomiky založené na znalostech a inovacích.
inovací firmám následně umožňuje vytvořit přidanou hodnotu, odlišit se od konkurentů a zaujmout tak silnou pozici na národním, potažmo mezinárodním trhu. Inovace se tak objevují v popředí politických programů a to jak v oblasti průmyslové, tak i regionální politiky, přičemž mezi různými motory hospodářského růstu, žádný další nezískal takovou pozornost, jako právě inovace – základní hnací síla ekonomického růstu, blahobytu a konkurenceschopnosti (Matatkova a Stejskal, 2012; Hudson a Minea, 2013; Sleuwaegen a Boiardi, 2014).

Inovace mohou nabývat řady podob (produktové, procesní, servisové, marketingové) a představují složitý proces⁷, který je ovlivňován celou řadou determinantů a faktorů (vnitřních a vnějších) - podle Maiera (1998) se jedná o následující:

- tržní struktura a potenciál (například monopolní nebo oligopolní trhy, ale i trhy, které se transformují z monopolistické do konkurenční struktury),
- faktory přímo ovlivněné manažerskými rozhodnutími (jako je stanovování cen a reklama, kvalita produktu, která je ovlivněna kvalitou výrobního procesu, technické know-how zahrnuté do produktu prostřednictvím výzkumu a vývoje a jiné),
- další aspekty inovačních difúzních procesů (například efekty přelévání),

přičemž interakce mezi různými determinanty (interními a externími) inovačních aktivit, firemní kreativita, učení se a inovace jsou obousměrné, synergické a vedou k tvorbě efektů přelévání (Huber, 1998; Stejskal a Hájek, 2015). Jak bylo popsáno výše, ne každému ekonomickému subjektu se vždy podaří využít svého inovačního potenciálu a transformovat jej v úspěšné, na trhu uplatnitelné, inovace. Jednotliví aktéři inovačních procesů se střetávají s

⁷ Jedním z československých průkopníků, který se zabýval problematikou inovací a jejich dělením byl František Valenta, podle kterého představují inovace jakoukoli změnu ve vnitřní struktuře výrobního organismu, přičemž ne každá změna je změnou k lepšímu a ne každá novinka má nutně pozitivní efekty. Vedle pozitivních, kladných inovací, existují inovace záporné, negativní jako důsledky záporné lidské aktivity. Valenta nejdříve rozlišoval nultý až sedmý řád inovací (Širůček, 2016):
- nultý řád: udržování výroby na stálé kvantitativní a kvalitativní úrovni,
- první řád: kvantitativní zvětšení výroby za kvalitativně nezměněných podmínek,
- druhý řád: prosté organizační změny vedoucí ke zvětšení produkce (výrobek ani technologický postup se ale nemění),
- třetí řád: kvalitativní zlepšení postupu, kdy se nemění výrobek ani princip postupu, ale výrobní zařízení se lépe uzpůsobuje požadavkům výroby (tzv. adaptační kvalitativní změna),
- čtvrtý řád: mění se některý z prvků výroby či některá funkce výrobku (jedná se o kvalitativní změnu nazyvanou vznikem nové varianty),
- pátý řád: změna všech prvků výroby nebo několika funkcí výrobků – vznik nové generace,
- šestý řád: změna koncepcie výrobku nebo výroby - vznikem nového druhu,
- sedmý řád: je vyznačován změnou samotného principu technologického postupu (principiální změna – o technický převрат) – vznik nového rodu,

přičemž později Valenta sedmiřádové členění rozšířil na patnáct dalších stupňů.

<table>
<thead>
<tr>
<th>Interní bariéry inovací</th>
<th>Externí bariéry inovací</th>
</tr>
</thead>
<tbody>
<tr>
<td>nabídkové (obtížnosti při získávání technologických informací, surovin, financí);</td>
<td>související se zdroji (nedostatek vnitřních zdrojů, technických odborných znalostí, manažerského času);</td>
</tr>
<tr>
<td>potápěkové (zákaznické potřeby a jejich vnímání rizika inovací, popřípadě domácí nebo zahraniční omezení na trhu);</td>
<td>související se systémem (účetní a databázové systémy);</td>
</tr>
<tr>
<td>související s prostředím (vládní nařízení, antimonopolní a jiná politická opatření).</td>
<td>související s lidskou povahou (postoj top managementu k riziku a riskování nebo odpor zaměstnanců k inovacím).</td>
</tr>
</tbody>
</table>

Zdroj: Zpracováno podle Hadjimanolis (1999)

Jedním z prvotních problémů, kterým ale jednotlivé inovující subjekty čelí, je skutečnost, že řada inovativních postupů selhává již v jejich počátcích a jen malé procento počátečních inovací je realizováno. Problematikou zavádění inovací se zabýval již Mai (1998), který uvedl, že inovace (neboli neustálá obnova a zlepšování firemních produktů a činností) jsou klíčové pro firemní přežití v konkurenčním prostředí, přičemž otázky (a problémy) týkající se inovačních procesů jsou v dnešní době stále složitější a dynamičtější. Inovační management jednotlivých podniků tak musí stále rychleji reagovat na nejrůznější potřeby (zejména trhu) a technicky složitější produkty musejí být vyvíjeny stále rychleji. Taktéž jednotlivé finanční zdroje musejí být využívány a rozdělovány na výzkumné a vývojové projekty co možná nejefektivnějšími způsoby a to tak, aby vedly k ekonomicky úspěšným výsledkům – rychle a snadno komerčně realizovatelným inovacím. Nové produkty jsou totiž ve většině případů zaváděny na globální trhy a střetají se tak ze silnou mezinárodní konkurencí. Podniky, zejména jejich inovační management, tak musejí nejdříve kompletně pochopit inovační proces a zvládnout jednotlivé jeho fáze (Maier, 1998):

- vývoj nového produktu (vynález);
- zavádění nového produktu, procesu (inovace);
- šíření inovací (difúze).

První fáze, tedy vývoj nového produktu, představuje velmi dynamický a složitý proces, nicméně procesy zavádění a potažmo šíření inovací jsou stejně, ne-li více důležité. Důležitost správného firemního řízení těchto fází je zachycena na obrázku 3, který vyjadřuje kaskádový proces inovačních aktivit a nákladů s nimi spojených. Maier (1998) zde demonstruje, že na jedné straně, přibližně 40 % všech výzkumných projektů je úspěšných z technického hlediska, přičemž pouze 22 % z nich má šanci, že budou ekonomicky úspěšné, a zbylých 18 % výzkumných projektů je zastaveno, protože nemají potenciál být úspěšné v tržním prostředí.
Proto přibližně 22 % z výzkumných projektů je uváděno trh, ale pouze 40 % z nich jsou opravdu úspěšné. Na druhé straně, více než 50 % všech nákladů na inovace je vynaloženo právě v druhé a třetí fázi inovačního procesu, což podtrhuje důležitost těchto fází.

Přístup k inovacím a jejich úspěšné implementaci za využití nejrůznějších inovačních modelů tak prošel postupem času řadou změn, přičemž k tvorbě prvních inovačních modelů docházelo již v průběhu 50. a 60. let 20. století. Kotsemir a Meissner (2013) zachytili sedm vývojových etap přístupů k inovačním modelům, které jsou uvedeny v tabulce 5.

Problém, se kterýma se ale většina navržených modelů potýkala, jsou systémové nedostatky a selhání (Tödtling a Trippl, 2005; Hudec, 2007) vedoucí k nízké úrovni výzkumných a inovativních aktivit (zejména na regionální úrovni):

- organizačně slabé/tenké (thin) regionální inovační systémy, ve kterých některé ze základních prvků chybí nebo jsou slabě vyvinuty - nedostatek inovativních firem, popřípadě dalších klíčových institucí a organizací a nízká úroveň shlukování (clustering);
• zamčené (locked-in) regionální inovační systémy, které jsou charakterizovány nadměrným zakotvením a nadměrnou specializací na tradiční, upadající sektory a zastaralé technologie;

• fragmentované (roztříštěné) regionální inovační systémy trpící nedostatkem sítí a výměny znalostí mezi účastníky systému, což má za následek nedostatečnou úroveň kolektivního učení a systémových inovačních aktivit.

<table>
<thead>
<tr>
<th>Vývojová etapa</th>
<th>Období</th>
<th>Autoři hlavních myšlenek</th>
<th>Inovační model</th>
<th>Podstata modelu</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1950 ≈ 1960</td>
<td>-</td>
<td>Technologické postrčení (technology push)</td>
<td>Zaměření na lineární procesy</td>
</tr>
<tr>
<td>2</td>
<td>1960 ≈ 1975</td>
<td>Myers a Marquis (1969)</td>
<td>Tržní potřeby (Market (need) pull)</td>
<td>Výzkum a vývoj na základě zákazníkových potřeb</td>
</tr>
<tr>
<td>3</td>
<td>1975 ≈ 1985</td>
<td>Mowery a Rosenberg (1979) / Rothwell a Zegveld (1985)</td>
<td>Spojovací model (Coupling model) / Interaktivní model (Interactive model)</td>
<td>Interakce rozdílných funkcí / interakce s výzkumnými institucemi a trhem</td>
</tr>
<tr>
<td>4</td>
<td>1985 ≈ 1990</td>
<td>Kline a Rosenberg (1986)</td>
<td>Integrovaný model (Integrated model)</td>
<td>simultánní (souběžný, současný) proces zpětných vazeb, tzv. zřetězený model (chain-linked model)</td>
</tr>
<tr>
<td>5</td>
<td>1990 ≈ 1999</td>
<td>Rothwell (1992)</td>
<td>Síťový model</td>
<td>systémová integrace a síťování</td>
</tr>
<tr>
<td>7</td>
<td>2010 ≈</td>
<td>-</td>
<td>Otevřené inovace</td>
<td>zaměření na jednotlivce a rámové podmínky, které povedou k tomu být inovativními</td>
</tr>
</tbody>
</table>

Tabulka 5 Vývoj inovačních modelů z historické perspektivy

Zdroj: Kotsemir a Meissner (2013)

Z výše uvedeného je zřejmá obtížnost inovačního procesu a fakt, že doposud nebyl navržen jeden vhodný inovační model. Jednotlivé ekonomické subjekty proto stojí před rozhodnutími, jaký přístup a jaké determinanty využijí v rámci jejich inovačního procesu. Moulaert a Sekia (2003) vytvořili územní inovační model (Territorial innovation model), v rámci kterého jsou shrnuty dílčí přístupy zahraničních autorů k inovačním modelům a který demonstruje, že i přes rozmanitost přístupů existují prvky, které jsou pro dané modely společné (viz dále). Mezi zmíněné modely patří: inovační prostředí (innovative milieu), průmyslové obvody (industrial districts), regionální inovační systémy, místní výrobní
systémy, učící se regiony, přičemž všechny z těchto modelů jsou založeny na konceptu místních produkčních systémů (*Local production systems*).

Obrázek 4 Územní inovační model

Zdroj: Moulaert a Sekia (2003)

Na obrázku 4 jsou zachyceny jednotlivé teorie a přístupy zabývající se problematikou tvorby inovací, přičemž z jednotlivých modelů je patrný posun v autorských přístupech a názorech – shodnými prvky těchto modelů jsou podniky, znalosti a veřejné instituce (popř. vláda) a dále předpoklad spolupráce jednotlivých entit a vytváření příznivého inovačního prostředí, ve kterém mají veřejné orgány své funkce a úkoly (i když často pouze marginální). Jednotlivé přístupy se shodují na společných determinancech, jimiž jsou:

- síťování (*networking*) – dodavatel a výrobce, kupující a subdodavající a jiné (Hansen, 1992);
- spolupráce (Abramovsky, 2005);
- inovační prostředí (*inovative milieu*; Moulaert & Sekia, 2003);
- znalosti (zejména tacitní), schopnost učit se a kreativitu (Cassiman & Veugelers, 2002);
- znalostní transfer a efekty přelévání.
Tyto determinanty inovačního prostředí potom mohou působit a nacházet se v rámci kooperačních řetězců (cooperative chains) nebo znalostních síťí (např. triple-helix). Je tedy zřejmé, že inovace, jejich tvorba, šíření a uplatnění v tržním prostředí jsou spojeny a ovlivňovány právě se znalostmi a s efekty přelévání znalostí, které v rámci inovačního procesu výměny znalostí (tabulka 6) reprezentují statický transfer znalostí založený na neformálních (neobchodních) vztazích.

<table>
<thead>
<tr>
<th>Formální/obchodní vztahy</th>
<th>Statický (transfer znalostí)</th>
<th>Dynamický (kolektivní učení)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kooperace/formální sítě</td>
<td>Tržní vztahy</td>
<td>Znalostní externality a efekty přelévání</td>
</tr>
</tbody>
</table>

Zdroj: Cooke (2007)

Je zřejmé, že v jednotlivých odvětvích, zemích (popřípadě regionech) dochází k odlišnému působení efektů přelévání znalostí a jednotlivé ekonomické subjekty dosahují odlišných výsledků ze zavádění inovací. Tyto rozdíly a jejich důvody jsou popsány v další části této práce.

2.4 Odlišné vlivy efektů přelévání v meziregionálním srovnání

K tomu, aby docházelo k úspěšnému zavádění inovací a jejich komerčnímu využití, ale i ke vzniku efektů přelévání znalostí, je nezbytná:

- existence vhodného inovačního prostředí,
- volba funkčních determinantů inovačních aktivit, mezi které patří nejčastěji různí partneři spolupráce (univerzity, konkurenci, zákazníci, dodavatelé a další),
- tržní orientace,
- poskytování finančních prostředků z národních, popřípadě evropských fondů,

ale v řadě případů jsou to i vlivy náhodné a doposud nevysvětlené. V jednotlivých zemích pak dochází k odlišným efektům zavádění inovací a řada z těchto zemí selhává v jejich inovačních aktivitách. V této části jsou proto demonstrovány odlišné vlivy efektů přelévání v meziregionálním srovnání a to na příkladech zemí, jejichž inovační výkonnost je pod průměrem EU. Jsou to totiž právě znalosti, výzkum a inovace, které figurovávají v popředí strategie Europe 2020, a proto Evropská komise každoročně publikuje Innovation Union.

8 Kapitola byla zpracována z výsledků analýz v rámci projektu Modelování efektů přelévání znalostí v kontextu regionálního a místního rozvoje, jehož poskytovatelem je Grantová agentura ČR. Autor disertační práce je spoluautorem projektu a jednotlivé výsledky byly publikovány v zahraničních odborných časopisech a v rámci mezinárodních konferencí (viz seznam publikací na konci práce).

9 za regiony jsou v tomto případě považovány jednotlivé státy EU.
Scoreboard, ve kterém poskytuje komparaci jednotlivých členských států EU v oblasti výzkumné a inovační výkonnosti. V rámci těchto měření jsou poté sledovány 3 hlavní typy indikátorů a 8 inovačních rozměrů (dimenzí) zachycujících celkem 25 odlišných indikátorů. Mezi zkoumané skupiny indikátorů patří zejména kvalita lidských zdrojů, kvalita a otevřenost vědeckých systémů, poskytování finančních prostředků, firemní investice, hospodářské dopady inovačních aktivit a další. Jednotlivé země jsou následně řazeny do čtyř skupin právě podle jejich inovační výkonnosti:

- inovační lídři (*innovation leaders*);
- silní inovátoři (*strong innovators*);
- mírní inovátoři (*moderate innovators*);
- skromní/slabí inovátoři (*modest innovators*).

Jednotlivé země a skupiny inovační výkonnosti, do kterých spadaly pro rok 2015, jsou zobrazeny na obrázku 5. Skupinu inovační lídrů tvořily celkem 4 země: Švédsko (SE), Dánsko (DK), Finsko (FI) a Německo (DE). Mezi silné inovátory pařilo 8 zemí: Nizozemsko (NL), Lucembursko (LU), Spojené království (UK), Irsko (IE), Belgie (BE), Francie (FR), Rakousko (AT), Slovinsko (SI). Nejpočetnější skupinu tvořili mírní inovátoři (13 zemí), mezi které patří: Estonsko (EE), Česká republika (CZ), Kypr (CY), Itálie (IT), Portugalsko (PT), Malta (MT), Španělsko (ES), Maďarsko (HU), Řecko (EL), Slovensko (SK), Chorvatsko (HR), Polsko (PL), Litva (LT). Poslední skupinu slabých inovátorů poté tvořily 3 země: Litva (LV), Bulharsko (BG), Rumunsko (RO). Modré je v obrázku vyznačen průměr EU.

Evropská komise v podstatě provádí makroekonomickou analýzu na úrovni jednotlivých členských států EU, nicméně pro přesnější zachycení rozdílů mezi zeměmi, bariér inovačních aktivit a odlišných úrovních přelévání znalostí a z nich plynoucích efektů byla provedena mikroekonomická analýza v zemích, které nedosahovaly průměrné inovační výkonnosti EU a jsou metodikou Evropské komise řazeny do skupin silných, mírných a slabých inovátorů. Konkrétně byl, za využití vlastních vicenásobných regresních modelů a dat z Community Innovation Survey (harmonizovaný dotazník, který je v dvouletých intervalech zpracováván Eurostatem), analyzován vliv vybraných determinantů inovačních aktivit (spolupráce s odlišnými partnery, tržní orientace, finanční podpora a jiné) na růst obratu podniků z inovovaných produktů ve zpracovatelském průmyslu (kategorie NACE 10-33) mezi roky 2010-2012. Za analyzované země bylo vybráno Slovinsko (silný inovátor), Chorvatsko (mírný inovátor) a Rumunsko (slabý inovátor). Celkem bylo analyzováno 918 slovinských, 1 280 chorvatských a 3 982 rumunských firem zpracovatelského průmyslu.

Nejdříve byl analyzován vliv vybraných determinantů inovačních aktivit v jednotlivých zemích samostatně, přičemž výsledky analýz jsou zobrazeny v tabulce 2.4, jejíž výsledky poukazují na chybějící nebo nedostatečné inovační zázemí v Rumunsku a s tím spojený slabý vliv determinantů inovačních aktivit na firemní růst obratu z inovovaných produktů. Rumunsko je typickým příkladem takzvaného inovačního paradoxu (innovation paradox), kterým jsou podobně země, zejména slabí inovátoři, zatíženy. Inovační paradox (Oughton a kol., 2002; Skokan, 2010) se vztahuje k problému zjevného rozporu mezi potřebou vynaložení veřejných finančních prostředků na podporu inovací v zaostávajících regionech a
jejich relativně nižší schopností jednak absorbovat prostředky vynaložené na podporu inovačních aktivit a dále je investovat do činnosti spojených s inovacemi v porovnání s ostatními pokročilejšími zeměmi a regiony (viz tabulka 7, pouze u evropské finanční podpory byly zaznamenány signifikantní výsledky, nicméně významně na nejnižší hladině významnosti).

