Short Communication

Highly efficient photoelectrochemical and photocatalytic anodic TiO₂ nanotube layers with additional TiO₂ coating

Hanna Sophia a, Milos Krbal a, Siowwoon Ng a,b, Jan Prikryl a, Raul Zazpe a, Fong Kwong Yam b, Jan M. Macak a,*

a Center of Materials and Nanotechnologies, Faculty of Chemical Technology, University of Pardubice, Nam. Cs. Legii 565, 53002 Pardubice, Czech Republic
b School of Physics, Universiti Sains Malaysia, 11800 Penang, Malaysia

A R T I C L E I N F O

Article history:
Received 24 April 2017
Received in revised form 5 June 2017
Accepted 5 June 2017

Keywords:
TiO₂ nanotube layers
Coating
Atomic layer deposition
Photocatalysis
Photoelectrochemistry

A B S T R A C T

In this work, strong beneficial effects of thin and uniform TiO₂ coatings within TiO₂ nanotube layers for photocurrent generation and photocatalytical degradation of methylene blue are demonstrated for the first time. TiO₂ nanotube layers were coated by TiO₂ of various thicknesses (from 2.8 nm to 22 nm) using atomic layer deposition (ALD) and compared with TiO₂ nanotube layers decorated by TiO₂ nanoparticles (using established TiCl₄ treatment) and with blank (uncoated) layers. By means of photocurrent measurements and cyclic voltammetry, it is demonstrated that the most efficient charge carrier separation can be achieved for TiO₂ nanotube layers with an optimal ALD TiO₂ coating thickness ≈ 11 nm. Significant differences in flatband potentials and carrier density among all nanotube layers were revealed by Mott-Schottky measurements. Photocatalytic decomposition rates for methylene blue solutions were significantly enhanced for ALD TiO₂ coated TiO₂ nanotube layers compared to their uncoated or TiO₂ nanoparticles - decorated counterparts. A perfect agreement in trends was obtained for photocurrent and photocatalytic results.

© 2017 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Since the first report in 1972 by Fujishima and Honda [1] on the utilization of TiO₂ as photoanode for water splitting, TiO₂ has gained great attraction as an excellent photocatalyst for the decomposition of various organic compounds [2–5]. The mechanism of the photocatalytic activity is based on the formation of electron–hole pairs under UV light illumination, where the electron–hole pairs have an energy sufficiently high to form radicals of high oxidizing power [2–5].

A significant photoresponse from TiO₂ can only be generated by UV light (wavelengths < 390 nm) since TiO₂ is an n-type semiconductor with a band gap energy $E_g \approx 3.2$ eV for anatase and ≈ 3.0 eV for the rutile phase. To broaden its photoactivity toward the visible light, TiO₂ has been doped with different dopants, such as transition metals [6,7], N [8,9], P [10], or C [11].

However, a large photocatalyst’s surface area is another important condition for efficient photocatalysis. This condition can be fulfilled by the utilization of TiO₂ nanostructures, e.g. nanoparticles [12,13], nanorods [14,15] or self-organized nanotube layers [16,17]. Furthermore, applying an anodic potential between the TiO₂ layer (photoanode) and a counter electrode accelerates the charge separation. In this case, the electrons are driven away more efficiently from the TiO₂ surface and the holes to the surface, enhancing the photocatalytic decomposition efficiency. The use of TiO₂ as photoanodes dates back to the early 1990s when Kamat et al. [18,19] reported on electrochemically assisted photocatalytic degradation of organic pollutants on compacted nanoparticulate layers. Besides their large surface area, the utilization of anodic TiO₂ nanotube layers as photocatalyst is advantageous since they are attached to the underlying metallic Ti foil that acts as an electrical contact. Hence, they can be used for electrochemically assisted photocatalysis without additional immobilization on any other substrate, as published by Zlamal et al. in 2007 [17]. Meanwhile, several other reports show voltage-assisted utilization of TiO₂ nanotube layers as photocatalyst [20–24].

