

UNIVERSITY OF PARDUBICE
Faculty of Electrical Engineering and Informatics

Implementation of a high-level control system
for a teaching aid aimed as a supporting tool when

teaching state-space search method

Bc. Filip Majerík

Master thesis
2017

Author’s Declaration

I hereby declare:

This thesis was prepared separately. All the literary sources and the information I used in the
thesis are listed in the bibliography. I got familiar with the fact that the rights and obligations
arising from the Act No. 121/2000 Coll., Copyright Act, apply to my thesis, especially with
the fact that the University of Pardubice has the right to enter into a license agreement for
use of this thesis as a school work pursuant to § 60, Section 1 of the Copyright Act, and the
fact that should this thesis be used by me or should a license be granted for the use to another
entity, the University of Pardubice is authorized to claim a reasonable contribution from me
to cover the costs incurred during making of the thesis, according to the circumstances up to
the actual amount thereof.

I am aware that my thesis will be accessible to the public in the University Library and via
the Digital Library of the University of Pardubice in agreement with the article 47b of the
Act No. 111/1998 Coll., on Higher Education Institutions, and on the Amendment and
Supplement to some other Acts (the Higher Education Act), as subsequently amended, and
with the University Pardubice’s directive no. 9/2012.

In Pardubice on 15. 05. 2017 Bc. Filip Majerík

Acknowledgements

I am grateful to the many people that have provided inspiration and support during the course
of this work. Mainly, I would like to thank my supervisor Ing. Pavel Škrabánek PhD. for his
cool head, his great access and good cooperation. Thanks also to my coworkers what help
me with some parts of programming and to Ing. Karel Šimerda for consulting on some
problems. And thanks also to Paul Charles Hooper, B.A. Dip.Ed. for his time while
consulting the English grammar.

Next I would like to thank my friends for accepting my angry feels and my worst days. Last
but not the least, I would like to thank my family: my parents and to my wife Andrea
Blažíčková witch daughter Žofie for supporting me spiritually throughout writing this thesis
and my life in general.

Thank to everyone.

Název

Implementace nadřazeného řídicího systému laboratorní úlohy určené pro výuku
problematiky prohledávání stavového prostoru

Anotace

Tato diplomová práce se zabývá detekcí objektů v reálném čase za pomoci knihovny
OpenCV. Prvně jsou popsány základy plánování a plánovací algoritmy. Následně jsou
popsány základní techniky zpracování obrazů a základní principy pro detekování objektů
v obraze. Dále je rozebrán návrh a implementace učební pomůcky – software nadřazeného
řídicího systému.

Klí čová slova

Počítačové vidění, umělá inteligence, plánovací algoritmy, plánování cesty, zpracování
obrazu

Title

Implementation of a high-level control system in a teaching aid aimed as a supporting tool
when teaching state-space search methods

Annotation

This master thesis is focused to the object detection in a real time using the OpenCV library.
At first is described the basis of path-planning and path-planning algorithms. Next are
described a basic techniques for an image processing and a basic principles for the image
detection. Last is analysis of a problem and a software design with its implementation as
teaching aid – high-level control system software.

Keywords

Computer vision, artificial intelligence, path-plan algorithms, path-planning, image
processing

Content list

List of acronyms .. 10

List of pictures ... 11

List of tables ... 12

Introduction ... 13

1 Description of the laboratory work .. 14

1.1 Purpose of the teaching aid ... 14

1.2 Components of the laboratory work ... 14

1.2.1. Maze .. 15

1.2.2. Camera system ... 15

1.2.3. Mobile robot .. 16

1.2.4. High-level control system .. 16

2 The Path-planning ... 18

2.1 Short introduction to path-planning .. 18

2.2 Search for path-plan.. 18

2.2.1. Uninformed methods ... 20

2.2.2. Uninformed methods comparison ... 26

2.2.3. Informed methods .. 27

2.2.4. Heuristic function .. 30

2.3 Configuration space and decomposition .. 31

3 Image Processing ... 36

3.1 Digital image representation ... 36

3.2 Point operations .. 39

3.2.1. Brightness transformations .. 40

3.2.2. Histogram equalization .. 41

3.2.3. Thresholding operations .. 43

3.3 Geometric transformations ... 44

3.3.1. Translation ... 46

3.3.2. Scale .. 46

3.3.3. Rotation ... 47

3.3.4. Shear .. 47

3.4 Composite affine transformation .. 48

3.5 Perspective transformation ... 48

3.6 Image smoothing .. 49

3.7 Shape analysis .. 51

4 Problem analysis .. 54

4.1 Objectives of teaching aid .. 55

4.2 Requirements .. 55

4.2.1. Functional requirements .. 55

4.2.2. Non-functional requirements ... 55

4.3 Ready-to-use tools .. 56

4.3.1. Maze detector analysis .. 56

4.3.2. Robot detection .. 56

5 Software design .. 57

5.1 Modules .. 57

5.1.1. GUI & environment ... 57

5.1.2. Camera system module .. 58

5.1.3. Maze layout analysis ... 58

5.1.4. Robot observer ... 60

5.1.5. Client manager ... 60

5.1.6. Robot communication module... 62

5.2 Analytic Class diagram ... 63

5.3 Implementation ... 64

6 Experimental verification of the solution .. 66

6.1 Maze detection .. 66

6.2 Student’s routine interface .. 66

6.3 Getting path-plan from routine and transform to a sequence of steps 66

6.4 Robot detection ... 67

7 Evaluation of verification .. 68

7.1 Maze detection .. 69

7.2 Robot observing .. 70

7.3 Implementation of client application with A* algorithm ... 72

Conclusion .. 74

Literature ... 75

Attachment A – Example usage of communication protocol .. 78

Attachment B – Accompanying CD ... 79

10

List of acronyms

BFS – Breadth-first search
CV – Computer vision
DFS – Depth-first search
DSLR camera – Digital Single-Lens Reflex camera
FIFO – First-in, First-out (queue type)
HRCT – High-resolution computed tomography
HLCS – High-level control system1
IP camera – Internet Protocol Camera
LIFO – Last-in, First-out (queue type)
RGB – Red Green Blue2
RTSP – Real Time Streaming Protocol