Skokan (2010) uvádí, že působením inovačního paradoxu se poté zejména na regionální úrovni projevuje nesoulad mezi nabídkou a poptávkou po finančních zdrojích a nabízených a poskytovaných službách při tvorbě a využívání znalostí na podporu inovací. V Chorvatsku, reprezentantovi mírných inovátorů, byla situace podobná jako v Rumunsku a většina determinantů neovlivňovala růst firemního obratu z inovovaných produktů (za nejvýznamnější determinanty působící samostatně bez dalších interakcí je možné považovat spolupráci se zákazníky a prodej, uzavření nebo outsorcing některých firemních činností). Naopak ve Slovinsku (silný inovátor) byla situace odlišná a firmy ve zpracovatelském průmyslu velmi efektivně využívaly jednotlivých determinantů inovačních aktivit, které ovlivňovaly růst jejich obratu z inovovaných produktů (například finanční podpora z evropských fondů, spolupráce se zákazníky, veřejnými výzkumnými institucemi, výdaje na externí výzkum a vývoj).

podílů podniků zabývajících se výzkumem, vývojem a inovačními aktivitami (Radosevic a Auriol, 1999; Radosevic, 2002). Proto byly provedeny následné analýzy efektů přelévání znalostí v těchto zemích.

| Tabulka 7 Vliv determinantů inovačních aktivit v Rumunsku, Chorvatsku a Slovinsku |
|-----------------------------------|-----------------|-----------------|------------------|
| Proměnné (determinanty inovačních aktivit) | Slabý inovátor | Mírný inovátor | Silný inovátor |
| | Rumunsko R=0.983; R2=0.967 p=0.045 | Chorvatsko R=0.616; R2=0.380 p=3.35 E-11 | Slovinsko R=0.997; R2=0.995 p=1.40 E-5 |
| Místní nebo regionální finanční podpora | - | 0.718 | - |
| Národní finanční podpora | - | 0.117 | 0.434 |
| Evropská finanční podpora | 0.059* | - | 0.000*** |
| Spolupráce na technických inovačních aktivitách | 0.739 | - | - |
| Spolupráce s podniky v rámci skupiny podniků | 0.065* | - | - |
| Spolupráce s dodavateli | - | - | - |
| Spolupráce se zákazníky | - | 0.035** | 0.000*** |
| Spolupráce s konzultanty a komerčními laboratořemi | - | - | - |
| Spolupráce s konkurenty | - | 0.055* | - |
| Spolupráce s univerzitami | 0.055* | 0.149 | - |
| Spolupráce s veřejnými výzkumnými institucemi (nebo vládními institucemi) | 0.070* | 0.128 | 0.000*** |
| Produktové inovace | - | - | - |
| Servisní inovace | 0.076* | - | 0.009*** |
| Procesní inovace | 0.104 | - | 0.729 |
| Vnitropodnikové výdaje na výzkum a vývoj | - | 0.825 | - |
| Výdaje na externí výzkum a vývoj | 0.034* | 0.569 | 0.000*** |
| Pořizování strojů | - | 0.701 | 0.173 |
| Pořizování externích znalostí | - | 0.653 | 0.269 |
| Výdaje na další aktivity | - | 0.569 | 0.702 |
| Celkové výdaje na inovační aktivity | 0.054* | - | 0.927 |
| Sloučení s nebo převzetí jiného podniku | - | 0.482 | - |
| Prodej, uzavření nebo outsourcing některých firemních činností | 0.082* | 0.000*** | 0.743 |
| Zřízení nových poboček v domácí nebo jiné evropské zemi | - | - | 0.008*** |
| Zřízení nové pobočky mimo Evropu | - | - | - |
| Tržní orientace | - | 0.186 | 0.002*** |

Legenda: v tabulce jsou zachyceny výsledky p-hodnot pro dané regresní modely v jednotlivých zemích; * významné na hladině významnosti $P<0.1$; ** významné na hladině významnosti $P<0.05$; *** významné na hladině významnosti $P<0.01$

Zdroj: vlastní

V Rumunsku docházelo k projevům inovačního paradoxu (viz výše) v jehož důsledku není v zemi dostatečné proinovační prostředí (např. chybějící infrastruktura, slabá absorbční kapacita, chybějící poptávka po inovačních a vědeckých výstupech ze strany firem, ale i univerzit). Proto jednotlivé determinanty inovačních aktivit neměly silný vliv na růst obratu z inovovaných produktů. Na druhé straně, výsledky v tabulce 6 ukazují, že vhodná volba partnerů spolupráce (v tomto případě univerzity a veřejná výzkumná centra) mohou vést ke vzniku významných interakcí a synergii.
Tabulka 8 Vliv spolupráce na inovační aktivity v Rumunsku

<table>
<thead>
<tr>
<th>Proměnné (determinanty inovačních aktivit)</th>
<th>Univerzity (nebo další vzdělávací instituce)</th>
<th>Veřejné výzkumné instituce (nebo vládní instituce)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Evropská finanční podpora</td>
<td>0.045**</td>
<td>0.042**</td>
</tr>
<tr>
<td>Servisní inovace</td>
<td>-</td>
<td>0.048**</td>
</tr>
<tr>
<td>Procesní inovace</td>
<td>0.046**</td>
<td>0.065*</td>
</tr>
<tr>
<td>Spolupráce s podniky v rámci skupiny podniků</td>
<td>0.055*</td>
<td>0.052*</td>
</tr>
</tbody>
</table>

Legenda: * významné na hladině významnosti \(P<0.1 \); ** významné na hladině významnosti \(P<0.05 \); *** významné na hladině významnosti \(P<0.01 \)

Zdroj: vlastní

Například, pokud podniky v rumunském zpracovatelském průmyslu zaváděly procesní inovace a současně spolupracovaly s univerzitami, docházelo ke vzniku efektů ovlivňujících růst obratu (0.046**). Taktéž poskytování finančních podpor z evropských fondů vedlo v případě spolupráce s univerzitami (0.045**) nebo veřejnými výzkumnými centry (0.042**) ke vzniku významných efektů. V Rumunsku je proto nezbytná vyšší míra koordinace veřejných politik, vybudování dostatečné infrastruktury, podpora inovačních potřeb a růst poptávky po výzkumných a inovačních výstupech.

Z výsledků v tabulce 9 vyplývá, že firmy ve zpracovatelském průmyslu v Chorvatsku, které volily vhodné partnery spolupráce, taktéž významně ovlivňovaly růst obratu z inovovaných produktů, což potvrzuje tvrzení, že inovace nevznikají v izolaci, respektive při vzájemných kombinacích jednotlivých determinantů inovačních aktivit dochází k silnějším a signifikantnějším efektům, než pokud jsou tyto determinanty využívány samostatně. Konkrétně v Chorvatsku se jako velmi významný partner spolupráce ukázaly opět univerzity a veřejné a výzkumné instituce, proto je v Chorvatsku žádoucí další podpora této spolupráce a to za přispění národních (popř. lokálních) finančních podpor. Na druhé straně spolupráce s klienty a zákazníky nebo s konkurenty, vedla k mnohem menšímu počtu významných efektů. Z tohoto výsledku je patrné, že v Chorvatsku je zapotřebí, ke větší spolupráci, prohloubení důvěry mezi jednotlivými ekonomickými subjekty.

Spolupráce se zákazníky představuje významný prvek konkurenční výhody, což potvrzuje i Von Hippelova „lead-user theory“ (Von Hippel 1986, 2005). Podle této teorie představuje spolupráce s klienty a zákazníky základní a velmi významný prvek vedoucí k posilování konkurenční výhody a to právě díky tvorbě inovací, které přímo vycházejí z potřeb jejich zákazníků. Taktéž spolupráce s konkurenty, v zahraniční literatuře označována jako co-opetition (Gnyawali a Park, 2011), představuje cestu k posilování konkurenční výhody. Tento druh spolupráce je sice z řady důvodů náročný (tyto projekty jsou časově a finančně náročné a vyžadují důvěru mezi jednotlivými subjekty), ale reprezentuje velmi užitečný způsob, jak mohou jednotlivé firmy řešit technologické problémy, čerpající z výhod partnerství mezi
firmami a tvořit pokročilé technologické inovace a taktéž využívat efektů přelévání znalostí, ke kterým v rámci těchto kolaborací dochází. Navíc spolupráce mezi velkými a významnými firmami (často nadnárodní korporace) podněcuje k dalším spolupracím ostatní menší firmy, což má za následek další technologický rozvoj.

<table>
<thead>
<tr>
<th>Proměnné (determinanty inovačních aktivit)</th>
<th>Univerzity (nebo další vzdělávací instituce)</th>
<th>Veřejné výzkumné instituce (nebo vládní instituce)</th>
<th>Klienti nebo zákazníci</th>
<th>Konkurenti nebo jiné podniky v odvětví</th>
</tr>
</thead>
<tbody>
<tr>
<td>Místní nebo regionální finanční podpora</td>
<td>0.001***</td>
<td>0.380</td>
<td>0.006***</td>
<td>0.002***</td>
</tr>
<tr>
<td>Národní finanční podpora</td>
<td>0.000***</td>
<td>0.004***</td>
<td>0.465</td>
<td>0.685</td>
</tr>
<tr>
<td>Prodej, uzavření nebo outsourcing některých firemních činností</td>
<td>0.016**</td>
<td>0.020**</td>
<td>0.714</td>
<td>0.756</td>
</tr>
<tr>
<td>Sloučení s nebo převzetí jiného podniku</td>
<td>0.024**</td>
<td>0.022**</td>
<td>0.331</td>
<td>0.934</td>
</tr>
<tr>
<td>Spolupráce s veřejnými výzkumnými institucemi (nebo vládními institucemi)</td>
<td>0.029**</td>
<td>-</td>
<td>0.018**</td>
<td>0.645</td>
</tr>
<tr>
<td>Spolupráce s univerzitami</td>
<td>-</td>
<td>0.029**</td>
<td>0.001***</td>
<td>0.765</td>
</tr>
<tr>
<td>Spolupráce se zákazníky</td>
<td>0.001***</td>
<td>0.018**</td>
<td>-</td>
<td>0.941</td>
</tr>
<tr>
<td>Spolupráce se konkurenty</td>
<td>0.765</td>
<td>0.645</td>
<td>0.941</td>
<td>-</td>
</tr>
<tr>
<td>Tržní orientace</td>
<td>0.011**</td>
<td>0.008***</td>
<td>0.797</td>
<td>0.552</td>
</tr>
</tbody>
</table>

Legenda: * významné na hladině významnosti $P<0.1$; ** významné na hladině významnosti $P<0.05$; *** významné na hladině významnosti $P<0.01$

Zdroj: vlastní

Ve Slovinsku naopak interakce mezi determinanty vznikaly pouze řídká (tabulka 10) a jednotlivé determinanty inovačních aktivit působily silněji samostatně než v interakcích. K významným interakcím docházelo pouze v případě kombinací determinantů při zavádění servisních inovací – například zavádění servisních inovací ve spolupráci s veřejnými výzkumnými centry (nebo vládními institucemi): 0.000***. Jedním z hlavních důvodů, proč nebylo identifikováno více interakcí a nedocházelo k tvorbě dalších efektů přelévání, je fakt, že díky dostatečnému inovačnímu zázemí a absorpční kapacitě podniků dochází k efektivnímu využívání jednotlivých determinantů inovačních aktivit samostatně (viz tabulka 7) a podniky tak nejsou nuceny hledat nové zdroje konkurenční výhody a měnit jejich strategie. Narula (2002) uvádí, že podniky jsou ve své podstatě „odolné“ vůči radikálním změnám a preferují spíše současný stav, pokud nejsou nuceny ke změně a není ohrožena
jejich konkurenceschopnost. Podniky jsou tak uzavřeny (lock-in) a jen zřídka a pomalu se ubírají ke změnám. Aylward (2006) uvádí, že v podstatě všechny inovační systémy mají určitý stupeň setrvačnosti, který může postupem času vést k uzamčení. Navíc vidína ochrany současných inovačních systémů formou nespolupráce je účinná pouze v krátkodobém horizontu, ale dlouhodobě představuje bariéru větší udržitelnost inovačních aktivit, což může mít za následek pokles inovační výkonnosti firem a zemí, stejně jako pokles konkurencní výhody a prosperity. Jedním z teoretických přístupů, který navrhuje řešení tohoto problému, je přístup nazývaný jako „open innovation“, v rámci kterého je rozvíjen a podporován záměrný příliv a odliv znalostí s cílem urychlit vnitřní (firemní) inovace a zároveň rozšířit trhy pro vnější využití inovací (Chesbrough, 2006; Chesbrough a Appleyard, 2007). Tento koncept je založen na celé řadě odlišných výzkumných trendů a naznačuje, že cenné nápady mohou přicházet ze vnitřního nebo vnějšího okolí podniku a mohou následně putovat na trh jednak ze vnitřního, ale nejen ze vnitřního okolí společností, přičemž spolupráce (s různými partnery) je považována jako klíčový způsob zvyšování firemního obrotu, ale i konkurenceschopnosti podniků, regionů, potažmo národních ekonomik.

Tabulka 10 Vliv spolupráce na inovační aktivity ve Slovinsku

<table>
<thead>
<tr>
<th>Evropská finanční podpora</th>
<th>Spolupráce s veřejnými výzkumnými institucemi (nebo vládními institucemi)</th>
<th>Prodej, uzavření nebo outsourcing některých firemních činností</th>
<th>Zřízení nové pobočky v domácí nebo jiné evropské zemi</th>
<th>Tržní orientace</th>
</tr>
</thead>
<tbody>
<tr>
<td>Servisní inovace</td>
<td>0.012**</td>
<td>0.000***</td>
<td>0.023**</td>
<td>-</td>
</tr>
</tbody>
</table>

Legenda: * významné na hladině významnosti P<0.1; ** významné na hladině významnosti P<0.05; *** významné na hladině významnosti P<0.01
Zdroj: vlastní

Výsledky analýz ukázaly, že jednotlivé země se potýkají s odlišnými problémy, které omezuji jejich inovační aktivity. Je to například nedostatečná infrastruktura, nedůvěra mezi podniky nebo uzamčenost podniků. Na druhé straně, při vhodném zacílení determinantů inovačních aktivit, může docházet ke vzniku efektů přelévání ovlivňujících firemní růst obrotu, který následně může přispívat k ekonomickému růstu. Proto je zapotřebí další podrobná analýza jednotlivých zemí a navržení praktických implikací. Pro analyzované země byla navržena opatření (tabulka 11), která by mohla přispět k zlepšení stávající situace (nejenom firem) a k podpoře inovačních aktivit a vzniku efektů přelévání.
Tabulka 11 Navržená opatření pro podporu inovačních aktivit v Rumunsku, Chorvatsku a Maďarsku

<table>
<thead>
<tr>
<th>Země</th>
<th>Navržená opatření</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rumunsko</td>
<td>Koordinace veřejných politik, vybudování dostatečné infrastruktury, podpora identifikace inovačních potřeb a poptávky po inovovaných výstupech (produktech), podpora důvěry mezi podniky a organizacemi</td>
</tr>
<tr>
<td>Chorvatsko</td>
<td>Podpora a zesílení spolupráce firem s univerzitami a veřejnými výzkumnými organizacemi, zaměření na podporu spolupráce firem se zákazníky a konkurenty a to z důvodu, že se jedná o další významné formy spolupráce, které doposud v zemi nefungovaly</td>
</tr>
<tr>
<td>Slovinsko</td>
<td>Větší důvěra a otevřenost jednotlivých firem, která tak může umožnit a podpořit proudění znalostí (knowledge flows) mezi jednotlivými ekonomickými subjekty a přispívat tak k jejich kontinuálnímu růstu. Dále podpora spolupráce s univerzitami a veřejnými výzkumnými centry</td>
</tr>
</tbody>
</table>

Zdroj: vlastní

Problém, který v rámci hodnocení inovačních aktivit firem (zemí a regionů) a při navrhování způsobů jejich zefektivnění nastává, je nejen volba vhodných determinantů inovačních aktivit, ale taktéž volba správných měřicích metod. Samotná metodika, kterou využívá Evropská komise, nemusí vést ke zcela přesným výsledkům, což demonstrují ve své studii Edquist a Zabala-Iturriagagoitia (2015), kteří poukazují na fakt, že podle Innovation Union Scoreboard bylo a je Švédsko na prvním místě jako inovační lídr, ale tvrdí, že zvolená metodika je chybná. Podle těchto autorů není prováděna dostatečně hluboká analýza, která by přesně změřila inovační systémy jednotlivých zemí, čehož lze dosáhnout, pokud budou vstupní a výstupní indikátory posuzovány odděleně, jako dvě skupiny indikátorů (nikoli dohromady, jako v případě metodiky Evropské komise) a následně mezi sebou porovnávány. V této studii, za využití stejných dat, jako využívá Evropská komise, je poté Švédsko řazeno stále mezi inovační lídry, ale není číslo jedna. Samotná problematika měření efektů přelévání je popsána v další části práce.

2.5 Měření efektů přelévání

V posledních letech došlo k řadě pokusů o změření znalostních toků a s nimi spojených efektů přelévání znalostí a to jak na mikroekonomické úrovni, tak i na úrovni makroekonomické (Fischer a kol., 2009). Postupně tak byly tyto efekty zkoumány:

• mezi jednotlivými firmami (např. Mairesse a Sassenou, 1991; Los a Verspagen, 2000);
• mezi jednotlivými odvětvími národního hospodářství (např. Scherer, 1993; Branstetter, 2001);
• mezi jednotlivými státy (např. Park, 1995).