However, a drawback of the TiO₂ nanostructures is that they often have electron traps or recombination centers, such as grain boundaries [25–27]. Thus, they are still not as efficient in the charge separation as they could be. Nevertheless, this drawback can be resolved by coating the nanostructures by atomic layer deposition (ALD) with thin and nearly defect-free layers of other secondary...
materials, such as Al2O3 [28–30], ZnO [31,32] or TiO2, as shown for 1.8 μm TiO2 rutile nanowires [33]. Such added layers can annihilate electron traps on the TiO2 surface and, thus, increase the efficiency of photo-generated charge carrier separation. In fact, in case of Al2O3 [28–30] or ZnO [31,32] just a single ALD deposition cycle shows the highest efficiency to improve charge transport properties of the resulting TiO2-based heterostructure. When increasing the thickness of such a secondary material (based on larger ALD cycle numbers) a gradual passivation of the photoactive TiO2 surface takes place due to stronger band-bending at the open circuit potential. As a result, the photocurrent strongly decreases compared to uncoated TiO2 nanostructures [28–31].

In this work, TiO2 nanotube layers with a thickness of ≈5 μm and a diameter of ≈230 nm were coated with thin TiO2 layers (with thicknesses from 2.8 nm to 22 nm) by an optimized ALD process and explored for their photocurrent and photocatalytic performance. TiO2 nanotube layers decorated by TiO2 nanoparticles (that are typically used for dye sensitized solar cells [34,35] and other applications [36]) and blank (uncoated) layers were utilized as reference materials.

2. Experimental

The TiO2 nanotube layers were produced as described in our previous works [37]. Fabricated TiO2 nanotube layers had thicknesses ≈5 μm and inner diameters ≈230 nm. All TiO2 nanotube layers were annealed in a muffle oven (400 °C, 1 h) to obtain anatase structure [38]. One batch of layers was used for subsequent ALD deposition of thin TiO2 coatings, the other for decoration by TiO2 nanoparticles using TiCl4 treatment, and the rest was used as blank nanotube layers.

Atomic layer deposition (ALD, TFS200, Beneq) was carried out at 300 °C using TiCl4 (electronic grade 99.9998%, STREM) and Millipore deionized water (18 MΩ) as the titanium precursor and the oxygen source, respectively. High purity N2 (99.9999%) was the carrier and purging gas at a flow rate of 400 standard cubic centimeters per minute (sccm). Under these deposition conditions, one growth ALD cycle was defined by the following sequence: TiCl4 pulse (500 ms)–N2 purge (3 s)–H2O pulse (500 ms)–N2 purge (4 s). The TiO2 nanotube layers were coated by TiO2 applying different ALD cycles (50, 150, 200, 300, and 400 cycles) yielding nominal thicknesses of 2.8 nm, 8.3 nm, 11 nm, 16.5 nm, and 22 nm, respectively (according to the growth rate per ALD cycle, evaluated from TiO2 thin layers deposited on Si wafers using variable angle spectroscopic ellipsometry using VASE® ellipsometer, J.A. Woollam).

The decoration of nanotube layers by TiO2 nanoparticles was carried by their immersion in 0.1 M TiCl4 (made of ice-cooled TiCl4 and DI water), followed by sonication (15 s), storage (70 °C, 30 min), rinsing with DI water and annealing in a muffle oven (400 °C, 30 min) to obtain crystalline TiO2 nanoparticles.
The morphologies of all types of TiO₂ layers were characterized by a field-emission scanning electron microscope (FE-SEM; JEOL JSM 7500F). The inner diameters, nanotube walls and the thicknesses of the nanotube layers were evaluated by statistical analyses of the SEM images using proprietary Nanomaterial software.

The photocurrent measurements were carried out in a three-electrode cell (Ag/AgCl reference electrode, Pt wire as counter electrode, Ti substrate as working electrode) at 0.4 V vs. Ag/AgCl in an aqueous 0.1 M Na₂SO₄ electrolyte and in the spectral range from 350 to 420 nm (5 nm step). The setup consisted of photoelectric spectrophotometer with a 150 W Xe lamp and monochromator (Instytut Fotonowy), modular electrochemical system AUTOLAB (PGSTAT 204, Metrohm Autolab B.V., Nova 1.10 software). The photocurrent transients were measured for 10 s (light-on period). CV curves were recorded between −0.3 V and +0.5 V with a sweep rate of 5 mV/s in the dark and under UV light illumination (λ = 350 nm). The IPCE value for each wavelength was calculated as in our previous work [37,38]. Mott-Schottky plots were recorded using the same setup and the same electrolyte, at frequency of 1 kHz and in the range of −0.4 to 1 V vs. Ag/AgCl.