Celý proces vzniku efektů přelévání je ovšem ovlivněn řadou faktorů a je tedy obtížné nalézt jednu ucelenou metodu měření. Z tohoto důvodu je možné se setkat s různými studiemi zkoumajícími odlišné faktory a jejich vliv na tvorbu efektů přelévání a z nich plynoucí tvorbu
inovací, rostoucí výkonnost podniků, ekonomický růst. Mezi nejčastěji zkoumané faktory patří například:

- spolupráce s odlišnými partnery – univerzitami, firmami, zákazníky, dodavateli nebo konkurenty (López a kol., 2014),

- poskytování veřejných podpor z národních a/nebo evropských fondů (Rodríguez-Pose a Di Cataldo, 2014),

- investice do výzkumu a vývoje (Hall a kol., 2013),

<table>
<thead>
<tr>
<th>Autor</th>
<th>Zkoumaný vzorek</th>
<th>Závisle proměnné</th>
<th>Nezávisle proměnné</th>
<th>Výsledek</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jaffe (1986, 1988, 1989)</td>
<td>500 amerických firem ve výrobním průmyslu s výdají na VaV a minimálně 10 vytvořenými patenty v letech 1969-1979</td>
<td>Udělené patenty; Tržní hodnota firmy; Hrubý přijem firmy</td>
<td>Investice do VaV; Znalostní základnu; Technologické možnosti; Kapitál; Podíl na trhu</td>
<td>Efekty přelévání jsou významné při vysvětlování rozptylu závislých proměnných</td>
</tr>
<tr>
<td>Bernstein (1988)</td>
<td>Firmy z odvětví: potravinářství, papírenství, hutnictví, strojní, letecké, elektrické, chemické, v Kanadě v letech 1978 a 1981</td>
<td>Náklady a výrobní struktury průmyslu</td>
<td>Efekty přelévání mezi a uvnitř odvětvími; Výstupy; Ceny faktorů</td>
<td>Efekty přelévání mají za následek snížení nákladů produkce v odvětvích a mění strukturu produkce (modifikují podíl jednotlivých faktorů)</td>
</tr>
<tr>
<td>Autori</td>
<td>Zdroje dat</td>
<td>Obchodní jednotky výrobních firem v USA</td>
<td>Výdaje na VaV; Stupeň koncentrace trhu</td>
<td>Efekty přelévání</td>
</tr>
<tr>
<td>------------------------</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>-------------------</td>
</tr>
<tr>
<td>Levin & Reiss (1988)</td>
<td>Obchodní jednotky výrobních firem v USA</td>
<td>Výdaje na VaV; Stupeň koncentrace trhu</td>
<td>Effekty přelévání</td>
<td>Existence</td>
</tr>
</tbody>
</table>
Základní kapitál financován daným odvětvím; Základní kapitál financován státem a vyvinutý v daném odvětví; Základní kapitál financován státem a vyvinutý v jiných institucích, jako jsou vysoké školy a nezávislé laboratoře vládou a vyvinutý v rámci daného odvětví má větší vliv na úspory nákladů než VaV financovaný vládou, ale vytvořený mimovaný průmysl; VaV financovaný vládou má za následek snížení nákladů při současném snížení soukromých investic do výzkumu; Daňové pobídky stimulují investice do výzkumu a vývoje

Zdroj: Zpracováno podle Nieto a Quevedo (2005)

Tabulka 13 Přehled vybraných analýz efektů přelévání

<table>
<thead>
<tr>
<th>Autor</th>
<th>Analýza</th>
</tr>
</thead>
<tbody>
<tr>
<td>De Faria a kol. (2010)</td>
<td>Analýza významu vlivu spolupráce mezi firmami na jejich inovační aktivity na vzorku 766 portugalských firem ze zpracovatelského průmyslu a z vybraných odvětví služeb.</td>
</tr>
<tr>
<td>Block a kol. (2013)</td>
<td>Za využití poznatků teorie o znalostních efektech přelévání byly analyzovány příčiny odlišných inovačních výstupů firem zpracovatelského průmyslu v 21 evropských zemích.</td>
</tr>
</tbody>
</table>

Zdroj: vlastní
Analýzy efektů přelévání se taktéž v mnoha případech rozcházejí ve formulaci vhodných metod jejich měření. Cai (2011) a Cai a Hanley (2012) popsal kvantitativní hodnotící metody prostřednictvím 3 přístupů:

- Kompozitní (inovační) indikátory, které byly řadou institucí přijaty pro hodnocení inovačních kapacit na národních úrovních (například při hodnocení konkurenceschopnosti zemí, které provádí World Economic Forum). Systémy těchto ukazatelů mohou zahrnovat indikátory, jako je vstup, výstup, řízení inovací a inovačních aktivit, institucionální opatření a další. Nicméně u těchto metod je ignorována efektivita inovačních systémů, protože vstupní a výstupní ukazatele jsou zpracovávány stejným způsobem – to může mít za následek, že ekonomiky s vysokými inovačními vstupy a nízkými inovačními výstupy mohou získat stejný nebo dokonce vyšší počet bodů, než ekonomiky s nízkými inovačními vstupy a vysokými inovačními výstupy.

- Modelovací (ekonometrický) přístup, který je často používán k analýze faktorů ovlivňujících národní inovační kapacity. Tento přístup zahrnuje kroky od teoretické analýzy, přes matematické modelování až po ekonometrický test. Analýza faktorů je v tomto případě podporována jednak ekonomickými teoriemi, tak i empirickými daty a spolehlivými výsledky. Nicméně, v ekonometrických testech je vybírán jediný indikátor vysvětlované (závislé) proměnné, například počet patentů, který ovšem nemusí vždy vysvětlovat inovační kapacitu a zachytit efekty přelévání. Prezentované výsledky pak mohou vést ke zkreslení.

3 VĚDECKÝ CÍL A METODIKA ZKOUMÁNÍ

Z předchozí části je zřejmé, že k tomu, aby docházelo k úspěšnému zavádění inovací a jejich komerčnímu využití a tím k podpoře ekonomicko-sociálního rozvoje společnosti je nezbytná existence řady faktorů. Mezi tyto faktory patří například vhodné inovační prostředí a volba funkčních determinantů inovačních aktivit. V řadě případů působí ale i vlivy náhodné a nevysvětlené. Doposud se avšak nepodařilo nalézt a navrhnout jednu obecně akceptovanou metodu měření, která by poskytovala výsledky, jež by byly plošně uplatnitelné.

3.1 Vědecký cíl

Hlavním vědeckým cílem disertační práce je identifikovat makroekonomické a mikroekonomické determinanty znalostní ekonomiky, které mají největší vliv na ekonomický rozvoj regionů11 v současné Evropské unii.

Vědecký cíl se skládá z 2 dílčích cílů:

\[C_1: \text{Provedení makroekonomické analýzy efektivnosti působení vybraných determinantů ekonomik zemí EU 28 v kontextu znalostní ekonomiky}. \]

Na základě široké rešerše světových studií byl definován přehled klíčových determinantů znalostní ekonomiky. V tabulce 14 jsou uvedeny vybrané studie, včetně zkoumaných determinantů, jež byly využity k analýze znalostních ekonomik v daných regionech, resp. k měření efektivnosti vstupů a výstupů znalostní ekonomiky.

Na základě uvedených studií bude definován přehled nejčastěji využívaných determinantů (vstupů) a vhodných výstupních proměnných pro makroekonomickou analýzu efektivnosti působení těchto vstupních proměnných.

K provádění analýz efektivnosti v regionálním kontextu je velmi často využívána metoda analýzy datových obalů, neboli Data envelopment analysis - DEA (např. Roman, 2010; Guan a Chen, 2012; Cai a Hanley, 2012; Hudec a Procházková, 2013), která bude použita i v rámci této disertační práce. Podstata metody spočívá v rozdělení zkoumaných objektů (nezávislých rozhodovacích jednotek, tzv. decision making units – DMU) na efektivní a neefektivní podle velikosti spotřebovávaných zdrojů a množství vyráběné produkce nebo jiného typu výstupů, přičemž hlavní výhodou je fakt, že jak na vstupu, tak i na výstupu může být současně analyzováno více proměnných (více o metodě v části 3.2.1).

11 Za regiony jsou v této práci zvoleny země EU 28, přičemž autor předpokládá, že rozvoj regionů je ovlivněn růstem jejich HDP (příp. přidané hodnoty), dále s růstem inovační aktivity a konkurenceschopnosti ekonomických subjektů působících v daných regionech.
<table>
<thead>
<tr>
<th>Autor</th>
<th>Analyzované proměnné</th>
<th>Vstupy</th>
<th>Výstupy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wang a Huang (2007)</td>
<td>Zásoba kapitálu pro výzkum a vývoj; počet výzkumných pracovníků; počet technických pracovníků</td>
<td>Počet patentů a počet publikací</td>
<td></td>
</tr>
<tr>
<td>Sharma a Thomas (2008)</td>
<td>Výdaje na výzkum a vývoj; počet výzkumných pracovníků, hrubý domácí produkt; obyvatelstvo</td>
<td>Počet patentů a počet publikací</td>
<td></td>
</tr>
<tr>
<td>Cullmann a kol. (2009)</td>
<td>Výdaje na výzkum a vývoj; Počet zaměstnanců ve výzkumu a vývoji</td>
<td>Počet patentů</td>
<td></td>
</tr>
<tr>
<td>Schmidt-Ehmcke a Zloczysti (2009)</td>
<td>Znalostní zásoby, výdaje na výzkum a vývoj; vysoce a středně kvalifikovaná pracovní síla</td>
<td>Počet patentů</td>
<td></td>
</tr>
<tr>
<td>Guan a Chen (2012)</td>
<td>Počet vědců a inženýrů pracujících na plný úvazek; přírůstek výdajů na výzkum a vývoj financujících inovační aktivity; předem nahromaděný znalostní sklad pro tvorbu znalostí; předem nahromaděný znalostní sklad podílející se na komercializaci znalostí; práce na plný úvazek na nevýzkumných aktivitách;</td>
<td>Počet patentů; počet vědeckých článků; přidaná hodnota odvětví; vývoz nových produktů v high-tech průmyslu</td>
<td></td>
</tr>
<tr>
<td>Hudec a Prochádzková (2013)</td>
<td>Celkový počet vědeckých a výzkumných pracovníků zaměstnaných na plný úvazek; výdaje na výzkum a vývoj soukromého a veřejného sektoru; nahromážděná znalostní základna (odhadována jako kapitalizované výdaje na výzkum a vývoj) a nahromážděná znalostní základna v procesu komercializace; pracovní síla ve výzkumu a vývoji;</td>
<td>Mezinárodní vědecké články (vědecká inovace); počet patentů (technologická inovace); přidaná hodnota odvětví (komerční zisk); vývoz nových produktů v high-tech průmyslu</td>
<td></td>
</tr>
</tbody>
</table>

Zdroj: vlastní zpracování na základě Roman (2010)

Konkrétní hodnoty zvolených determinantů budou čerpány z ověřených statistických zdrojů, jimiž jsou například:

- Eurostat
- EPO - PATSTAT (European Patent Office)
- Databáze OECD
- WIOD (World Input-Output Database)
- GGDC (Groningen Growth and Development Centre)
- Mezinárodní srovnávací statistika výstupu a produktivity odvětví ICOP Industrial Database
- Mezinárodní finanční statistika IMF Data (International Monetary Fund)
- FAOSTAT (Food and Agriculture Organization of the United Nations – Statistics Division)
- ILOSTAT (International Labour Organization Statistics)
- WIPO - World Intellectual Property Organization
Výstupem cíle C₁ bude zodpovězení vědecké otázky:

\(V₁ \):
Ve kterých zemích EU 28 byly v daném období nejefektivněji aplikovány zvolené determinany znalostní ekonomiky?

Na základě výsledků \(V₁ \) budou moci být identifikovány země EU 28, které nejefektivněji využívají determinantů znalostní ekonomiky k ovlivňování zvolených výstupů. Tyto země bude možné následně využít jako vzor (benchmark), ke kterému mohou evropské země směřovat, chtějí-li dosáhnout ekonomického růstu svých regionů pomocí na znalostech založených determinantů.

U státu, který bude v rámci \(V₁ \) označen za nejefektivněji využívající vstupní (znalostní) proměnné a bude označena za tzv. benchmark, je možné předpokládat i využívání dalších proměnných znalostní ekonomiky působících na mikroekonomické úrovni. Tyto proměnně je však nutné identifikovat a dále analyzovat v rámci dílčího cíle C₂:

\(C₂ \): Mikroekonomická analýza vlivu determinantů inovativních aktivit firem napříč jednotlivými odvětvími ve vybrané zemi v kontextu znalostní ekonomiky.

V rámci druhého dílčího cíle bude analyzován vliv determinantů znalostní ekonomiky na mikroekonomické úrovni. Pro dané analýzy bude využit vícenásobný lineární regresní model (více o modelu viz část 3.2.2). Tento model je aplikován v rámci řady analýz (např. Nieto a Quevedo, 2005; Chen a Huang, 2009; Schneider a Spieth, 2013) postavených na stejné bázi, tedy při testech vztahů mezi jednou závislou proměnnou a více nezávislými proměnnými (zvolenými determinanty).

Pro splnění cíle C₂ bude nezbytné definovat determinanty (vstupy) znalostní ekonomiky a měřitelné výstupy (závislé proměnné).

Význam inovací, jako závislé proměnné, a jejich vlivu na celkovou produktivitu firem a ekonomický růst je dokládán řadou vědeckých studií (např. Klomp a Van Leeuwen, 1999; Boons a kol., 2013; Pradhan a kol., 2016). Inovace zvyšují výkonnost podniků, inovované produkty vedou ke zvyšování jejich konkurenceschopnosti (inovace produktů) a zároveň firmy prostřednictvím inovačních procesů transformují a zvyšují svoji interní schopnost adaptace změn (Neely a Hii, 1998). To vše ovlivňuje řada faktorů, které ovlivňují tvorbu a užití inovací (např. velikost firem, inovační kapacita firem, averze k riziku, tržní situace, inovační prostředí, objem dostupných znalostí a jiné).
Je zřejmé, že každá inovace nemusí vždy vést ke zvýšení výkonnosti či posílení konkurenční výhody podniku. Některé z inovací nejsou komercializovány, a tudíž často nepřispívají ani ke zvýšení příjmů podniku. Vzhledem k obtížné měřitelnosti inovací jako takových a jejich velké různorodosti je nezbytné uplatnit vědeckou abstrakci a za výstupní (závislé) proměnnou používat ve všech analýzách indikátor obrat firem plyňoucí z inovovaných produktů.

Analýzou nezávisle proměnných (determinantů inovačních aktivit) se zabývala řada zahraničních vědeckých týmů. Zkoumaly tyto stěžejní determinanty:

- Řízení a podpora firemních inovačních aktivit; tržní a zákaznická orientace (Atuahene-Gima, 1996, hodnocení inovační výkonnosti firem ve zpracovatelském průmyslu a službách v Austrálii; Birchall a kol., 1996, komparace technologických inovací malých a středních podniků ve Francii, Velké Británii a Portugalsku; Shaw, 1998, tvorba nových produktů ve zdravotnickém průmyslu ve Velké Británii; Balbontin a kol., 1999, faktory tvorby nových produktů v high-tech průmyslech v USA a Velké Británii);

- Interní /externí komunikace a spojování (Cho, 1996, analýza organizování inovačních aktivit ve firmě Samsung v Koreji; Balbontin a kol., 1999, faktory tvorby nových produktů v high-tech průmyslech v USA a Velké Británii; Tang, 1999, hodnocení organizační inovativnosti 871 profesionálních inženýrských společností v Singapuru);

- Strategické řízení lidských zdrojů v oblasti výzkumu a vývoje (McGourty a kol., 1996, behaviorální model inovací významných společností v USA; Keogh, 1999, analýza významu inovací a využívání znalostí při tvorbě inovací u MSP ve Skotsku);

Další skupina vědců rozděluje determinanty znalostní ekonomiky na interní a externí (Keizer a kol., 2002). Jejich přehled je uveden v tabulce 15.
Tabulka 15 Externí a interní determinanty inovací

<table>
<thead>
<tr>
<th>Studie</th>
<th>Externí Determinanty</th>
<th>Interní Determinanty</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forrest (1990); Cooke a Wills (1999); Dachs a Peters (2014)</td>
<td>Spolupráce s podniky mimo i v rámci skupin podniků</td>
<td>Strategie na zvýšení a stimulaci vnitřní kreativity</td>
</tr>
<tr>
<td>Le Blanc a kol. (1997); Birchall a kol. (1996); Hoffman a kol. (1998); Rodríguez-Pose a Di Cataldo, (2014)</td>
<td>Využití veřejných finančních zdrojů nebo podpor</td>
<td>Hoffman a kol. (1998); Hall a kol. (2013)</td>
</tr>
</tbody>
</table>

Aplikace jednotlivých determinantů nemusí vždy vést k pozitivním výsledkům a může tak docházet k selhání inovačních aktivit, respektive k selhávání v procesech jejich implementace (Maidique a Zirger, 1984; Klein a Knight, 2005). V současné době jednak chybí takzvaný univerzální klíč, který by poskytl návod, jaké determinanty využívat a dále chybí studie, které by analyzovaly vliv těchto determinantů a jejich kombinací napříč odvětvími národního hospodářství. Proto se ukazuje být nezbytným analyzovat na znalostech založené ekonomické prostředí inovačního leadera a určit (C₂):

- které determinanty znalostní ekonomiky působí v jednotlivých odvětvích národního hospodářství – mezi analyzované determinanty budou patřit skupiny proměnných analyzujících: spolupráci na inovacích s odlišnými partnery (např. podniky, univerzitami, dodavateli, zákazníky); zavádění inovací (služeb, produktů a procesů); poskytování veřejných finančních podpor (z rozpočtů EU a z národních rozpočtů); výdaje na výzkum a vývoj; firemní faktory (spojování podniků, outsourcing poboček a jiné); tržní orientaci a účast ve skupinách podniků;
- zda pokročilé kombinace těchto determinantů vedou k tvorbě signifikantnějších výsledků ovlivňujících růst firemního obratu z inovovaných produktů. Je totiž zřejmé, že inovace nevznikají v izolaci (Tödtling a kol., 2013; Borrás a Edquist, 2013) a že interakce mezi různými determinanty (interními a externími) inovačních aktivit, firemní kreativita, učení se a inovace jsou obousměrné, synergické a vedou k tvorbě efektů přelévání (Huber, 1998; Stejskal a Hájek, 2015).

\[H_1: \text{Firmy, které spolupracují na inovacích s univerzitami a výzkumnými centry, dosahují nižších výstupů než firmy, které této spolupráce nevyužívají.} \]

Inovační spolupráce je často determinována a podporována finančními prostředky z národních (lokálních) a evropských veřejných rozpočtů. Je však otázkou, do jaké míry je tato podpora efektivní a účinná v oblasti znalostně orientované ekonomiky. Rodríguez-Pose a Di Cataldo (2014) uvádí, že existuje jednak vztah mezi kvalitou státní správy a inovační výkonností v evropských regionech a dále že neefektivní a korumpující státní správa představuje jednu z hlavních bariér inovačních kapacit v rámci EU. Proto byla definována hypotéza H2:

\[H_2: \text{Poskytování veřejných prostředků na podporu inovačních aktivit firem vede k poklesu jejich výkonnosti.} \]

Hypotéza bude ověřena na vybraných hlavních průmyslových odvětvích dané země.

V následující části je naznačen metodický postup řešení disertační práce.
Určení výběrového souboru: Země EU 28 = regiony

Určení makro determinantů znalostní ekonomiky

Sběr a zpracování dat

Provedení DEA analýzy: Identifikace nejefektivnějších zemí

C1. Provedení makroekonomické analýzy efektivnosti působení vybraných determinantů ekonomik zemí EU 28 v kontextu znalostní ekonomiky.

V: Ve kterých zemích EU 28 byly v posledních třech letech nejefektivněji aplikovány zvolené determinanty znalostní ekonomiky?

C2: Mikroekonomická analýza vlivu determinantů inovativních aktivit firem napříč jednotlivými odvětvími ve vybrané zemi v kontextu znalostní ekonomiky.

H1: Firmy, které spolupracují na inovacích s univerzitami a výzkumnými centry, dosahují výšších výstupů než firmy, které této spolupráce nevyužívají.

H2: Poskytování veřejných prostředků na podporu inovací firem vedou k poklesu jejich výkonnosti.

Sekundární průzkum: Studium odborných studií a publikací, rešerše zahraničních článků

Způsob ověření hypotéz

Primární výzkum: Identifikace mikro determinantů znalostní ekonomiky

Sběr dat a jejich statistické zpracování

Verifikace hypotéz: regresní analýza

Analýza zjištění: formulace výsledků, návrh řešení a implikací

Diskuse a závěr

Konec
3.2 Popis výzkumných metod

V rámci disertační práce jsou aplikovány standardní vědecké metody a postupy. Jednak je využito empirických vědeckých postupů, jimiž je například pozorování, neboli popis problému a z něho vyvozená interpretace problému, dále měření, tedy kvantitativní srovnávání určitých vlastností srovnatelných objektů. Dále budou využity teoretické vědecké postupy, které zahrnují například indukci, tedy zkoumání jednotlivého faktu, na základě kterého je poté vyvozován obecný závěr, dedukci, kdy se z premis použitím určitých pravidel dospívá k novému tvrzení (závěru), nebo například srovnání, které je založeno na takových operacích, kdy jsou zkoumány podobnosti a rozdíly mezi zkoumanými jevy (Ochrana, 2009).