The photocatalytic activities of all layers were evaluated using photocatalytic decomposition of methylene blue (MB) solution (initial concentration = 1 × 10⁻⁵ M). To achieve a dye adsorption–desorption equilibrium, prior to the MB decomposition, the layers with an area of (0.75 × 3) cm² were immersed in a quartz cuvette containing 3.5 ml MB for 1 h with constant stirring. The layers were then irradiated by a LED-based UV lamp (power output = 10 W, wavelength = 365 nm ± 5 nm) and the absorbance of the MB solution was periodically measured (5 or 10 min steps) by a UV–vis spectrometer (S-200, Boeco) at a wavelength of 670 nm to monitor the decomposition rates. For the potential-assisted photocatalytic MB decomposition, the same hardware and conditions were used as for photocurrent measurements. For photocatalytic measurements without any potential, counter and reference electrodes were not employed in the cuvette.

3. Results and discussion

Fig. 1 shows SEM images of the top and bottom parts of blank TiO₂ nanotube layers, ALD TiO₂ coated (400 cycles) TiO₂ nanotube layers and TiO₂ nanotube layers decorated by TiO₂ nanoparticles (using TiCl₄ treatment). An obvious increase of the wall thicknesses can be seen between blank and ALD coated nanotube layers. Essentially, with increasing ALD cycle numbers, the nanotube walls become thicker and the inner nanotube diameter became smaller. For the uncoated nanotube layer, however, the underlying Ti substrate can be seen between the individual nanotubes at the bottom part. For more than 200 ALD TiO₂ cycles, significant clogging of nanotube exteriors was observed. For 400 ALD TiO₂ cycles, the nanotube exteriors were almost totally clogged, as can be seen from Fig. 1, lowering the total available surface area. All these observations are in line with our previous report on Al₂O₃ coating of nanotube layers [39]. In addition, the TiO₂ coatings were very uniform and homogenous throughout the whole TiO₂ nanotube layers. However, since the nanotube layers and the coatings consisted of the same material – TiO₂ – it was not possible to distinguish between the nanotube walls and ALD coatings by SEM. Nevertheless, statistical evaluation of the SEM images revealed that with an increasing number of ALD TiO₂ cycles, the bottom wall thickness increased from ca. 111 nm before ALD (i.e. without coating) to 130 nm and 138 nm with ALD TiO₂ coatings of 200 and 400 cycles TiO₂, respectively. As a consequence, the bottom inner diameter decreased from 133 nm to 106 nm and 90 nm for blank, 200 cycles and 400 cycles ALD TiO₂ coated nanotube layers, respectively. Generally, the increase in the measured wall thickness was in perfect agreement with the thicknesses of the ALD TiO₂ coatings prepared on Si wafers and measured by ellipsometry (see Section 2 for details), confirming good ALD process within nanotubes. TEM investigation of ALD TiO₂ coated (50 cycles) TiO₂ nanotube layers was carried out, revealing that even these thinnest coatings used in this work were homogenous and crystalline. Selected TEM image showing the interface between nanotube and ALD coating is shown in Fig. S1.

As further evident from Fig. 1, TiO₂ nanoparticles completely decorated TiO₂ nanotube layers. Thus, it was assured that both ALD-coated and TiO₂ nanoparticles-decorated TiO₂ nanotube layers were entirely treated with additional TiO₂ material according to the desire. The TiO₂ nanoparticles in terms of quantities, shapes and sizes resemble those nanoparticles demonstrated in the literature [34–36], since similar conditions for TiCl₄ treatment were used.

Fig. 2a displays the incident photon-to-electron conversion efficiencies (IPCE) and the photocurrent densities for some selected nanotube layers used in this work. For clear comparison, results for ALD TiO₂ coated nanotube layers with 150 and 300 cycles were excluded, but they were involved for photocatalytic studies, as shown later. However, Fig. 2b shows photocurrent transients recorded at a wavelength of 350 nm (corresponds to the highest values in Fig. 2a) for all nanotube layers used in this work. As seen from Fig. 2a, a strong increase in IPCEs and photocurrent densities was observed for all modified TiO₂ nanotube layers, compared to blank TiO₂ nanotube layers. For the ALD TiO₂ coated (50 cycles) TiO₂ nanotube layer, however, the photocurrent densities resembled mixed behavior between uncoated (blank) and nanotube layers with thicker ALD coating. Thicker coatings (150 cycles and more) led to significantly accelerated photocurrent response. The highest IPCE value (and photocurrent density) was achieved for TiO₂ coated TiO₂ nanotube layers with 200 ALD cycles (≈11 nm) and...
more than twice higher than for the blank layers, and 1.5 \times higher than for the TiO\textsubscript{2} nanoparticles-decorated nanotube layers. These trends can also be seen from the photocurrent transients (Fig. 2b).

The fact that the most efficient photocurrent generation is achieved for rather thick coatings (200 cycles and more) is in contrast to the aforementioned literature on Al\textsubscript{2}O\textsubscript{3} [28–30] and ZnO [31] coatings of TiO\textsubscript{2} nanotube layers, where coatings produced by 1 ALD cycle showed the highest increase in photocurrent density. However, the present enhancement of the photocurrent density with ALD TiO\textsubscript{2} coated TiO\textsubscript{2} nanotube layers has two straightforward explanations: (i) The additional coating of TiO\textsubscript{2} passivates surface states and improves the charge collection efficiency, (ii) ALD TiO\textsubscript{2} coatings are of higher quality (contain less defects and impurities) than the TiO\textsubscript{2} that the nanotube layers consist of. Thus, more efficient charge carrier separation takes place within the added coatings.

It was already demonstrated on photocurrent, XPS and other investigations in the previous literature that ALD TiO\textsubscript{2} nanolayers are of very high quality compared to other TiO\textsubscript{2} nanostructures [33,40,41].

On the other hand, if the coatings were too thick (which was especially the case for ALD TiO\textsubscript{2} coated (300 and 400 cycles) TiO\textsubscript{2} nanotube layers, as discussed in Fig. 1), the active and available TiO\textsubscript{2} surface area of the nanotube layers decreased due to clogging of the nanotube exteriors (as demonstrated for thick coatings in our previous work [39]). Due to this, the photocurrent did not increase anymore for thicker TiO\textsubscript{2} coatings but even decreased slightly.

For the TiO\textsubscript{2} nanoparticles-decorated TiO\textsubscript{2} nanotube layers, the nanoparticles did most likely not passivate the surface states of the TiO\textsubscript{2} nanotube layers, as did the ALD TiO\textsubscript{2} coatings, as the undecorated nanotube surface was still exposed to the electrolyte. However, there was an increase of IPCE (and photocurrents) compared to the blank layer, which can be assigned to an increase of the photo-active surface area due to the newly added surface of TiO\textsubscript{2} nanoparticles.

An additional interesting feature that can be seen from the photocurrent transients in Fig. 2b is that the photocurrent density of the blank, ALD TiO\textsubscript{2} coated (50 cycles) and TiO\textsubscript{2} nanoparticles-decorated TiO\textsubscript{2} nanotube layers showed a delay in time response, when the light was turned on and off. This behavior stems from numerous electron traps (most typically oxygen vacancies in the TiO\textsubscript{2} structure) in the nanotube layers and results in unwanted charge recombination [25,42], in the same fashion as for rutile nanowires [33]. Similar features were already observed for lower aspect ratio nanotube layers [43]. The ALD TiO\textsubscript{2} coatings, however, are less defective than the TiO\textsubscript{2} nanotube layers themselves (i.e. contain less oxygen vacancies). Therefore, for the ALD TiO\textsubscript{2} coated nanotube layers, the undesirable charge recombination was significantly reduced and as a result the photocurrent delays were diminished. Hence, the current density increased promptly when the UV light was switched on (and again decreased abruptly when the light was switched off). With a higher number of ALD cycles (thicker TiO\textsubscript{2} coatings), this fast response was more pronounced due to a larger amount of less defective TiO\textsubscript{2} present within the TiO\textsubscript{2} nanotube layers.