Na makroekonomické úrovni bude k měření efektivnosti více vstupních a výstupních proměnných využita analýza obalu dat. Analýza bude provedena v programu Microsoft Excel rozšířeného o nástroje této analýzy vytvořené profesorem Joem Zhu, který se touto analýzou, spolu s dalšími autory, dlouhodobě zabývá a měří efektivnost více vstupních i výstupních jednotek (např. Chen a Zhu, 2004; Cooper a kol., 2011; Zhu, 2014). K provádění analýz vstupních a výstupních proměnných je možné využívat i řady dalších metod a modelů, kterými je například (Bendat, 1976; Wiedmann, 2009):

• EE-IOA: Environmentally extended input–output analysis;
• SRIO: Single-region (or single-country) input–output model;
• MRIO: International multi-region input–output model;
• a další.

3.2.1 Analýza datových obalů

Analýza obalu dat (také DEA = Data envelopment analysis) je využívána jako specializovaný modelový nástroj pro hodnocení efektivnosti, výkonnosti či produkivity skupiny porovnatelných produkčních jednotek (homogenních jednotek) a to na základě velikosti vstupů a výstupů. Homogenními produkčními jednotkami (DMU = decision making units) se rozumí soubor jednotek, které produkují identické nebo ekvivalentní efekty, jež jsou označovány jako výstupy těchto jednotek (Staníčková a Melecký, 2011). Jedná se v podstatě o metodu optimalizačního lineárního programování, která se používá jak v soukromém, tak ve veřejném sektoru, a její výhodou je možnost analyzovat větší počet vstupů a výstupů bez nutnosti specifikace optimální hodnoty daného ukazatele, kterou vyžadují např. modely vícekriteriálního hodnocení (Borůvková a Kuncová, 2012). DEA je vhodná ke zjišťování technické efektivity jednotek, které jsou vzájemně porovnávací, čímž je rozumí, že používají stejné vstupy k produkování stejných výstupů, avšak v jejich výkonech jsou rozdíly. Výsledkem je poté zjištění, které z těchto jednotek jsou efektivní a které nikoli. V případě neefektivních jednotek lze metodou datových obalů zjistit, jak má taková jednotka redukovat své vstupy, popřípadě navýšit své výstupy, aby se stala efektivní.

DEA tak zahrnuje, jakožto neparametrický přístup, alternativní způsob pro získávání informací o pozorovaných jednotkách, kdy, na rozdíl od parametrických přístupů, jejichž cílem je optimalizace jediné regresní rovnice prostřednictvím dat, DEA optimalizuje každé jedno sledování s cílem vypočíst diskrétní, z bodů složenou (obr. 6), hranici danou souborem Pareto efektivních produkčních jednotek. Parametrické i neparametrické testy sice využívají veškeré informace obsažené v datech, nicméně parametrické analýzy využívají pouze jednu optimalizovanou regresní rovnici na všechny produkční jednotky, zatímco analýza obalu dat (neparametrický přístup) optimalizuje měření výkonu každé produkční jednotky zvláště, což má za následek porozumění každé jednotlivé produkční jednotce na rozdíl od metod pracujících s „průměrnými“ produkčními jednotkami. DEA analýza se tedy zaměřuje na jednotlivá pozorování reprezentována n optimalizacemi (jedna pro každé pozorování), na rozdíl od modelů zaměřujících se na průměry a na odhadování parametrů, které jsou spojeny s přístupy založenými na jednoduché optimalizaci (Charnes a kol., 2013).
Vstup
Výstup

Obrázek 6 Komparace DEA analýzy a regrese
Zdroj: Charnes a kol. (2013)

Obrázek 6 znázorňuje srovnání mezi DEA analýzou a regresí, kdy plná čára představuje hranici odvozenou z DEA analýzy zkoumající data o vybraných produkčních jednotkách (jednotlivé body na obr. 6), v tomto případě při využití různých množství jednoho vstupu za účelem výroby různých množství jednoho výstupu. Výpočty DEA analýzy, protože jsou generovány z aktuálních sledovaných údajů pro každou produkční jednotku, poskytují měření pouze relativní efektivnosti, která je pro každou produkční jednotku počítána ve vztahu k ostatním produkčním jednotkám za využití skutečných pozorovaných hodnot pro vstupy a výstupy jednotlivých produkčních jednotek. DEA vytváří z bodů složenou produkční plochu (plná čára, obr. 6), která z ekonomického hlediska představuje odhalenou nejlepší výrobní hranici – největší výstup, který je možné získat z jakékoli produkční jednotky vzhledem k její úrovni vstupů. Pro každou neefektivní produkční jednotku (ležící pod hranicí efektivnosti) DEA následně identifikuje zdroje a míru neefektivnosti pro každý ze vstupů a výstupů. Míra neefektivnosti je stanovena porovnáním jediné produkční jednotky nebo konvexní kombinace ostatních produkčních jednotek ležících na efektivní hranici a využívajících stejné množství vstupu a produkčních jednotek ležících na efektivní hranici a využívajících stejné množství výstupu. Vypočtená zlepšení (v každém ze vstupů a výstupů) pro neefektivní produkční jednotku naznačují možná zlepšení, kterých lze dosáhnout, protože tyto projekce jsou založeny na odhaleném nejlepším osvědčeném postupu srovnatelné produkční jednotky, která je umístěna na efektivní hranici (Charnes a kol., 2013).

Jednotlivé modely DEA analýzy vycházejí z Farrelova modelu z roku 1957, který měřil efektivitu jednotek s jedním vstupem a jedním výstupem. Tento model rozšířili roku 1978 o vicenásobné vstupy a výstupy, při uvažovaných konstantních výnosech z rozsahu, Charnes,
Cooper a Rhodes (CCR Model) a roku 1984 Banker, Charnes a Cooper (BCC) o variabilní výnosy z rozsahu. Mezi základní modely DEA analyzy tedy v současnosti patří CRR DEA modely, někdy označované jako CRS modely (constant returns to scale – konstantní výnosy z rozsahu), a BCC DEA modely (modifikace CCR modelu uvažující variabilní výnosy z rozsahu). BCC model je poté možno identifikovat ve třech podobách (Klieštík, 2009):

- VRS - variable returns to scale (variabilní výnosy z rozsahu);
- NIRS - non-increasing returns to scale (nerostoucí výnosy z rozsahu);
- NDRS - non-decreasing returns to scale (neklesající výnosy z rozsahu).

K matematické formulaci modelů analýzy obalu dat je zapotřebí uvažovat, že existuje soubor homogenních produkčních jednotek \(U_1, U_2, \ldots, U_n \), přičemž každá z jednotek produkuje \(r \) výstupů a přitom spotřebovává \(m \) vstupů (Dlouhý a kol., 2007). Poté lze označit \(X = \{x_{ij}, \text{ } i = 1, 2, \ldots, m, \text{ } j = 1, 2, \ldots, n\} \) jako matici vstupů a podobně \(Y = \{y_{ij}, \text{ } i = 1, 2, \ldots, r, \text{ } j = 1, 2, \ldots, n\} \) jako matici výstupů. Míru efektivnosti jednotky \(U_q \) lze následovně vyjádřit obecně jako (Jablonský a Dlouhý, 2004):

\[
\text{vážený součet výstupů} \quad \text{vážený součet vstupů} = \frac{\sum a_i y_{iq}}{\sum j p_j x_{jq}},
\]

kde \(v_j, \text{ } j = 1, 2, \ldots, m \) jsou váhy přiřazené j-tému vstupu a \(u_i, \text{ } i = 1, 2, \ldots, r \) jsou váhy přiřazené i-tému výstupu. Váhy v tomto modelu vystupují jako proměnné a nejsou známy.

DEA modely vycházejí z toho, že pro daný problém existuje tzv. množina přípustných možností, která je tvořená všemi možnými (přípustnými) kombinacemi vstupů a výstupů a je určena tzv. efektivní hranicí. Produkční jednotky, jejichž kombinace vstupů a výstupů leží na efektivní hranici, jsou považovány za jednotky efektivní, protože se nepředpokládá, že by mohla existovat jednotka, která by dosahovala stejných výstupů s nižšími vstupy, případně vyšších výstupů s nižšími vstupy (Jablonský a Dlouhý, 2004). Podstata modelů analýzy datových obalů spočívá v tom, že se při hodnocení efektivnosti produkční jednotky \(U_q \) maximalizuje její míra efektivnosti a to za předpokladu, že míra efektivnosti všech ostatních jednotek daného souboru nemůže být větší než 1 (100 %). Váhy všech vstupů a výstupů musí být přitom větší než nula a to tak, aby byly všechny uvažované charakteristiky v modelu zahrnuty (Dlouhý a kol., 2007). Dlouhý a kol.(2007) takový model formuluje jako úlohu lineárního lomeného programování následovně:

\[
\text{maximalizovat} \quad \frac{\sum a_i y_{iq}}{\sum j p_j x_{jq}},
\]
za podmínku
\[\frac{\sum u_i y_{iq}}{\sum u_i x_{jq}} \leq 1, \quad k = 1,2,\ldots, n, \]
\[u_i \geq \varepsilon, \quad i = 1,2,\ldots, r \]
\[v_j \geq \varepsilon, \quad j = 1,2,\ldots, m \]

kde \(\varepsilon \) je infinitezimální konstanta, která zaručuje, že vypočtené váhy vstupů a výstupů jsou větší než nula. Tato úloha pak může být převedena na standardní úlohu lineárního programování, přičemž v maticovém vyjádření je upravený model označován jako primární CRR model a má následující tvar:

maximalizovat \[z = u^T Y_q \] (3)
za podmínek \[v^T X_q = 1, \]
\[u^T Y - v^T X \leq 0, \]
\[u \geq \varepsilon, \]
\[u \geq \varepsilon. \]

CCR model tak může hodnotit jednak efektivnost, ale i superefektivnost produkčních jednotek (Staníčková a Melecký, 2011), pro libovolný počet vstupů a výstupů, kdy jak již bylo výše uvedeno, koeficient efektivnosti je vyjádřen poměrem mezi váženým součtem výstupů a váženým součtem vstupů a může nabývat hodnot v intervalu \(<0;1> \). Poté produkční jednotka s koeficientem efektivnosti ve výši 1 je považována za efektivní a produkční jednotka s koeficientem efektivnosti menším než 1 za neefektivní. U modelů, které počítají s tzv. superefektivností pak mohou jednotlivé produkční jednotky nabývat hodnot vyšších než 1, kdy tato skutečnost umožňuje následnou klasifikaci produkčních jednotek. Matematický přepis modelu má následující tvar (viz např. Jablonský, 2002; Staníčková a Melecký, 2011):

\[\min \theta - \varepsilon (\sum_{i=1}^{m} s_i^- + \sum_{r=1}^{s} s_r^+) \] (4)
\[\sum_{j=1}^{n} x_{ij} \lambda_j + s_i^- = \theta x_\emptyset, \quad i = 1,2,\ldots, m, \] (5)
\[\sum_{j=1}^{n} y_{rj} \lambda_j - s_r^+ = y_{r0}, \quad r = 1,2,\ldots, s, \] (6)
\[\lambda_j \geq 0, \quad j = 1,2,\ldots, n. \] (7)

kde:
\(\theta \) potřebná míra redukce vstupů pro dosažení efektivní hranice, \(\theta = <0;1> \);
\(\varepsilon \) infinitezimální konstanta;
\(s^+, s^- \) vektory přídavných proměnných v omezeních pro vstupy a výstupy;
\(\lambda \) vektor váh, které jsou přiřazené jednotlivým jednotkám, \(\lambda \geq 0, \lambda = (\lambda_1, \lambda_2, \ldots, \lambda_n) \);
\(x_{ij} \) hodnota i-tého vstupu pro danou jednotku, \(i = 1,2,\ldots, m; j = 1,2,\ldots, n; \)
\(y_{rj} \) hodnota i-tého výstupu pro danou jednotku, \(r = 1,2,\ldots, s; j = 1,2,\ldots, n; \)
Možnou nevýhodou DEA analýzy je fakt, že při zkoumání malého počtu porovnávaných jednotek a velkého počtu kritérií by mohlo dojít k označení všech jednotek za efektivní (Staníčková a Melecký, 2011). Tento problém by měl být eliminován zvoleným vzorkem zkoumaných zemí EU 28.

3.2.2 Vícenásobná regresní analýza

V ekonomické (popřípadě technické či jiné) praxi jsou často řešeny problémy týkající se vzájemné souvislosti ekonomických jevů (korelace) a jejich závislosti (regrese). V případě regrese nastává otázka, zda jedna či více nezávisle proměnných (tzv. prediktorů) ovlivňuje chování vybrané (sledované) veličiny, neboli závisle proměnné (Synek a kol., 2009; Budíková a kol., 2010). Samotný pojem regrese byl do statistiky zaveden roku 1886 britským učencem Francisem Galtonen v rámci spojení „regrese k průměru“, čímž označil fakt, že např. synové vysokých otců jsou obvykle nižší, než byli jejich otcové, zatímco synové malých otců jsou vyšší než jejich rodiče (podobně je tomu s jinými vlastnostmi, nejen u lidí). Galtonův název se z jeho výzkumů přenosu vlastností mezi generacemi rozšířil na jakékoliv zkoumání souvislostí mezi náhodnými veličinami a vznikla regresní analýza, která umožňuje získat informace o způsobu (tvaru) závislosti mezi kvantitativními znaky (Litschmannová, 2009).

Z řady pozorování vztahu mezi závislou (vysvětlovanou) proměnnou a jednou či více nezávislými (vysvětlujícími) proměnnými (tzv. regresory) je možné (Synek a kol., 2009):

• stanovit model závislosti (regrese) a to za pomoci matematických funkcí;
• odhadnout parametry regresní funkce, k čemuž nejčastěji dochází prostřednictvím metody nejmenších čtverců, popřípadě prostřednictvím bodového diagramu, který je ale méně přesný;
• posoudit kvalitu stanovené regresní funkce výpočtem charakteristik těsnosti (koeficienty a indexy korelace a determinace);
• provádět regresní odhady pro závisle proměnnou a to při libovolné kombinaci hodnot nezávisle proměnných.

Schneider a kol. (2010) obecně uvádějí tři typy statistického hodnocení, které regresní analýza umožňuje:

• popis/deskripce: vztahy mezi závislými a nezávislými proměnnými mohou být statisticky popsány prostřednictvím regresní analýzy;
• odhad: umožňuje odhadování hodnot závislých proměnných z pozorovaných hodnot nezávislých proměnných;
• předpovídání/prognóza: slouží k identifikaci rizikových faktorů majících vliv na výsledek a k stanovování jednotlivých prognóz.

Mezi nejznámější typy regresní analýzy patří zejména lineární a logistická regresní analýza, přičemž v rámci disertační práce bude využita lineární regresní analýza, která je využívána k analýzám lineárního vztahu mezi jednou závislou a více nezávislými proměnnými, kdy závislá proměnná musí být kontinuální, zatímco nezávislé proměnné mohou být kontinuální, binární nebo kategorické (Schneider a kol., 2010). Jsou-li sledovány dvě veličiny Y a x, mezi nimiž existuje závislost \(Y = f(x) \), je tento typ jednostranné závislosti označován jako závislost jednoduchá. Jelikož je sledována závislost proměnné Y na proměnných \(x_1, x_2, \ldots, x_k \), jedná se o mnohonásobnou (vícenásobnou) závislost. Tato závislost může být podle Litschmannové (2012) dvojího typu:

- funkční, která je charakteristická tím, že hodnotami nezávisle proměnných \(x_1, x_2, \ldots, x_k \) je jednoznačně dána hodnota proměnné \(Y \), kdy \(Y = f(x) \);
- stochastická, která je předmětem zkoumání regresní analýzy a u které závisle proměnná \(Y \) má charakter náhodné veličiny a nezávislé proměnné \(x_1, x_2, \ldots, x_k \) mohou být jak nenáhodnými (pevnými), tak náhodnými veličinami.

Kubanová (2008) stochasticky závislé veličiny popisuje jako dvě náhodné veličiny \(X \) a \(Y \), u nichž změna hodnoty jedné náhodné veličiny vyvolá změnu rozdělení pravděpodobnosti druhé náhodné veličiny, přičemž pro stochastickou závislost je charakteristické, že:

- změny závislé proměnné jsou vysvětlovány všemi, ale jen některými činiteli těchto změn;
- je bráno v úvahu působení náhodných jevů a připouštěna možnost chyb.

Je zřejmé a potvrzuje to i Kubanová (2008), že ve většině praktických příkladů se nepodaří vysvětlit změny závisle proměnné pomocí pouze jedné nezávislé proměnné. Proto bude současně zkoumán vliv více regresorů prostřednictvím vícenásobné lineární regresní funkce, jež nabývá v obecné rovině tvaru (Budíková a kol., 2010):

\[
Y_i = \beta_0 + \sum_{j=1}^{k} \beta_j x_{ij} + e_i, \quad i = 1, \ldots, n, \tag{8}
\]

kde:

\(x_{ij} \) jsou nenáhodná čísla značící i-tou hodnotu pozorování pro j-tý prediktor \(x_j \),

\(i = 1, \ldots, n, j = 0, 1, \ldots, k, \)
\[\beta_j \text{ jsou neznámé (nenáhodné) parametry, } j = 0, 1, \ldots, k, \]
\[e_i \text{ je náhodná chyba při } i\text{-tému pozorování, } i = 1, \ldots, n. \]

Funkce \(\beta_0 + \sum_{j=1}^{k} \beta_j x_{ij} \) je podmíněná střední hodnota závisle proměnné veličiny Y při pevně daných hodnotách prediktorů \(x_{j}, j = 1, \ldots, k \).

Dalším typem lineární regrese je tzv. polynomická regrese (Jorgensen, 2004; Bardsiri a kol., 2014), ve které je vztah mezi závislou proměnnou a nezávislými proměnnými modelován jako \(m \)-tý stupeň polynomicky, přičemž fungce má následující tvar (Šilhavý a kol., 2016):
\[Y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2}^2 + \cdots + \beta_j x_{ij}^m + e_i, \quad i = 1, \ldots, n. \] (9)

Lineární model může být zapsán i maticově (Kubanová, 2008):
\[Y = X\beta + \epsilon. \] (10)

kde:
\[Y = (Y_1, Y_2, \ldots, Y_n)' \text{ je náhodný vektor a} \]
\[X \text{ matice } = \begin{pmatrix} 1 & \cdots & x_{1k} \\ \vdots & \ddots & \vdots \\ 1 & \cdots & x_{nk} \end{pmatrix}, \]

kde:
\[x_{ij} \text{ je hodnota } i\text{-tého pozorování proměnné } x_j, \quad i = 1, 2, \ldots, n, j = 1, 2, \ldots, k. \]

Obecně tedy lineární regresní modely popisují závislost mezi závislou proměnnou a jednou či více nezávislými proměnnými, přičemž cílem těchto modelů je nalezení nejvhodnější přímky, která by minimalizovala součet čtverců reziduí lineárního regresního modelu. Nejběžnější metodou je metoda nejmenších čtverců, která slouží k nalezení takového řešení, aby součet druhých mocnin chyb nalezeného řešení byl minimální. Aby bylo možné pro odhad vektoru regresních parametrů použít metodu nejmenších čtverců, musí být splněny základní předpoklady lineárního regresního modelu (Litschmannová, 2009):

- Náhodné chyby \(\epsilon_i \) mají normální rozdělení.
- \(E(\epsilon_i) = 0 \), tj. střední hodnota náhodné složky je nulová aneb náhodná složka nepůsobí systematickým způsobem na hodnoty vysvětlované proměnné Y.
- \(D(\epsilon_i) = \sigma^2 \), tj. rozptyl náhodné složky je konstantní aneb variabilita náhodné složky nezávisí na hodnotách vysvětlujících proměnných a tudíž i podmíněná variabilita vysvětlované proměnné nezávisí na hodnotách vysvětlujících proměnných a je rovna neznámé kladné konstantě \(\sigma^2 \).
• $\text{cov}(\varepsilon_i, \varepsilon_j) = 0$, tj. hodnoty náhodné složky jsou nekorelované, z čehož vyplývá i nekorelovanost různých dvojic pozorování vysvětlované proměnné Y.