In order to provide an additional electrochemical insight into the photoelectrochemical response of all nanotube layer modifications, in particular to evaluate the photocurrent saturation discussed in Fig. 2, cyclic voltamgrams for selected nanotube layers were recorded in the range of \(-0.3\) V and +0.5 V vs. Ag/AgCl. Fig. 3 exhibits CV curves obtained for blank, ALD TiO\textsubscript{2} coated (200 cycles) and TiO\textsubscript{2} nanoparticles-decorated TiO\textsubscript{2} nanotube layers under UV light illumination (\(\lambda = 350\) nm) and in the dark.

While the dark currents were nearly identical for all three TiO\textsubscript{2} nanotube layer modifications, the photocurrent densities increased significantly for ALD TiO\textsubscript{2} coated TiO\textsubscript{2} nanotube layers compared to the other tube layers investigated in Fig. 3. The dotted lines indicate the highest photocurrent densities for the three different TiO\textsubscript{2} nanotube layers. The values are in line with the trends observed in Fig. 2a.

Furthermore, for the blank nanotube layer the photocurrent density rose until a potential of \(\approx 0.4\) V was reached, while at higher potentials, a photocurrent plateau was recorded. That is why a potential of 0.4 V was chosen for the photocurrent measurements shown in Fig. 2b.

The TiO\textsubscript{2} nanoparticles-decorated and ALD TiO\textsubscript{2} coated (200 cycles) TiO\textsubscript{2} nanotube layers reached plateaus of their photocurrent densities at \(\approx 0.45\) V and \(\approx 0.5\) V, respectively.

In order to provide even deeper insight of the semiconductive properties of the layers presented in Figs. 2 and 3, Mott–Schottky measurements were carried out, as shown in Fig. S2. TiO\textsubscript{2} nanoparticles-decorated TiCl\textsubscript{4} TiO\textsubscript{2} nanotube layers showed a significant shift of the \(E_{fb}\) toward the cathodic region. This can be explained by specific ion adsorption due to the surface states presented, as shown in the literature [44]. The carrier density \((N_0)\) was also slightly lower than for the blank nanotube layers, due to the reduced number of oxygen vacancies over the samples as a result of second thermal annealing in air of these TiCl\textsubscript{4} treated layers. On
the ALD TiO$_2$ coated (200 cycles) TiO$_2$ nanotube layer in all cases. The TiO$_2$ nanoparticles–decorated TiO$_2$ nanotube layer, however, did not show any beneficial effect for the photocatalysis of MB compared to the blank TiO$_2$ nanotube layer.

When an external potential of 0.1 V was applied on all nanotube layers, the photocatalytic decomposition rates of MB were higher for all tested samples compared to the case of no external potential. However, the highest decomposition rates were obtained at an external potential of 0.4 V. This trend and also the pseudo-first photocatalytic kinetics rates were in line with the previously published data on uncoated TiO$_2$ layers with lower aspect ratio [17]. From the linear part of the curves (indicated by a solid line) first-order decomposition kinetics were fitted [45,46]:

$$\ln(C/C_0) = kt$$ \hspace{1cm} (2)

where C_0 and C are the concentrations of MB at the beginning and after the time t, and k is the pseudo-first rate kinetic constant. The resulting kinetic rate constants are listed in Table 1. The calculated decomposition rates are in line with the photocurrent response demonstrated in Figs. 2 and 3. As can be seen from Fig. 4, the decomposition rates achieved by photofading (exposure of the MB solution to UV light without employing any TiO$_2$ nanotube layer) and by electrocatalysis (employing a potential in the dark) were negligible.

The deviations from the pseudo-first photocatalytic kinetics seen in Fig. 4 for results obtained at 0.1 and 0.4 V vs. Ag/AgCl after some 20–30 min from the beginning of the illumination stem from the complex situation at the high surface TiO$_2$ surface, when immersed into MB solution and illuminated. There are at least three processes running in parallel: (i) dye adsorption on the TiO$_2$ surface, (ii) the decomposition of it, and (iii) the re-adsorption of MB on the newly free sites. The kinetics of these processes are strongly dependent on the MB concentration, temperature, illumination intensity, etc. and it is difficult evaluate their interplay. However, for nearly decolored MB solutions (after some 20–30 min from the illumination beginning), there is not so strong adsorption of the dye anymore, since the concentration is comparably lower then at the beginning of the experiment. Thus, most of the dye molecules arriving to the very close proximity to the TiO$_2$ surface are more readily decomposed by photocatalysis, which is translated into comparably faster decomposition rates.