• $h(X) = k + 1 < n$. Tato podmínka vyžaduje, aby mezi vysvětlujícími proměnnými nebyla funkční lineární závislost, tedy v matici F nesmí existovat lineárně závislé sloupce. Počet vysvětlujících proměnných nesmí být pochopitelně větší než počet pozorování.

• V případě vícenásobné regrese nesmí mezi vysvětlujícími proměnnými existovat silná korelace, tzv. multikolinearita, tj. mezi proměnnými f_{ij} pro $j = 1, 2, \ldots, k$ nesmí existovat lineární závislost.

Za využití běžného odhadu nejmenších čtverců pak může být vektor odhadovaných nejmenších čtverců zapsán jako (Šilhavý a kol., 2016):

\[
\widehat{\beta} = (X^T X)^{-1}X^T y.
\]

V případě více nezávislých proměnných je často využívána postupná regrese (stepwise regression), jejímž cílem je maximalizace odhadování za pomoci využití minimálního množství nezávislých proměnných (Shepperd a MacDonell, 2012; Šilhavý a kol., 2016).

K následnému posouzení schopnosti regresních modelů popsat pozorovaná data slouží koeficient determinance r^2, který je často označován jako míra plnatosti regresního modelu nebo regresního odhadu a má následující tvar (Schneider a kol., 2010):

\[
r^2 = \frac{\sum_{i=1}^{n}(\hat{y}_i - \bar{y})^2}{\sum_{i=1}^{n}(y_i - \bar{y})^2} = \frac{\text{vysvětlený rozptyl}}{\text{celkový rozptyl}} = \frac{\text{vysvětlená změna}}{\text{celková změna}}
\]

kde:

n je počet pozorování;

\hat{y} je odhadovaná hodnota závislé proměnné pro i-té pozorování, vypočtené z regresní rovnice;

y_i je naměřená hodnota závislé proměnné pro i-té pozorování;

\bar{y} je průměr všech n pozorování závislé proměnné.

Koeficient determinance představuje část celkového rozptylu, která je vysvětlena. Čím bližší pozorovaným hodnotám regresního modelu y_i leží hodnoty odhadované \hat{y}_i, tím je koeficient determinance bližší 1 a regresní model je přesnější (Schneider a kol., 2010).

Možnou nevýhodou vícenásobné regresní analýzy je fakt, že se zaměřuje na hlavní efekty nezávislých proměnných na proměnnou závislou. To vede v řadě případů k tomu, že se podaří
vytvrdit jen nízké procento rozptylu v datech. V rámci disertační práce jsou ale právě tyto efekty stěžejními, proto bude analýza využita.
4 ANALÝZA MAKROEKONOMICKÝCH A MIKROEKONOMICKÝCH DETERMINANTŮ ZNALOSTNÍ EKONOMIKY

V předchozích částech byla vymezena problematika znalostní ekonomiky a vzniku efektů přelévání znalostí a jejich významu v současném globalizovaném, na znalostech založeném, ekonomickém systému. Řada ekonomik (a firem) se ale potýká s problémy, jak správně využívat determinantů znalostní ekonomiky k ovlivnění národního (popř. regionálního či firemního) ekonomického růstu a selhávají tak ve snaze stát se znalostními, či na znalostech založenými, a to jak na mikroekonomické, tak i makroekonomické úrovni. V zahraničních studiích je možno se setkat s mikroekonomickými (např. Cappelli a kol., 2014; Choi a Williams, 2014) nebo makroekonomickými (např. Van Winden a kol., 2007; Andrews a de Serres, 2016) analýzami vybraných zemí, popřípadě vybraných odvětví v rámci zvolených států, nikoli ale s rozsáhlými komparacemi států, které by zahrnovaly obě tyto úrovně. V následujících částech je proto provedena jednak rozsáhlá analýza efektivností působení vybraných makroekonomických determinantů ekonomik zemí EU 28 v kontextu znalostní ekonomiky a následně analýza působení vybraných mikroekonomických determinantů znalostní ekonomiky. V poslední části této kapitoly jsou poté shrnuty výsledky obou analýz a doporučeny praktické implikace pro země, které nejsou schopen efektivně využívat zvolených determinantů.

4.1 Analýza efektivnosti působení vybraných makroekonomických determinantů ekonomik zemí EU 28 v kontextu znalostní ekonomiky

Přesto, že doposud nebylo provedeno velké množství analýz, které by srovnávaly efektivnost zemí EU 28 v rámci využívání determinantů ekonomik v kontextu znalostní ekonomiky, je zřejmé, že jsou nezbytná i tato mezinárodní srovnání, která by poskytla národním vládám a tvůrcům veřejných politik systematické srovnání a návod pro rozvíjení vědy, technologie a inovačních politik (Nelson, 1982; Cooke a Leydesdorff, 2006). Výsledky v části 4.1.3 totiž ukazují, že většina ekonomik nevyužívala efektivně vybraných determinantů a pouze 9 zemí bylo možné označit na základě výsledků analýzy za efektivní.

4.1.1 Zvolená analytická metoda a datový soubor

K provedení makroekonomické analýzy efektivnosti působení vybraných determinantů ekonomik zemí EU 28 v kontextu znalostní ekonomiky byla využita analýza datových obalů (DEA). Tato metoda je, jak bylo zmíněno v předchozí části, využívána jako specializovaný
modelový nástroj pro hodnocení efektivnosti, výkonnosti či produktivity skupiny porovnatelných produkčních jednotek (homogenních jednotek, v tomto případě zemí EU 28 vymezených jako regiony) a to na základě velikosti vstupů a výstupů. Výsledkem analýz (viz část 4.1.3) je zjištění, které z těchto jednotek jsou efektivní a které nikoli v aplikaci zvolených determinantů znalostní ekonomiky (viz tabulka 16). V případě neefektivních jednotek lze metodou datových obalů zjistit, jak má taková jednotka regulovat či upravit své vstupy, popřípadě navýšit své výstupy, aby se stala efektivní.

V rámci analýz jsou nejběžněji využívané CRS (Constant returns to scale) nebo VRS (Variable returns to scale) modely12, které jsou orientovány na vstupy. Jejich cílem je zjistit, jakým způsobem je zapotřebí zlepšit (změnit) vstupní charakteristiky hodnocených jednotek tak, aby se jednotky staly efektivními. Tedy k jaké změně na vstupech (změna zvolených determinantů) by muselo dojít, aby byly země EU 28 efektivními při využívání těchto determinantů. Druhou z nejčastěji využívaných možností jsou CRS a VRS modely orientované na výstupy. Jejich cílem je maximalizace výstupů při daných vstupech (udávají, jak by se musely změnit zvolené výstupy, aby docházelo k efektivnímu využívání současných vstupů; Dlouhý a kol., 2007). Z charakteru jednotlivých modelů byly pro následující analýzy zvoleny modely pracující s variabilními výnosy z rozsahu a to jednak orientované na vstupy, tak i modely, které byly orientovány na výstupy. Jako zdroj dat byly využity databáze Eurostatu13.

4.1.2 Vybrané makroekonomické determinanty

Ke splnění cíle C1, který byl zaměřen na makroekonomickou analýzu efektivnosti působení vybraných determinantů ekonomik zemí EU 28 v kontextu znalostní ekonomiky, a zodpovězení výzkumné otázky V1, pomocí které měly být identifikovány země EU 28, které v daném období nejefektivněji využívaly zvolené determinanty znalostní ekonomiky, byla nezbytná volba takových determinantů znalostní ekonomiky, které jsou všeobecně uznávány a je možné je porovnávat napříč všemi státy EU 28. Chen a Dahlman (2005) uvádějí, že kontinuální investice do vzdělávání, inovací, informačních a komunikačních technologií, stejně jako přínosy ekonomické a institucionálního prostředí, vedou k růstu tvorby a využívání znalostí v ekonomické produkci, a následně k dlouhodobému ekonomickému růstu.

12 CRS modely předpokládají konstantní výnosy z rozsahu (constant returns to scale), takže uvažují, že například dvojnásobné zvětšení vstupů povede k dvojnásobnému zvětšení i výstupů. Naopak VRS modely počítají s variabilními výnosy z rozsahu (variable returns to scale), kdy může docházet k jejich růstu i poklesu (Dlouhý a kol., 2007).
Zahraniční autoři (např. Dahlman, 2000; Chen a Dahlman, 2005; Winden a kol., 2007) uvádějí čtyři hlavní pilíře znalostní ekonomiky, jimiž jsou:

• **ekonomický a institucionální režim**, který napomáhá k tvorbě dobrých veřejných politik a institucí, které umožňují efektivní mobilizaci a alokaci zdrojů, a který podněcuje vznik takového prostředí, ve kterém dochází k efektivnímu využívání stávajících poznatků, vytváření nových znalostí a rozvoji podnikání;

• **vzdělaná a kvalifikovaná populace**, která může průběžně aktualizovat, přizpůsobovat a zdokonalovat své dovednosti k efektivnímu využívání a tvorbě znalostí;

• **moderní a dynamická informační infrastruktura**, která může vést k usnadnění a zefektivnění komunikace, šíření a zpracovávání informací a znalostí;

• **efektivní (inovační) systém výzkumných center, univerzit, think-tanků**, konzultantů, firem a dalších organizací, které mohou proniknout do rostoucího globálního skladu znalostí a následně vstřebat a přizpůsobit znalosti z něho získané pro místní potřeby a vytvořit nové místní znalosti, stejně jako držet krok se znalostní revolucí.

14 Think-tank je instituce, korporace nebo skupina, která vznikla za účelem studia konkrétního problému (např. vědeckého, politického), a jejímž cílem je poskytování informací, nápadů a rad (Dewar a Dutton, 1986; Lindeke a kol., 2009).
Tabulka 16 Zvolené makroekonomické determinanty znalostní ekonomiky

<table>
<thead>
<tr>
<th>Pilíř</th>
<th>Proměnná</th>
<th>Popis výběru proměnné</th>
<th>Proměnná</th>
<th>Popis výběru proměnné</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ekonomic ký a institucionální režim</td>
<td>Vládní výdaje na VaV (v Eurech)</td>
<td>Účinné a efektivní využívání veřejných prostředků, zejména v oblasti výzkumu a vývoje (Haskel a Wallis, 2013), může vést k pozitivním efektům a podpoře ekonomického růstu v dlouhém období (Gemmell a kol., 2015)</td>
<td>Hrubý domácí produkt (v Eurech)</td>
<td>Hrubý domácí produkt (HDP) a jeho růst představuje jeden z nejčastěji využívaných indikátorů ekonomického růstu (Grier a Tullock, 1989; Chen a Dahlman, 2005; Provazníková a kol., 2009; Kožiak a kol., 2012; Baker a kol., 2016)</td>
</tr>
<tr>
<td>Vzdělaná a kvalifikovaná populace</td>
<td>Vysokoškolský vzdělání (celkem): Počet osob s terciálním vzděláním ve věku 15-74let</td>
<td>Počet osob s terciálním vzděláním umožňuje vznik nových znalostí, jako i posílení absorpční kapacity jednotlivých zemí i firem (Barro, 2013; Hanushek, 2013)</td>
<td>Přidaná hodnota (v Eurech)</td>
<td>Přidaná hodnota představuje další z možných determinantů ekonomického růstu a identifikátor růstu komerčního zisku (Guan a Chen, 2012; Hudec a Procházková, 2013)</td>
</tr>
<tr>
<td>Moderní a dynamická informační infrastruktura</td>
<td>Zaměstnanci v ICT (celkem)</td>
<td>ICT sektor zaznamenal v posledních letech rapidní růst a nabyl tak na stále větším ekonomickém významu (Holm a Østergaard, 2015) a stále více tak ovlivňuje firemní růst a inovační schopnosti (Hall a kol., 2013; Tarutė a Gatautis, 2014), přičemž počet a kvalita (schopností) jeho zaměstnanců představuje jeden z hlavních jeho determinantů (Jin a Cho, 2015)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Efektivní (inovační) systém</td>
<td>Pracovníci ve VaV (celkem): Počet zaměstnanců pracujících v oblasti vědy a techniky ve věku 15-74let</td>
<td>Zaměstnanci v oblasti vědy a techniky představují jeden ze základních prvků, jehož efektivní využití může vést k většímu šíření znalostí a vzniku synergí, jako i ke vzniku více inovativních výstupů, a ovlivňovat tak kontinuální ekonomický růst (Yanadori a Cui, 2013; Gelec a Wagner, 2014).</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Zdroj: vlastní
4.1.3 Výsledky analýz

V následující části jsou prezentovány výsledky makroekonomických analýz efektivnosti působení vybraných determinantů ekonomik zemí EU 28 v kontextu znalostní ekonomiky. Nejdříve byl použit vstupově-orientovaný model počítající s variabilními výnosy z rozsahu, jehož výsledky jsou zachyceny v tabulce 17. Jednotky (země EU 28), které efektivně aplikovaly zvolené determinany, dosahovaly míry efektivnosti 1,000. Pokud zvolené jednotky nedosahovaly hodnoty efektivnosti rovno 1,000, nebyly považovány za efektivní, přičemž čím byla hodnota efektivnosti hodnocených jednotek nižší, tím méně byla daná země efektivní v rámci zvoleného souboru zemí (jednotek).
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Původní</td>
<td>Upravěná</td>
<td>Původní</td>
<td>Upravěná</td>
<td>Původní</td>
<td>Upravěná</td>
</tr>
<tr>
<td>Belgie</td>
<td>0.91159</td>
<td>658600</td>
<td>487889.3</td>
<td>2368</td>
<td>1381.8</td>
<td>138</td>
<td>125.8</td>
</tr>
<tr>
<td>Bulharsko</td>
<td>0.26660</td>
<td>78711</td>
<td>20984.4</td>
<td>1124</td>
<td>191.4</td>
<td>67.5</td>
<td>16.4</td>
</tr>
<tr>
<td>Česká republika</td>
<td>0.40923</td>
<td>504383</td>
<td>206409.9</td>
<td>1269</td>
<td>519.3</td>
<td>145.1</td>
<td>50.2</td>
</tr>
<tr>
<td>Dánsko</td>
<td>1.00000</td>
<td>148052</td>
<td>148052</td>
<td>1086</td>
<td>1086</td>
<td>110.1</td>
<td>110.1</td>
</tr>
<tr>
<td>Německo</td>
<td>1.00000</td>
<td>10974300</td>
<td>10974300</td>
<td>14245</td>
<td>14245</td>
<td>1235.9</td>
<td>1235.9</td>
</tr>
<tr>
<td>Estonsko</td>
<td>0.51956</td>
<td>31097</td>
<td>16156.7</td>
<td>315</td>
<td>83.7</td>
<td>16.7</td>
<td>8.7</td>
</tr>
<tr>
<td>Irsko</td>
<td>1.00000</td>
<td>131900</td>
<td>131900</td>
<td>1041</td>
<td>1041</td>
<td>76.3</td>
<td>76.3</td>
</tr>
<tr>
<td>Řecko</td>
<td>0.64406</td>
<td>331727</td>
<td>213651.7</td>
<td>1703</td>
<td>577.5</td>
<td>75.5</td>
<td>48.6</td>
</tr>
<tr>
<td>Španělsko</td>
<td>0.83609</td>
<td>2762385</td>
<td>1055361.5</td>
<td>9567</td>
<td>5571.1</td>
<td>532.6</td>
<td>431.5</td>
</tr>
<tr>
<td>Francie</td>
<td>1.00000</td>
<td>6248990</td>
<td>6248990</td>
<td>11378</td>
<td>11378</td>
<td>760.6</td>
<td>760.6</td>
</tr>
<tr>
<td>Chorvatsko</td>
<td>0.35598</td>
<td>92105</td>
<td>32787.3</td>
<td>498</td>
<td>175.6</td>
<td>42.3</td>
<td>15.1</td>
</tr>
<tr>
<td>Itálie</td>
<td>1.00000</td>
<td>2653600</td>
<td>2653600</td>
<td>5512</td>
<td>5512</td>
<td>544.3</td>
<td>544.3</td>
</tr>
<tr>
<td>Kypr</td>
<td>0.81494</td>
<td>14731</td>
<td>12004.8</td>
<td>202</td>
<td>75.4</td>
<td>10.1</td>
<td>8.1</td>
</tr>
<tr>
<td>Lotyšsko</td>
<td>0.40447</td>
<td>32846</td>
<td>32851.2</td>
<td>360</td>
<td>104.3</td>
<td>25.3</td>
<td>10.2</td>
</tr>
<tr>
<td>Litva</td>
<td>0.51966</td>
<td>55346</td>
<td>28761.2</td>
<td>617</td>
<td>149.8</td>
<td>25.5</td>
<td>13.3</td>
</tr>
<tr>
<td>Lucembursko</td>
<td>1.00000</td>
<td>147788</td>
<td>147788</td>
<td>117</td>
<td>117</td>
<td>8.5</td>
<td>8.5</td>
</tr>
<tr>
<td>Maďarsko</td>
<td>0.37532</td>
<td>189839</td>
<td>71290.2</td>
<td>1339</td>
<td>438.3</td>
<td>89.2</td>
<td>33.5</td>
</tr>
<tr>
<td>Malta</td>
<td>1.00000</td>
<td>1999</td>
<td>1999</td>
<td>46</td>
<td>46</td>
<td>6.2</td>
<td>6.2</td>
</tr>
<tr>
<td>Nizozemsko</td>
<td>0.78135</td>
<td>1319387</td>
<td>867634.6</td>
<td>3315</td>
<td>2489.3</td>
<td>284.1</td>
<td>222</td>
</tr>
<tr>
<td>Rakousko</td>
<td>1.00000</td>
<td>425222</td>
<td>425222</td>
<td>1017</td>
<td>1017</td>
<td>99.7</td>
<td>99.7</td>
</tr>
<tr>
<td>Polsko</td>
<td>0.45336</td>
<td>979421</td>
<td>444030.9</td>
<td>5569</td>
<td>1615.3</td>
<td>299</td>
<td>135.6</td>
</tr>
<tr>
<td>Portugalsko</td>
<td>0.65046</td>
<td>189330</td>
<td>123150.6</td>
<td>1149</td>
<td>708.2</td>
<td>80.2</td>
<td>52.2</td>
</tr>
<tr>
<td>Rumunsko</td>
<td>0.39215</td>
<td>267643</td>
<td>104955.6</td>
<td>1860</td>
<td>635.5</td>
<td>120.4</td>
<td>47.2</td>
</tr>
<tr>
<td>Slovensko</td>
<td>0.40488</td>
<td>127831</td>
<td>51705.2</td>
<td>334</td>
<td>135.1</td>
<td>29.9</td>
<td>12.1</td>
</tr>
<tr>
<td>Slowenstvo</td>
<td>0.44841</td>
<td>129575</td>
<td>58102.6</td>
<td>675</td>
<td>302.7</td>
<td>56.5</td>
<td>25.3</td>
</tr>
<tr>
<td>Finsko</td>
<td>0.60536</td>
<td>633712</td>
<td>184109.4</td>
<td>1275</td>
<td>764.8</td>
<td>99.3</td>
<td>60.1</td>
</tr>
<tr>
<td>Švédsko</td>
<td>0.83305</td>
<td>566901</td>
<td>472254.6</td>
<td>2002</td>
<td>1667.8</td>
<td>191.4</td>
<td>149</td>
</tr>
<tr>
<td>Spojené království</td>
<td>1.00000</td>
<td>2706303</td>
<td>2706303</td>
<td>13670</td>
<td>13670</td>
<td>1066.6</td>
<td>1066.6</td>
</tr>
</tbody>
</table>