All in all, the whole set of ALD TiO$_2$ coated TiO$_2$ nanotube layers showed a better performance in the photocurrent generation, as well as in the photocatalytic experiments. Considering the magnitude of the results for blank and ALD TiO$_2$ coated TiO$_2$ nanotube layers, it becomes clear that the original nanotubular TiO$_2$ mass has only a minor effect on the photocatalysis and photocurrent generation in the presented photocatalyst design. It is mainly the ALD derived TiO$_2$ that is photoelectrochemically active and undergoes much more efficient charge separation, strongly supported though

Table 1

Photocatalytic (pseudo-first) rate kinetic constants, k, of MB degradation upon illumination (365 nm, LED array) using blank, ALD TiO$_2$, coated (different cycle numbers) and TiO$_2$ nanoparticles–decorated (TiCl$_4$) treated TiO$_2$ nanotube layers, measured without external potential and at 0.1 V and 0.4 V vs. Ag/AgCl. The photocatalytic (pseudo-first) rate kinetic constants obtained by linear fitting of the curves shown in Fig. 4.

<table>
<thead>
<tr>
<th>Sample</th>
<th>k (min$^{-1}$) at OCP</th>
<th>k (min$^{-1}$) at 0.1 V</th>
<th>k (min$^{-1}$) at 0.4 V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blank</td>
<td>0.0117</td>
<td>0.0305</td>
<td>0.0466</td>
</tr>
<tr>
<td>TiCl$_4$</td>
<td>0.0049</td>
<td>0.0342</td>
<td>0.0418</td>
</tr>
<tr>
<td>50 cycles</td>
<td>0.0205</td>
<td>0.0365</td>
<td>0.0482</td>
</tr>
<tr>
<td>150 cycles</td>
<td>0.0208</td>
<td>0.0373</td>
<td>0.0482</td>
</tr>
<tr>
<td>200 cycles</td>
<td>0.0418</td>
<td>0.0579</td>
<td>0.0612</td>
</tr>
<tr>
<td>300 cycles</td>
<td>0.0246</td>
<td>0.0476</td>
<td>0.0517</td>
</tr>
<tr>
<td>400 cycles</td>
<td>0.0150</td>
<td>0.0440</td>
<td>0.0454</td>
</tr>
</tbody>
</table>
by high surface area TiO2 nanotubular scaffold without which the magnitude of the results presented here could not be achieved. Overall, the presented results confirm, how viable ALD can be for deposition of various materials within TiO2 nanotubes and add the photocatalysis as another important application to the pioneering literature on modifications of TiO2 nanotubes by ALD [47–51].

4. Conclusions

ALD TiO2 coatings on ≈5 μm thick anodic TiO2 nanotube layers showed beneficial effects for their photoelectrochemical and photocatalytical performances. Due to a more effective charge carrier separation for ALD TiO2 coated TiO2 nanotube layers, much higher decomposition rates of methylene blue under UV light illumination were reached in the case of ALD TiO2 coated TiO2 nanotube layers compared to blank and TiO2 nanoparticles-decorated (TiCl4 treated) TiO2 nanotube layers. The largest enhancement was obtained for ALD TiO2 coatings with thickness ≈11 nm (200 ALD cycles). Moreover, the application of an external potential of 0.4 V further increased the photocurrent densities and photocatalytical decomposition rate constants of ALD TiO2 coated TiO2 nanotube layers.

Acknowledgements

European Research Council and Ministry of Youth, Education and Sports of the Czech Republic are acknowledged for financial support of this work through projects 638857 and LM2015082, respectively. We thank Dr. Lukáš Střižlík and Mr. Lukáš Hromádko for ellipsometric and SEM measurements, respectively.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.japtm.2017.06.002.

References