Zdroj: vlastní
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Původní</td>
<td>Upravená</td>
<td>Původní</td>
<td>Upravená</td>
<td>Původní</td>
<td>Upravená</td>
</tr>
<tr>
<td>Belgie</td>
<td>1.08626</td>
<td>658600</td>
<td>545129,3</td>
<td>2368</td>
<td>1510,9</td>
<td>138</td>
<td>138</td>
</tr>
<tr>
<td>Bulharsko</td>
<td>3.41950</td>
<td>78711</td>
<td>78711</td>
<td>1124</td>
<td>633,6</td>
<td>67,5</td>
<td>47,6</td>
</tr>
<tr>
<td>Česká republika</td>
<td>2.38189</td>
<td>504383</td>
<td>504383</td>
<td>1269</td>
<td>1269</td>
<td>145,1</td>
<td>120,8</td>
</tr>
<tr>
<td>Dánsko</td>
<td>1.00000</td>
<td>140852</td>
<td>140852</td>
<td>1086</td>
<td>1086</td>
<td>110,1</td>
<td>110,1</td>
</tr>
<tr>
<td>Německo</td>
<td>1.00000</td>
<td>10974300</td>
<td>10974300</td>
<td>14245</td>
<td>14245</td>
<td>1235,9</td>
<td>1235,9</td>
</tr>
<tr>
<td>Estonsko</td>
<td>2.39436</td>
<td>31097</td>
<td>31097</td>
<td>315</td>
<td>197,6</td>
<td>16,7</td>
<td>16,7</td>
</tr>
<tr>
<td>Irsko</td>
<td>1.00000</td>
<td>131900</td>
<td>131900</td>
<td>1041</td>
<td>1041</td>
<td>76,3</td>
<td>76,3</td>
</tr>
<tr>
<td>Řecko</td>
<td>1.49347</td>
<td>331727</td>
<td>331727</td>
<td>1703</td>
<td>801</td>
<td>75,5</td>
<td>75,5</td>
</tr>
<tr>
<td>Španělsko</td>
<td>1.17284</td>
<td>2762385</td>
<td>1266122,3</td>
<td>9567</td>
<td>6605</td>
<td>532,6</td>
<td>512,6</td>
</tr>
<tr>
<td>Francie</td>
<td>1.00000</td>
<td>6248990</td>
<td>6248990</td>
<td>11378</td>
<td>11378</td>
<td>760,6</td>
<td>760,6</td>
</tr>
<tr>
<td>Chorvatsko</td>
<td>2.98296</td>
<td>92105</td>
<td>92105</td>
<td>498</td>
<td>498</td>
<td>42,3</td>
<td>42,3</td>
</tr>
<tr>
<td>Itálie</td>
<td>1.00000</td>
<td>2653600</td>
<td>2653600</td>
<td>5512</td>
<td>5512</td>
<td>544,3</td>
<td>544,3</td>
</tr>
<tr>
<td>Kypr</td>
<td>1.35952</td>
<td>14731</td>
<td>14731</td>
<td>202</td>
<td>101,5</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Lotyšsko</td>
<td>2.78460</td>
<td>32846</td>
<td>32846</td>
<td>360</td>
<td>282,3</td>
<td>25,3</td>
<td>25,3</td>
</tr>
<tr>
<td>Litva</td>
<td>2.17900</td>
<td>55536</td>
<td>55536</td>
<td>617</td>
<td>324,7</td>
<td>25,5</td>
<td>25,5</td>
</tr>
<tr>
<td>Lucembursko</td>
<td>1.00000</td>
<td>147788</td>
<td>147788</td>
<td>117</td>
<td>117</td>
<td>8,5</td>
<td>8,5</td>
</tr>
<tr>
<td>Maďarsko</td>
<td>2.65759</td>
<td>189839</td>
<td>189839</td>
<td>1339</td>
<td>1177,5</td>
<td>89,2</td>
<td>89,2</td>
</tr>
<tr>
<td>Malta</td>
<td>1.00000</td>
<td>1999</td>
<td>1999</td>
<td>46</td>
<td>46</td>
<td>6,2</td>
<td>6,2</td>
</tr>
<tr>
<td>Nizozemí</td>
<td>1.23433</td>
<td>1319387</td>
<td>1087321,1</td>
<td>3315</td>
<td>3214,6</td>
<td>284,1</td>
<td>284,1</td>
</tr>
<tr>
<td>Rakousko</td>
<td>1.00000</td>
<td>425222</td>
<td>425222</td>
<td>1017</td>
<td>1017</td>
<td>99,7</td>
<td>99,7</td>
</tr>
<tr>
<td>Polsko</td>
<td>1.94851</td>
<td>979421</td>
<td>979421</td>
<td>5569</td>
<td>3572,9</td>
<td>299</td>
<td>299</td>
</tr>
<tr>
<td>Portugalsko</td>
<td>1.50503</td>
<td>189330</td>
<td>189330</td>
<td>1149</td>
<td>1027,2</td>
<td>80,2</td>
<td>80,2</td>
</tr>
<tr>
<td>Rumunsko</td>
<td>2.27747</td>
<td>267643</td>
<td>267643</td>
<td>1860</td>
<td>1579,2</td>
<td>120,4</td>
<td>120,4</td>
</tr>
<tr>
<td>Slovinsko</td>
<td>2.62329</td>
<td>127831</td>
<td>127831</td>
<td>334</td>
<td>334</td>
<td>29,9</td>
<td>28,8</td>
</tr>
<tr>
<td>Slovensko</td>
<td>2.27546</td>
<td>129575</td>
<td>129575</td>
<td>675</td>
<td>675</td>
<td>56,5</td>
<td>56,5</td>
</tr>
<tr>
<td>Finsko</td>
<td>1.55548</td>
<td>633712</td>
<td>271312,9</td>
<td>1275</td>
<td>1237,8</td>
<td>99,3</td>
<td>99,3</td>
</tr>
<tr>
<td>Švédsko</td>
<td>1.15841</td>
<td>566901</td>
<td>566901</td>
<td>2002</td>
<td>2002</td>
<td>191,4</td>
<td>177,6</td>
</tr>
<tr>
<td>Spojené království</td>
<td>1.00000</td>
<td>2706303</td>
<td>2706303</td>
<td>13670</td>
<td>13670</td>
<td>1066,6</td>
<td>1066,6</td>
</tr>
</tbody>
</table>

Zdroj: vlastní
Z tabulky 17 je zřejmé, že země, které efektivně využívaly zvolených determinantů znalostní ekonomiky, bylo celkem 9 (přibližně 32 % zemí). Mezi tyto země patřily:

- Dánsko,
- Německo,
- Irsko,
- Francie,
- Itálie,
- Lucembursko,
- Malta,
- Rakousko,
- Spojené království.

Naopak mezi země, které byly v rámci analýz vyhodnoceny za nejméně efektivní, patřilo například:

- Bulharsko (nejméně efektivní země),
- Chorvatsko,
- Maďarsko,
- Rumunsko,
- a další.

Výhodou analýzy datových obalů je fakt, že pro země, které byly v rámci analýz vyhodnoceny jako neefektivní, navrhuje zvolená metoda změny, které by měly přispět k dosažení míry efektivnosti 1,000. V případě vstupově-orientovaného modelu se jedná primárně o změny na straně vstupů, popřípadě i na dílčí změny na straně výstupů. V tabulce 17 jsou proto vždy uvedeny skutečné původní hodnoty, které vstupovaly do modelů, a které zveřejňuje Eurostat, a dále hodnoty upravené, které byly navrženy v rámci výsledků modelů. Je zřejmé, že země by měly značně snížit hodnoty vstupových proměnných, protože v současné době dochází k nadměrnému poskytování vládních výdajů na vědu a výzkum, „produkci“ vysokoškolsky vzdělaných, ale i k nadměrné zaměstnanosti v ICT a v oblasti vědy a výzkumu v rámci většiny zemí EU 28 (19 z 28, přibližně 68 %). Tyto hodnoty jsou tak mnohem vyšší vzhledem k výkonnosti zemí, která byla vyjádřena hrubým domácím produktem a přidanou hodnotou těchto zemí.
Jako příklady doporučených změn jsou vybrány Bulharsko, jako nejméně efektivní země, a Česká republika. V případě Bulharska by muselo dojít ke snížení zvolených determinantů následujícím způsobem:

- vládní výdaje na VaV: ze 78 711 tis. Eur na 20 984,4 tis. Eur,
- počet vysokoškolsky vzdělaných: z 1 124 tis. na 191,4 tis.,
- zaměstnanci v ICT: z 67,5 tis. na 16,4 tis.,
- pracovníci ve VaV: z 697 tis. na 127,5 tis.,

- vládní výdaje na VaV: z 504 383 tis. Eur na 206 409,9 tis. Eur,
- počet vysokoškolsky vzdělaných: z 1 269 tis. na 519,3 tis.,
- zaměstnanci v ICT: z 145,1 tis. na 50,2 tis.,
- pracovníci ve VaV: z 1 553 tis. na 635,5 tis.,

při současném zvýšení HDP z 166 964,1 mil. Eur na 168 121,2 mil. Eur a při zachování stejné přidané hodnoty.

V tabulce 18 jsou uvedeny výsledky výstupově-orientovaného modelu s variabilními výnosy z rozsahu, který je naopak zaměřen na změny výstupů, při zachování (popř. mírných změnách) vstupních proměnných, neboli ukazuje, jak by měla vzrůst výkonnost jednotlivých ekonomik zemí EU 28, při zachování současné velikosti vybraných vstupů. Země je opět považována za efektivní, pokud dosahuje hodnoty efektivnosti rovně 1,000. Pokud je naměřená hodnota vyšší než 1,000, země je neefektivní a je zapotřebí navýšení jejich výstupů (čím je hodnota vyšší, tím více je země neefektivní). Efektivní země jsou shodné, jako v případě vstupově-orientovaného modelu a za nejméně efektivní zemi bylo opět vyhodnoceno Bulharsko.

Stejně, jako v předchozím případě, byly k zobrazení navrhovaných změn vybrány Bulharsko a Česká republika. V Bulharsku by byla k dosažení požadované míry efektivnosti zapotřebí následující zvýšení výstupních hodnot:

- hrubý domácí produkt: ze 45 286,5 mil. Eur na 154 857,2 mil. Eur,
- přidaná hodnota: z 39 138,1 mil. Eur na 143 176,9 mil. Eur,
při zachování stejné hodnoty vládních výdajů na výzkum a vývoj a současném snížení vysokoškolsky vzdělaných (z 1 124 tis. na 633,6 tis.), zaměstnanců v ICT (z 67,5 tis. na 47,6 tis.) a pracovníků ve výzkumu a vývoji (z 697 tis. na 369,3 tis.).

V České republice by muselo dojít k následujícím zvýšením výstupních hodnot:

- hrubý domácí produkt: z 166 964,1 mil. Eur na 399 269,3 mil. Eur,
- přidaná hodnota: z 150 119,6 mil. Eur na 357 568,9 mil. Eur,

při nezměněné velikosti vládních výdajů na výzkum a vývoj a počtu vysokoškolsky vzdělaných, a zároveň při snížení počtu zaměstnanců v ICT (z 145,1 tis. na 120,8 tis.) a pracovníků ve výzkumu a vývoji (z 1553 tis. na 1528,8 tis.).

Z výsledků provedených analýz je patrné, že ve většině zemí EU 28 nedocházelo k efektivnímu využívání zvolených makroekonomických determinantů znalostní ekonomiky a země tak plně nevyužívaly potenciálu těchto determinantů. Pro následující analytickou část proto byla zvolena jedna z nejefektivnějších zemí, v rámci které byly provedeny mikroekonomické analýzy napříč vybranými odvětvími národního hospodářství. Ze zemí, které byly v rámci analýz označeny za nejefektivnější, bylo vybráno Německo, a to proto, že se jedná o:

- jednoho z inovačních lídrů v rámci EU 2815,
- jednu z nejvíce konkurenceschopných ekonomik posledních let (srovnání pořadí konkurenceschopnosti ekonomik za posledních 5 období, které byly v rámci analýz vybrány za nejefektivnější, je uvedeno v tabulce 19),
- silnou světovou ekonomiku, na které je závislá řada ekonomik (nejen v rámci EU 28).

Lze proto předpokládat, že inovační postupy a vazby mezi determinanty na mikro úrovni, které fungují v Německu, by mohly poskytnout vzor pro ostatní ekonomiky a pomoci tak k zefektivnění využívání zvolených determinantů a taktéž k růstu jejich inovační výkonnosti.

15 viz 2. kapitola, obrázek 5: Inovační výkonnost členských států EU v roce 2015
Tabulka 19 Pořadí ekonomik nejefektivněji využívajících zvolených determinantů znalostní ekonomiky ve světovém hodnocení konkurenceschopnosti mezi roky 2012-2017

<table>
<thead>
<tr>
<th>Země</th>
<th>Pořadí ve světovém hodnocení konkurenceschopnosti</th>
</tr>
</thead>
<tbody>
<tr>
<td>Německo</td>
<td>6.</td>
</tr>
<tr>
<td>Irsko</td>
<td>27.</td>
</tr>
<tr>
<td>Francie</td>
<td>21.</td>
</tr>
<tr>
<td>Itálie</td>
<td>42.</td>
</tr>
<tr>
<td>Malta</td>
<td>47.</td>
</tr>
<tr>
<td>Spojené království</td>
<td>8.</td>
</tr>
</tbody>
</table>

Zdroj: World Economic Forum

V souladu s metodickým řešením disertační práce jsou v části 4.2 provedeny regresní analýzy působení zvolených mikroekonomických determinantů znalostní ekonomiky napříč vybranými odvětvími v Německu a v části 4.3 jsou shrnuty jednotlivé výsledky.

4.2 Analýza působení vybraných mikroekonomických determinantů znalostní ekonomiky

Výsledky analýzy datových obalů (DEA) ukázaly, že země selhávají při dosahování ekonomického růstu, například nadměrným čerpáním finančních prostředků, které poté nejsou efektivně využívány, nebo neschopností vhodně kombinovat jednotlivých makroekonomických determinantů znalostní ekonomiky. Problém ale často začíná již na mikroekonomické úrovni, kdy jednotliví ekonomičtí aktéři nejsou schopni rozvinout jejich inovační potenciál, například formou spolupráce a to s odlišnými partnery (zákazníci, dodavatelé, univerzity a další) a dále efektivně využívat mikroekonomických determinantů znalostní ekonomiky.

Německo naopak reprezentuje skupinu zemí, kterým se v současné podobě znalostní ekonomiky daří rozvíjet jejich inovační potenciál a efektivně využívat svých mikro, ale i makro determinantů (znalostních) ekonomik. Německo si tak stále drží pozici největší ekonomiky v EU, ale i jedné z největších, nejsilnějších a nejkonkurenceschopnějších světových ekonomik. Je to dáno mimo jiné i tím, že pro německou vládu představují klíčový význam stimuly pro investice, tvorba dobrého klimatu pro inovace a podpora investic soukromého sektoru (Germany: STI Outlook 2014 Country Profile, 2014). V posledních letech přitom nebyla věnována taková pozornost Německu a analýzám jeho jednotlivých odvětví ani analýzám determinantů inovačních aktivit a jejich interakcí. Většina studií byla zaměřena spíše na vybraná odvětví národních ekonomik, popřípadě na působení těchto determinantů samostatně (v izolaci). Niebuhr a Peters (2012) například analyzovali vztah
mezi rozmanitostí pracovní síly (labour diversity) a firemními (inovačními) aktivitami v Německu; Robin a Schubert (2013) zkoumali vliv spolupráce s veřejnými výzkumnými centry na firemní inovace (produktové a procesní) v Německu a Francii; Czarnitzki a Lopes-Bento (2014) analyzovali vlivy evropského a národního financování na inovační vstupy a výstupy na firemní úrovni v Německu. Vzhledem k uvedeným charakteristikám, propojenosti evropských ekonomik a na základě závěrů uvedených studií je možné předpokládat vysokou míru přenositelnosti výsledků i na ekonomiky ostatních států, zejména středoevropských.

Další pozornost je proto zaměřena:

- na analýzu mikroekonomických determinantů inovačních aktivit (a jejich vzájemných kombinací/interakcí) na firemní úrovni napříč vybranými odvětvími v Německu;
- na zodpovězení výzkumných hypotéz nedefinovaných v cíli disertační práce;
- na poskytnutí praktických implikací pro tvůrce veřejných politik v ostatních zemích, které by mohly přispět ke zlepšení efektivnosti jednotlivých zemí.

4.2.1 Zvolená analytická metoda a datový soubor

16 Aktuální data za období 2012-2014 nejsou v současné době k dispozici
4.2.2 Vybrané mikroekonomické determinany

Tabulka 20 Vybraná odvětví pro analýzy

<table>
<thead>
<tr>
<th>Průmysl</th>
<th>Počet podniků</th>
<th>NACE kategorie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elektroprůmysl</td>
<td>474</td>
<td>26-27</td>
</tr>
<tr>
<td>Chemický a farmaceutický</td>
<td>473</td>
<td>19-22</td>
</tr>
<tr>
<td>Kovoprůmysl</td>
<td>465</td>
<td>24-25</td>
</tr>
<tr>
<td>Strojírenský (stroje a zařízení)</td>
<td>537</td>
<td>28,33</td>
</tr>
</tbody>
</table>

Zdroj: vlastní

Tabulka 21 Mikroekonomické determinanty inovačních aktivit podniků

<table>
<thead>
<tr>
<th>Financování</th>
<th>Spolupráce</th>
<th>Inovace</th>
<th>Výdaje</th>
<th>Firemní aktivity</th>
<th>Ostatní</th>
</tr>
</thead>
<tbody>
<tr>
<td>Veřejné financování z místních nebo regionálních rozpočtů</td>
<td>Dohody o spolupráci na inovačních aktivitách</td>
<td>Produktové (výrobkové) inovace</td>
<td>Vnitropodnikový výzkum a vývoj</td>
<td>Sloučení s nebo převzetí jiného podniku</td>
<td>Tržní orientace</td>
</tr>
<tr>
<td>Veřejné financování z národních rozpočtů</td>
<td>Ostatní firmy v rámci skupiny podniků</td>
<td>Inovace služeb (servisní)</td>
<td>Externí výzkum a vývoj</td>
<td>Prodej, uzavření nebo outsourcing některých firemních úkolů nebo funkcí</td>
<td>Účast ve skupině podniků</td>
</tr>
<tr>
<td>Veřejné financování z evropských rozpočtů</td>
<td>Dodavatelé (zařízení, materiálů, komponentů nebo softwaru)</td>
<td>Procesní (postupové) inovace (metoda produkce, logistika, distribuce, podpůrné aktivity)</td>
<td>Pořízení stroje</td>
<td>Zřízení nového pobočky v domácí zemi nebo v jiných evropských státech</td>
<td></td>
</tr>
<tr>
<td>Klienti nebo zákazníci z veřejného sektoru</td>
<td>Pořízení externích znalostí</td>
<td>Zřízení nových poboček mimo Evropu</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Klienti nebo zákazníci ze soukromého sektoru</td>
<td>Ostatní aktivity</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Konzultanti a komerční laboratoře</td>
<td>Celkové výdaje na inovační aktivity</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Konkurenti nebo ostatní firmy v odvětví</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Univerzity nebo jiné instituce vyššího vzdělávání</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vládní nebo veřejné výzkumné instituce</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Poznámka: Význam zvolených determinantů při tvorbě inovačních výstupů je specifikován v 2. a 3. části disertační práce
Zdroj: vlastní
4.2.3 Výsledky analýz

V první části byly analyzovány efekty jednotlivých determinantů inovačních aktivit samostatně, tedy bez kombinací s ostatními determinanty (viz tabulka 22). Dříve, než byly ale samotné analýzy provedeny, bylo prostřednictvím Spearmanova testu testováno, zda nejsou data korelována. Obecná rovnice Spearmanova testu má tvar (Borradaile, 2013):

\[r_s = 1 - \frac{6\sum d_i^2}{N(N^2-1)} \] (13)

Spearmanův koeficient měří sílu lineárního vztahu mezi každýma dvěma proměnnýma, kdy hodnoty každé proměnné jsou seřazeny od 1 až N, kde N představuje počet dvojic hodnot (přičemž N případům každé proměnné je přiřazeno celé číslo od 1 do N, kdy žádné dva případy nemají stejnou hodnotu). Rozdíl mezi hodnotami pro každý případ je reprezentován hodnotou \(d_i \).

Výsledky v tabulce 22 ukazují, zda a jakým způsobem\(^{17} \) zvolené determinanty inovačních aktivit ovlivňují inovační výkonnost podniků v jednotlivých odvětvích národního hospodářství v Německu, například:

- elektroprůmysl: tržní orientace (+), zavádění servisních inovací (+), veřejné financování z evropských rozpočtů (+), spolupráce s klienty nebo zákazníky z veřejného sektoru (-);
- chemický a farmaceutický průmysl: výdaje na pořízení strojů (-), veřejné financování z národních rozpočtů (+), zavádění produktových inovací (+);
- kovoprůmysl: spolupráce s dodavateli (+), výdaje na pořízení externích znalostí (+), spolupráce s klienty nebo zákazníky z veřejného sektoru (+), zavádění produktových inovací (+), zavádění procesních a servisních inovací (-);
- strojírenský průmysl: zavádění procesních inovací (-), veřejné financování z národních rozpočtů (-), spolupráce s klienty nebo zákazníky z veřejného sektoru (+).

\(^{17}\) Pokud je hodnota Beta koeficientu kladná (+), tak je růst zvoleného determinantu doprovázen růstem závislé proměnné - inovační výkonnosti, naopak pokud je hodnota záporná (-), tak je růst zvoleného determinantu doprovázen poklesem inovační výkonnosti.
Tabulka 22 Působení determinantů inovačních aktivit ve vybraných odvětvích v Německu

<table>
<thead>
<tr>
<th>Proměnné</th>
<th>Odvětví</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Elektroprůmysl</td>
</tr>
<tr>
<td></td>
<td>R=0.79; R²=0.62; p=7.54 E-15</td>
</tr>
<tr>
<td></td>
<td>p-hodnota (Beta)</td>
</tr>
<tr>
<td>Výdaje na pořízení strojů</td>
<td>0.126 (0.086)</td>
</tr>
<tr>
<td>Výdaje na Vnitropodnikový výzkum a vývoj</td>
<td>0.000 (0.332)***</td>
</tr>
<tr>
<td>Výdaje na Externí výzkum a vývoj</td>
<td>0.137 (0.105)</td>
</tr>
<tr>
<td>Výdaje na pořízení externích znalostí</td>
<td>0.195 (0.09)</td>
</tr>
<tr>
<td>Výdaje na ostatní aktivity</td>
<td>-</td>
</tr>
<tr>
<td>Prodej, uzávěry nebo outsourcing některých firemních úkolů nebo funkcí</td>
<td>0.003 (-0.843)***</td>
</tr>
<tr>
<td>Spolupráce s klienty nebo zákazníky ze soukromého sektoru</td>
<td>0.106 (-0.802)</td>
</tr>
<tr>
<td>Spolupráce s klienty nebo zákazníky z veřejného sektoru</td>
<td>0.001 (-0.648)***</td>
</tr>
<tr>
<td>Tržní orientace</td>
<td>0.000 (1.898)***</td>
</tr>
<tr>
<td>Procesní inovace</td>
<td>-</td>
</tr>
<tr>
<td>Servisní inovace</td>
<td>0.000 (2.412)***</td>
</tr>
<tr>
<td>Produktové inovace</td>
<td>-</td>
</tr>
<tr>
<td>Veřejné financování z národních rozpočtů</td>
<td>-</td>
</tr>
<tr>
<td>Veřejné financování z evropských rozpočtů</td>
<td>0.002 (0.978)***</td>
</tr>
<tr>
<td>Dohody o spolupráci na technických inovačních aktivitách</td>
<td>-</td>
</tr>
<tr>
<td>Spolupráce s univerzitami</td>
<td>0.752 (0.199)</td>
</tr>
<tr>
<td>Spolupráce s veřejnými výzkumnými institucemi</td>
<td>0.000 (2.861)***</td>
</tr>
<tr>
<td>Spolupráce s dodavateli</td>
<td>-</td>
</tr>
<tr>
<td>Spolupráce s ostatními firmami v rámci skupiny podniků</td>
<td>-</td>
</tr>
<tr>
<td>Spolupráce s konkurenty</td>
<td>-</td>
</tr>
<tr>
<td>Účast ve skupině podniků</td>
<td>-</td>
</tr>
</tbody>
</table>

Poznámka: ** významné na hladině významnosti P<0.05; *** významné na hladině významnosti P<0.01; R = korelační koeficient regresního modelu; R² = koeficient determinace; modely jsou významné na hladině významnosti P<0.01

Zdroj: vlastní

Analýzy z tabulky 22 potvrzují předchozí tvrzení, že nalezení vhodných determinantů inovačních aktivit, které mají pozitivní vliv na inovační aktivity firem, představuje složitý proces postrádající univerzální postup, který by vedl k volbě vhodných proměnných. Na
druhé straně, výsledky taktéž ukazují, že existují proměnné, které samostatně působí napříč odvětvími (odlišnou měrou významnosti) a pozitivně ovlivňují růst inovačních aktivit firem. Jsou jimi například:

- produktové inovace (chemický a farmaceutický a kovoprůmysl);
- výdaje na vnitropodnikový výzkum a vývoj (elektroprůmysl a strojírenský průmysl).

Na druhé straně byly prostřednictvím analýz identifikovány takové proměnné, které působí negativně na růst inovačních aktivit podniků napříč německými odvětvími, a jsou jimi například:

- spolupráce s ostatními firmami v rámci skupin podniků (chemický a farmaceutický a strojní průmysl);
- zavádění procesních inovací (chemický a farmaceutický, kovoprůmysl a strojírenský průmysl).

Výsledky následujících analýz ukazují, že vhodné zacílení determinantů inovačních aktivit (mikroekonomických determinantů znalostní ekonomiky) může vést ke vzniku silnějších vazeb a efektů ovlivňujících růst obratu podniků z inovovaných výrobků a to právě díky vzniku vzájemných synergii, které umožňují přenášení znalostí a dochází tak k efektům jejich přelévání. Samotné nalezení vhodných kombinací determinantů inovačních aktivit (zejména spolupráce s odlišnými partnery) se přitom jeví jako nezbytné, o čemž svědčí i fakt, na který poukázali Strobel a Kratzer (2017). Ti v rámci analýz německých malých a středních podniků zjistili, že vedle interních (např. nedostatek know-how, nevyjasněné role) a externích (např. vládní byrokracie) překážek inovací jsou to i vztahy mezi jednotlivými aktéry spolupráce, které mohou negativně ovlivnit inovační výkonnost firem. Proto jsou v následující části provedeny hlubší analýzy vazeb mezi determinanty inovačních aktivit a je
analizován jejich vliv na inovační výkonnost firem ve vybraných odvětvích německého národního hospodářství.

Výsledky v tabulce 23 ukazují, jak významná může být spolupráce s klienty nebo zákazníky ze soukromého sektoru při tvorbě inovačních výstupů, na které taktéž participují instituce veřejného sektoru (univerzity, veřejné výzkumné instituce, zákazníci z veřejného sektoru). V případě těchto spoluprací docházelo ke vzniku pozitivních vlivů působících na inovační aktivity firem:

- spolupráce s univerzitami v kombinaci se spoluprací s klienty nebo zákazníky ze soukromého sektoru: 0.025 (0.489)**;
- spolupráce s veřejnými výzkumnými institucemi v kombinaci se spoluprací s klienty nebo zákazníky ze soukromého sektoru: 0.000 (3.328)*****;
- spolupráce s klienty nebo zákazníky z veřejného sektoru v kombinaci se spoluprací s klienty nebo zákazníky ze soukromého sektoru: 0.000 (1.057)*****.

Tabulka 23 Význam spolupráce na inovacích s klienty nebo zákazníky ze soukromého sektoru v elektroprůmyslu

<table>
<thead>
<tr>
<th>Prodej, uzavření nebo outsourcing některých firemních úkolů nebo funkcí</th>
<th>Spolupráce s klienty nebo zákazníky ze soukromého sektoru</th>
<th>Spolupráce s klienty nebo zákazníky z veřejného sektoru</th>
<th>Servisní inovace</th>
<th>Veřejné financování z evropských rozpočtů</th>
<th>Spolupráce s veřejnými výzkumnými institucemi</th>
<th>Spolupráce s univerzitami</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.578 (-0.082)</td>
<td>0.025 (0.489)**</td>
<td>0.001 (-1.721)***</td>
<td>0.000 (1.303)***</td>
<td>0.289 (0.160)</td>
<td>0.123 (0.188)</td>
<td>-</td>
</tr>
<tr>
<td>0.000 (-1.727)*****</td>
<td>0.000 (3.328)***</td>
<td>0.000 (-1.234)***</td>
<td>0.009 (-0.870)***</td>
<td>0.500 (-1.645)***</td>
<td>-</td>
<td>0.123 (0.188)</td>
</tr>
<tr>
<td>0.000 (2.742)*****</td>
<td>0.000 (1.057)***</td>
<td>-</td>
<td>0.000 (-1.835)***</td>
<td>0.009 (-0.767)***</td>
<td>0.000 (-1.234)***</td>
<td>0.001 (-1.721)***</td>
</tr>
</tbody>
</table>

Poznámka: ** významné na hladině významnosti P<0.05; *** významné na hladině významnosti P<0.01, v závorkách jsou uvedeny hodnoty Beta koeficientu. Popis výsledků: jestliže podnik spolupracoval s univerzitami a zároveň prodal, uzavřel nebo provedl outsourcing některých firemních úkolů nebo funkcí, byla naměřená hodnota 0.578 (-0.082), a tedy nesignifikantní: pokud ale podnik například spolupracoval s univerzitami a zároveň s klienty nebo zákazníky z veřejného sektoru, naměřená hodnota byla 0.025 (0.489)** a již byla signifikantní a docházelo k pozitivnímu ovlivnění růstu obratu podniků z inovovaných výrobků (inovační výkonnost). Zdroj: vlastní

Z výsledků v tabulce 23 je zřejmé, že pokud byly v rámci spoluprací zapojeny i soukromé subjekty, docházelo k pozitivnímu vlivu zvolených determinantů a tím pádem k růstu inovační výkonnosti podniků – dané výsledky potvrzují fakt, že soukromé subjekty jsou motivovány dosažením výsledků v co nejkratším čase a s vynaložením co nejnižších nákladů a tím pádem spolupráce s nimi může vést k růstu efektivnosti subjektů veřejného sektoru, které v řadě případů sledují zcela odlišné zájmy a nejsou vždy zcela efektivní. Na druhé
straně, v případě vynechání soukromých subjektů, byly vlivy ve většině případů negativní. Například:

- spolupráce s univerzitami v kombinaci se spoluprací s klienty nebo zákazníky z veřejného sektoru: 0.001 (-1.721)***;
- spolupráce s veřejnými výzkumnými institucemi v kombinaci veřejným financováním z evropských rozpočtů: 0.000 (-1.645)***;
- spolupráce s veřejnými výzkumnými institucemi v kombinaci se spoluprací s klienty nebo zákazníky z veřejného sektoru: 0.000 (-1.234)***.

Regresní analýzy taktéž ukázaly situace, kdy bylo možné předcházet neefektivnosti spolupráce se subjekty veřejného sektoru a to zejména v případě zavádění servisních inovací ve spolupráci s univerzitami (naopak v rámci spolupráce s veřejnými výzkumnými institucemi nebo zákazníky z veřejného sektoru bylo zavádění servisních inovací neefektivní a vedlo k poklesu inovační výkonnosti firem).

Situace v kovoprůmyslu v Německu je zachycena v tabulce 24, která ukazuje, jak je možné, alespoň částečně, předcházet neefektivnosti poskytování veřejných finančních prostředků (z národních fondů). Pokud podniky zaváděly inovace (produkční, procesní, servisní) a zároveň čerpaly finanční prostředky, docházelo ke vzniku signifikantních vlivů, které pozitivně ovlivňovaly růst inovační výkonnosti firem. Zatímco tedy bezúčelné čerpání finančních prostředků nevedlo ke vzniku signifikantních vazeb (tabulka 22), jejich napojení na inovativní aktivity se ukázalo jako signifikantní. V případě evropských fondů bylo toto čerpání neefektivní v obou případech (tabulka 22 a tabulka 24).

Tabulka 24 Působení kombinací mikroekonomických determinantů inovačních aktivit v kovoprůmyslu v Německu

<table>
<thead>
<tr>
<th>Proměnné</th>
<th>Inovace</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Produktov</td>
</tr>
<tr>
<td>Veřejné financování z národních rozpočtů</td>
<td>0.028(0.369)**</td>
</tr>
<tr>
<td>Veřejné financování z evropských rozpočtů</td>
<td>0.003(-1.803)***</td>
</tr>
<tr>
<td>Spolupráce s dodavateli</td>
<td>0.030(-0.584)**</td>
</tr>
<tr>
<td>Spolupráce s konkurenty</td>
<td>0.071(-0.382)</td>
</tr>
<tr>
<td>Veřejné financování z národních rozpočtů AND Spolupráce s dodavateli</td>
<td>0.003(-0.472)***</td>
</tr>
</tbody>
</table>

Poznámka: ** významné na hladině významnosti P<0.05; *** významné na hladině významnosti P<0.01, v závorkách jsou uvedeny hodnoty Beta koeficientu; AND = kombinace zvolených faktorů
Zdroj: vlastní
Jako další možný způsob, kterým podniky v kovoprůmyslu v Německu signifikantně ovlivňovaly jejich inovační výkonnost, byla spolupráce s konkurenty na servisních a procesních inovacích. Naopak spolupráce na inovacích produktových vedla spíše k poklesu inovační výkonnosti podniků. Taktéž spolupráce s dodavateli (na všech třech typech analyzovaných inovací) vedla k poklesu inovační výkonnosti.

Výsledky analýz v tabulce 25 ukázaly, že stejně, jako v kovoprůmyslu, tak i ve strojírenském průmyslu v Německu, bylo možné správným zacílením veřejných (národních) finančních prostředků přecházet alokační neefektivnosti a signifikantně ovlivňovat růst inovační výkonnosti podniků a to i v rámci spolupráce s institucemi veřejného sektoru:

- spolupráce s klienty nebo zákazníky z veřejného sektoru v kombinaci s veřejným financováním z národních rozpočtů: 0.000 (1.930)***

- spolupráce s univerzitami v kombinaci s veřejným financováním z národních rozpočtů: 0.006 (1.228)***.

Dalším významným determinantem byla taktéž spolupráce s konkurenty v kombinaci s veřejnými prostředky z národních rozpočtů. Naopak například spolupráce s veřejnými výzkumnými institucemi, financovaná z veřejných národních rozpočtů, vedla k poklesu inovační výkonnosti podniků.

Tabulka 25 Analýza efektů poskytování finančních prostředků z národních rozpočtů ve strojírenském průmyslu v Německu

<table>
<thead>
<tr>
<th>Spolupráce s klienty nebo zákazníky z veřejného sektoru</th>
<th>Veřejné financování z národních rozpočtů</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spolupráce s univerzitami</td>
<td>0.006 (1.228)***</td>
</tr>
<tr>
<td>Spolupráce s veřejnými výzkumnými institucemi</td>
<td>0.000 (-0.636)***</td>
</tr>
<tr>
<td>Spolupráce s konkurenty</td>
<td>0.000 (0.962)***</td>
</tr>
<tr>
<td>Účast ve skupině podniků * Procesní inovace</td>
<td>0.006 (-0.255)***</td>
</tr>
<tr>
<td>Spolupráce s ostatními firmami v rámci skupiny podniků AND</td>
<td>0.002 (-0.730)***</td>
</tr>
<tr>
<td>Spolupráce s klienty nebo zákazníky ze soukromého sektoru</td>
<td></td>
</tr>
<tr>
<td>Spolupráce s ostatními firmami v rámci skupiny podniků AND</td>
<td>0.023 (-1.099)***</td>
</tr>
<tr>
<td>Spolupráce s univerzitami</td>
<td>0.004 (0.611)***</td>
</tr>
</tbody>
</table>

Poznámka: ** významné na hladině významnosti P<0.05; *** významné na hladině významnosti P<0.01; v závorkách jsou uvedeny hodnoty Beta koeficientu; AND = kombinace zvolených faktorů
Zdroj: vlastní

18 Autor disertační práce vychází z výsledků CIS, ve kterých bylo uváděno poskytování finančních prostředků z evropských fondů samostatně a to i přes to, že čerpání finančních příspěvků EU je podmíněno spolupráci s národních fondů.
Poskytování veřejných prostředků z národních rozpočtů se tak ukázalo jako možný velmi efektivní nástroj a způsob podpory inovačních aktivit firem napříč odvětvími, za podmínky, že ho ale firmy dokázaly vhodně využít:

- samostatně i ve vybraných kombinacích v chemickém a farmaceutickém průmyslu (tabulky 22 a 26);
- ve vybraných kombinacích ve strojírenském průmyslu (tabulka 25);
- v případě financování inovačních aktivit v kovopromyssl (tabulka 24).

Z výsledků vyplývá, že vhodná volba inovačních partnerů, podpořena finančními prostředky z národních rozpočtů, může vést ke vzniku silných efektů ovlivňujících inovační aktivity firem napříč odvětvími.

Z předchozí části je zřejmé, že některé faktory ovlivňující (kladně i záporně) inovační výkonnost německých firem působí i napříč jednotlivými odvětvími německého národního hospodářství. Tyto faktory (pro chemický a farmaceutický a kovopromyssl) jsou zachyceny a porovnány v tabulce 26.

Tabulka 26 Srovnání pokročilých kombinací determinantů inovačních aktivit v chemickém a farmaceutickém a v kovopromyssl v Německu

<table>
<thead>
<tr>
<th>Spolupráce s dodavateli:</th>
<th>Procesní inovace: chemický a farmaceutický</th>
</tr>
</thead>
<tbody>
<tr>
<td>Servisní inovace</td>
<td>chemický a farmaceutický</td>
</tr>
<tr>
<td>0.000 (-0.677)***</td>
<td>0.033 (-0.468)**</td>
</tr>
<tr>
<td>Produktové inovace</td>
<td>kovopromysl</td>
</tr>
<tr>
<td>0.334 (-0.190)</td>
<td>0.030 (-0.584)**</td>
</tr>
<tr>
<td>Účast ve skupině podniků</td>
<td>0.008 (0.777)***</td>
</tr>
<tr>
<td>Veřejné financování z národních rozpočtů</td>
<td>-</td>
</tr>
<tr>
<td>0.000 (-1.619)***</td>
<td>0.003 (-0.435)***</td>
</tr>
<tr>
<td>Veřejné financování z evropských rozpočtů</td>
<td>0.110 (0.355)</td>
</tr>
<tr>
<td>0.003 (-1.128)***</td>
<td>0.031 (2.269)**</td>
</tr>
<tr>
<td>Tržní orientace</td>
<td>0.013 (0.620)**</td>
</tr>
<tr>
<td>0.110 (0.620)</td>
<td>-</td>
</tr>
<tr>
<td>Spolupráce s ostatními firmami v rámci skupiny podniků</td>
<td>0.799 (0.125)</td>
</tr>
<tr>
<td>0.232 (0.299)</td>
<td>0.003 (0.537)***</td>
</tr>
</tbody>
</table>

Poznámka: ** významné na hladině významnosti P<0.05; *** významné na hladině významnosti P<0.01, v závorkách jsou uvedeny hodnoty Beta koeficientu
Zdroj: vlastní

V tabulce 26 bylo analyzováno, že spolupráce s dodavateli v chemickém a farmaceutickém, ale i v kovopromyssl, negativně ovlivňovala inovační výkonnost podniků a vedla k jejímu poklesu. Naopak zavádění procesních inovací v chemickém a farmaceutickém průmyslu, v kombinaci se správnými determinanty, se ukázalo jako signifikantní a vedlo k růstu inovační výkonnosti podniků. Jednalo se zejména o následující kombinace:

19 V tomto případě je ale nutné předjít situaci, kterou popisuje např. Páral (2017), kdy se programy (investiční) firem neřídí podle tržních stimulů, ale podle cyklu čerpání dotací (evropských), což může v dlouhodobém časovém horizontu vést k neefektivitě a k negativnímu ovlivňování růstového potenciálu ekonomik.
• zavádění produktových inovací v kombinaci s procesními inovacemi;
• zavádění procesních inovací v kombinaci s financováním z národních, ale i evropských, zdrojů;
• zavádění procesních inovací a spolupráce s ostatními firmami v rámci skupin podniků.

Výsledky jednotlivých analýz ukázaly, že volba vhodných determinantů inovačních aktivit na mikroekonomické úrovni představuje složitý proces, který vyžaduje řadu pokročilých analýz. Není totiž možné zachytit efekty přelévání znalostí plošně (v rámci celé ekonomiky), ale je zapotřebí hlubších analýz napříč jednotlivými odvětvími, protože se ukázalo, že existují determinanty, které v jednom odvětví působí na růst inovační výkonnosti, ale v odvětví druhém mají za následek její pokles.

I přes výše uvedené, bylo možno v rámci jednotlivých dílčích analýz sledovat determinanty, které naopak působí ve více než jednom odvětví a jejichž vhodné zacílení vede k růstu inovační výkonnosti firem. V následující části jsou shrnuty výsledky jednotlivých analýz, které byly v rámci 4. kapitoly provedeny a v závěru práce jsou uvedeny praktické implikace pro tvůrce veřejných politik.

4.3 Shrnutí výsledků analýz

Hlavním vědeckým cílem byla identifikace makroekonomických a mikroekonomických determinantů znalostní ekonomiky, které mají největší vliv na ekonomický rozvoj regionů v současné Evropské unii, k čemuž byla využita jednak analýza datových obalů (identifikace makroekonomických determinantů) a vlastní vícenásobné regresní modely (identifikace mikroekonomických determinantů).

První část této kapitoly (4.1) tak byla zaměřena na první dílčí cíl C₁, tedy provedení analýzy efektivnosti působení vybraných makroekonomických determinantů ekonomik zemí EU 28 v kontextu znalostní ekonomiky a následně na zodpovězení první vědecké otázky V₁: Ve kterých zemích EU 28 byly v daných letech nejefektivněji aplikovány zvolené determinanty znalostní ekonomiky. Z analýz vyplynulo, že mezi země, které nejefektivněji využívaly zvolených determinantů znalostní ekonomiky, patřily následující:

• Dánsko,
• Německo,
• Irsko,
• Francie,
• Itálie,
• Lucembursko,
• Malta,
• Rakousko,
• Spojené království.

Tyto výsledky ukázaly, že ve většině zemí EU 28 (19 z 28) nedocházelo k efektivnímu využívání zvolených makroekonomických determinantů znalostní ekonomiky, jimiž byly:

• vládní výdaje na výzkum a vývoj;
• počet vysokoškolsky vzdělaných;
• zaměstnanost v ICT;
• počet pracovníků ve výzkumu a vývoji.

Většina zemí tak plně nevyužívala potenciál těchto determinantů k ovlivnění jejich hrubého domácího produktu a přidané hodnoty.

Dílčím cílem C 2 proto bylo provedení analýzy vlivu mikroekonomických determinantů inovativních aktivit firem napříč jednotlivými odvětvími v Německu v kontextu znalostní ekonomiky a zodpovězení dvou výzkumných otázek:

• které determinanty znalostní ekonomiky působí v jednotlivých odvětvích národního hospodářství;
• zda pokročilé kombinace těchto determinantů vedou k tvorbě signifikantnějších výsledků ovlivňujících růst firemního obratu z inovovaných produktů.

Výsledky analýz z části 4.2 ukazují, které determinanty působí ve kterých odvětvích a jakým způsobem (pozitivně/negativně):

• elektroprůmysl:
 o výdaje na vnitropodnikový výzkum a vývoj (+);
 o prodej, uzavření nebo outsourcing některých firemních úkolů nebo funkcí (-);
 o spolupráce s klienty nebo zákazníky z veřejného sektoru (-);
 o tržní orientace (+);
 o zavádění servisních inovací (+);
• chemický a farmaceutický průmysl:
 o výdaje na pořízení strojů (-);
 o výdaje na pořízení externích znalostí (-);
 o zavádění produktových inovací (+);
 o veřejné financování z národních rozpočtů (+);
 o spolupráce s ostatními firmami v rámci skupin podniků (-);

• kovoprůmysl:
 o výdaje na pořízení externích znalostí (+);
 o spolupráce s klienty nebo zákazníky z veřejného sektoru (+);
 o zavádění procesních a servisních inovací (-);
 o zavádění produktových inovací (+);
 o spolupráce s dodavateli a konkurenty (+);

• strojírenský průmysl:
 o výdaje na vnitropodnikový výzkum a vývoj (+);
 o spolupráce s klienty nebo zákazníky z veřejného sektoru (+);
 o zavádění procesních inovací (-);
 o veřejné financování z národních rozpočtů (-);
 o spolupráce s ostatními firmami v rámci skupin podniků (-).

Výsledky analýz také ukázaly, že pokročilé kombinace zvolených determinantů vedly k tvorbě dalších signifikantních výsledků ovlivňujících růst firemního obratu z inovovaných produktů. Jednalo se o následující determinanty:

• elektroprůmysl: spolupráce s klienty nebo zákazníky ze soukromého sektoru;
• chemický a farmaceutický průmysl: zavádění procesních inovací;
• kovoprůmysl: zavádění produktových, procesních a servisních inovací v kombinaci s finančními prostředky z národních rozpočtů, spolupráce s konkurenty;
• strojírenský průmysl: veřejné financování z národních rozpočtů.

V rámci dílčího cíle C₂ byly také nadejinovány následující výzkumné hypotézy:

\[H₁: \text{Firmy, které spolupracují na inovacích s univerzitami a výzkumnými centry, dosahují nižších výstupů než firmy, které této spolupráce nevyužívají.} \]

• Z tabulky 4.7 je patrné, že ani v jednom z vybraných odvětví německého národního hospodářství neovlivňovala spolupráce s univerzitami inovační výkonnost firem. Signifikantní vlivy byly analyzovány pouze v některých případech, přičemž v elektroprůmyslu se jednalo jak o vlivy negativní (spolupráce s univerzitami v kombinaci se spoluprací s klienty nebo zákazníky z veřejného sektoru), tak i pozitivní (spolupráce s univerzitami v kombinaci se spoluprací s klienty nebo zákazníky ze soukromého sektoru). Ve strojírenském průmyslu byla identifikována jedna pozitivní kombinace ovlivňující firemní inovační výkonnost (spolupráce s univerzitami v kombinaci s veřejným financováním z národních rozpočtů).

Hypotéza \(H₁ \) byla proto potvrzena.

\[H₂: \text{Poskytování veřejných prostředků na podporu inovačních aktivit firem vede k poklesu jejich výkonnosti.} \]

• Výsledky analýz ukázaly, že poskytování veřejných prostředků z národních a evropských fondů vedlo jak k pozitivním, tak i negativním efektům a odlišným způsobem ovlivňovalo inovační výkonnost podniků napříč odvětvími. Nelze proto jednoznačně konstatovat, že by veřejné finanční prostředky vedly pouze k poklesu inovační výkonnosti firem, protože jejich správné zacílení se ukázalo jako signifikantní a mající vliv na růst inovační výkonnosti podniků.

Hypotéza \(H₂ \) byla proto zamítnuta.

Hypotézu \(H₂ \) lze taktéž zodpovědět pro jednotlivá odvětví samostatně, přičemž její závěry budou předmětem dalšího výzkumu.
ZÁVĚR

Je zřejmé, že v současné globalizované ekonomice, kdy roste úloha znalostí, jejích tvorby, využívání a šíření, stojí jednotliví ekonomičtí aktéři a tvůrci veřejných politik před rozhodnutími, jakým způsobem zvýšit konkurencí výhodu (států, ale i jednotlivých firem) a za využití kterých ekonomických determinantů (právě často v kontextu znalostní ekonomiky). Je totiž téměř nemožné navrhnout jeden univerzální způsob aplikace, využívání a kombinací těchto determinantů, který by fungoval napříč všemi odvětvími národních hospodářství a navíc ve všech evropských (ale i světových) ekonomikách. Tato disertační práce proto byla zaměřena na problematiku znalostní ekonomiky a jejího vlivu na rozvoj regionů (reprezentovaných státy EU 28).

V první části byla charakterizována rostoucí role znalostí (včetně jejich tvorby, šíření a měření) a přístupy ke znalostní a na znalostech založené ekonomice. V následující části byl poté definován vznik efektů přelévání znalostí, jejich měření a význam (nejen při tvorbě inovací). Třetí část byla zaměřena na definování vědeckého cíle a metodiky zkoumání, včetně popisu výzkumných metod. V poslední části byly poté provedeny jednotlivé analýzy působení makroekonomických a mikroekonomických determinantů znalostní ekonomiky a zodpovězeny dílčí výzkumné otázky a hypotézy, z jejíchž výsledků je možné odvodit následující implikace a doporučení pro změny veřejných politik.

Doporučení pro tvůrce veřejných politik

Výsledky provedeného výzkumu dokázaly, že na makroekonomické úrovni nejsou optimálně využívány výrobní faktory, a proto není využíván potenciál daných ekonomik na potenciální možné úrovní. Proto je nezbytné doporučit kvalitativní úpravy ve strategických financování vědy a výzkumu (s cílem zlepšit pozici ekonomiky v žebříčku konkurenceschopnosti v mezinárodním srovnání), které bude motivovat podniky k vyšším vlastním investicím do výzkumu a vývoje a to například prostřednictvím daňových úlev.

Jako nezbytné se jeví přehodnocení vládní politiky týkající se terciálního vzdělávání (podpora technických a přírodovědných oborů, které umožní zvýšení inovačního potenciálu firem, vědeckovýzkumného potenciálu VaV institucí a univerzit; větší propojení s praxí, například po vzoru Německa formou odborného vzdělávání a přípravy typu *vocational education and training*, podpora jazykové vybavenosti, vyšší matematická gramotnost). Je

20 Představuje formu odborného vzdělávání a přípravy, která je zaměřena na podporu spolupráce mezi firmami, univerzitami a veřejnými výzkumnými centry. Tento systém je využíván a hluboce založen na například v
také potřeba doporučit vytvoření kvalitní koncepce podpory znalostně náročných odvětví, které v sobě budou zahrnovat vytvoření moderní komunikační infrastruktury využitelné mimo jiné v oblastech ICT a VaV.

V návaznosti na výsledky hypotéz H₁ a H₂ je nezbytné, aby došlo k zefektivnění spolupráce na úrovni university-industry-government, tedy mezi podniky, univerzitami a vládou, které se doposud jevilo jako méně efektivní, než by skutečně mohlo být. Hlavním z problémů, kterým aktéři těchto spoluprací čelí, je nesoulad zájmů, ať již ze strany vlády a univerzit, tak ze strany podniků. Zatímco podniky ve většině případů sledují dosažení zisku v co možná nejkratším čase a za využití co nejmenšího množství prostředků, univerzity jsou na druhé straně hodnoceny za zcela odlišné výstupy, jížm jsou například výstupy v impaktovaných časopisech. Je proto nezbytně vytvořit kvalitní podnikatelské (inovační) prostředí, které bude přirozeně nabízet možnosti uplatnění jednotlivých ekonomických subjektů ve vzájemné spolupráci, která se stane zdrojem kýčených benefítů (například růst tržní hodnoty firem, vznik efektů přelévání znalostí, čerpání úspor z rozsahu a další). Doporučuje se podpořit seskupování podniků (vznik klastrů, podnikatelských sítí), vznik start-up a spin-off firem, zkvalitňování regionálních inovačních systémů ad.

Na tento problém navazují výsledky hypotézy H₂ o poskytování veřejných finančních prostředků (nejenom v rámci spolupráce mezi podniky a univerzitami, ale i na podporu jednotlivých firem, popřípadě na podporu spolupráce mezi firmami). Tyto prostředky jsou ve většině případů čerpány zcela neefektivně (zejména z evropských fondů) a samotný proces je spojen jednak s dlouhým časovým obdobím a jednak s přemírou byrokrací. Množství firem proto raději využívá vlastních prostředků, než abychádala o dotace, u kterých i samotný proces žádání o dotace může být spojen s dodatečnými náklady, které firmám mohou vzniknout, a to bez jistoty, že firma danou dotaci obdrží. Proto řada podniků volí raději spolupráci s univerzitami, kterou financuje z vlastních zdrojů, popřípadě se rozhodnou nespolupracovat. Problematika samotného poskytování veřejných finančních prostředků byla zejména v dřívější době spojena i s dalším problémem, jímž bylo poskytování způsobem „kropení konví“, kdy každý podnik dostal pouze velmi nízkou částku, která nestačila na pokrytí podstatných nákladů, ale pouze běžných činností, a docházelo tak k jejich neefektivnímu čerpání. Dalším problémem je efekt „nízko visícího ovoce“, který nenutí firmy kontinuálně inovovat a zvyšuje jejich závislost na veřejných prostředcích. Z uvedených důvodů je třeba doporučit úpravy

Německu a poskytuje kvalifikaci v širokém spektru profesí a flexibilně se přizpůsobuje měnícím se potřebám trhu práce (Brockmann a kol., 2008; OECD, 2015).
veřejných výdajových programů tak, aby byla zajištěna maximální užitečnost alokovaných dotačních prostředků.

Přínosy disertační práce

Přínosy této disertační práce byly rozděleny do dvou skupin a to na přínosy pro vědeckou teorii a přínosy pro praxi.

Přínosy této práce pro vědeckou teorii jsou zejména následující:

- zpracování teoretických poznatků z převážně zahraničních studií o problematice znalostní a na znalostech založené ekonomiky, včetně přehledu jednotlivých teoretických přístupů ke znalostem a taktéž rozdílných způsobů jejich měření. Teoretické přístupy ke znalostem a jejich úloze v ekonomice se totiž často liší a prošly řadou vývojových etap, přičemž rostoucí úloha znalostí je v současné otevřené globalizované ekonomice neodmyslitelná. Disertační práce přináší jejich přehled, pokouší se o jejich vzájemné provázání, systemizaci a představení v kontextu;

- zpracování problematiky přelévání znalostí v ekonomickém systému, které v posledních letech nabyla na významu a bylo analyzováno řadou renomovaných světových autorů. Za důležitý přínos je možné považovat zejména zmapování a popsaní odlišných vlivů efektů přelévání v meziregionálním srovnání a jejich vlivu na inovační výkonnost ekonomických subjektů;

- vytvoření přehledu o způsobu měření efektů přelévání, včetně vlastních návrhů na jejich měření;

- identifikace významných determinantů ovlivňujících inovační procesy jednotlivých ekonomických subjektů provedená na základě rešerše zahraniční literatury, včetně vlastní statistické analýzy vazeb mezi danými determinanty;

- příprava podkladových materiálů pro pedagogické a další vědeckovýzkumné využití na Fakultě ekonomicko-správní Univerzity Pardubice.

Přínosy pro praxi jsou především následující:

- provedení makroekonomické analýzy zahrnující státy EU 28 a zhodnocení efektivnosti využívání pilířů znalostní ekonomiky. Pomocí tohoto empirického průzkumu je možné získat důležité informace o efektivnosti využívání zvolených determinantů v jednotlivých zemích a dále z nich čerpat při nastavování veřejných politik;
• provedení mikroekonomické analýzy ve vybraných odvětvích národního hospodářství v zemi, která byla označena za efektivní při využívání zvolených makroekonomických determinantů. Získané výsledky mohou sloužit jako benchmark pro ostatní země (a podniky) a přispět tak k efektivnějšímu využívání determinantů znalostní ekonomiky, ale i k růstu inovační výkonnosti a konkurenceschopnosti států a firem;

• ověření a následné potvrzení nedefinovaných hypotéz za pomoci empirických údajů, které byly zpracovány pomocí matematicko-statistických metod a postupů vícezměrné statistiky, přičemž zjištěné výsledky budou využity v rámci dalších analýz navazujících na tuto disertační práci;

• zpracování řady doporučení pro tvůrce veřejných politik a navržení možných způsobů, jak zefektivnit využívání jednotlivých makroekonomických a mikroekonomických determinantů v kontextu znalostí ekonomiky, přičemž navržené implikace je možné aplikovat jak v České republice, tak i v jiných zemích. Za přínosné je možné považovat zejména navržení způsobů zefektivnění poskytování veřejných finančních prostředků a spolupráce mezi podniky, univerzitami a vládou, jelikož tyto oblasti představovaly jeden z největších problémů napříč ekonomikami různých zemí.
POUŽITÁ LITERATURA

106

[204] MATATKOVA, K., & STEJSKAL, J. (2012). The Effectiveness of Public Support in the Form of Innovation Vouchers–Czech Regional Case. *Proceedings of the 4th WSEAS*

PŘEHLED PUBLIKAČNÍ ČINNOSTI

Příspěvky na konference

• PROKOP, V., & STEJSKAL, J. (2016). Determinants of Business Innovation Activities in Manufacturing Industries – Czech Republic and Estonia Case Study. In

Příspěvky ve vědeckých časopisech

130