1 It is part of this thesis
2 In usage with color space/images

11

List of pictures

Figure 1 – An example of a correctly assembled maze captured by the camera system..... 15

Figure 2 – An example of a correctly installed camera's system .. 15

Figure 3 – Control System Prototype .. 17
Figure 4 - Simplified graph of Romania (Russell, et al., 2010) .. 19

Figure 5 – Examples of possible start and goal state representations in the 8-puzzle (Russell,
et al., 2010) .. 20

Figure 6 - Order which the nodes are expanded by BFS ... 21
Figure 7 - Breadth-first algorithm pseudocode (Sedgewick, et al., 2011)........................... 22

Figure 8 - Breadth-first search on a simple binary tree, partial of the solution is indicated
from left to right .. 22

Figure 9 – Order which the nodes are expanded by DFS .. 23

Figure 10 - Depth-first algorithm pseudocode (Sedgewick, et al., 2011) 24

Figure 11 - Depth-first search on a simple binary tree, partial solution is indicated from left
to right ... 24

Figure 12 - Depth-first iterative deeping pseudocode (Sedgewick, et al., 2011) 25

Figure 13 - A schematic view of a bidirectional search .. 25
Figure 14 - Big-O Complexity Chart ... 27
Figure 15 - Greedy search with dead end problem .. 28
Figure 16 - Greedy search recursive algorithm pseudocode ... 28

Figure 17 - A* (A Start) algorithm pseudocode .. 29
Figure 18 - Euclidean distance .. 31
Figure 19 - Manhattan distance ... 31
Figure 20 - Example of exact cell decomposition (Latombe, 1991) 32

Figure 21 - Adjacency relations between the cells (Latombe, 1991) 33

Figure 22 - Fixed cell decomposition problem .. 33
Figure 23 - Workspace decomposed by adaptive cell decom1position method (Siegwart, et
al., 2004) .. 34

Figure 24 - Comparison of resulted path-plan for these two methods. 34

Figure 25 - Most used bitmap grids – (a) Square grid. (b) Hexagonal grid. 37

Figure 26 - (a) 400 x 400px, (b) 100 x 100px ... 38
Figure 27 - Vectorized photo of Theodore Roosevelt ... 39
Figure 28 – Apply the function P to f(x,y) .. 40
Figure 29 - Gray-scale transformations ... 41
Figure 30 - Histogram equalization (Left) Original image. (Right) Equalized image. 42

Figure 31 - Histogram equalization for Fig. 30 ... 42
Figure 32 - Image thresholding (1) Original image, (2) Simple thresholding, (3) Otsu method
and (4) Poly curve fitting (Chandrakala, et al., 2016) .. 44
Figure 33 - Spatial transformation (Rhody, 2005) .. 45
Figure 34 - Example of translation .. 46
Figure 35 - Example of scale - Sx,Sy = 2 (Enlargement) ... 47
Figure 36 - Example of rotation - θ = 45° ... 47

12

Figure 37 - Example of shear along x-axis .. 48
Figure 38 - Result – Translation, Scale 2x, Rotation � = 75° .. 48

Figure 39 - Example of apply a perspective transformation ... 49

Figure 40 - Example image with applied Gaussian filter .. 50
Figure 41 - 2D Gaussian function graph ... 51
Figure 42 - Sub image divide .. 56
Figure 43 - Final graphic user interface... 57
Figure 44 - Maze with 3 corner markers and calculated last corner.................................... 59

Figure 45 - Maze with 4 corner (a) before perspective transformation (b) after 60

Figure 46 - GUI form for routine selection ... 61
Figure 47 – Comparison of trajectories for 270° rotation and 90° rotation to same final
direction ... 62

Figure 48 - Analytic Class diagram ... 63
Figure 49 - HLCS Source Packages .. 64
Figure 50 - Maze with undesirable light .. 70
Figure 51 - Bad detected maze while is too much rotated... 70
Figure 52 – Key points of sample robot markers (colored circles) 71

Figure 53 – Sample key pointed maze with markers... 71
Figure 54 - Sample bad key point association ... 72
Figure 55 - Simple routine GUI ... 72
Figure 56 - Example of generated path by testing routine .. 73
Figure 57 - Example output during the communication with routine 73

List of tables

Table 1 - Evaluation of tree-search versions of algorithm (Even, 2011) (Cormen, 2009)
(Sedgewick, et al., 2011) ... 26
Table 2 - Comparison of raster and vector model ... 39
Table 3 - Evaluation of the maze detection test scenario .. 68
Table 4 - Evaluation of the student's routine interface test scenario 68

Table 5 - Evaluation of the getting path-plan from routine and transform to a sequence of
steps test scenario .. 69

Table 6 - Evaluation of the robot detection test scenario .. 69

13

Introduction

Recently, one of the most rapidly increasing parts of information technology science is
artificial intelligence and other associated areas such as image processing or computer
vision. In order to strengthen a student understanding of these areas, various teaching aids
have been developed. A teaching aid aimed at path-planning practicing has been designed at
the University of Pardubice, Faculty of Electrical Engineering and Informatics. The teaching
aid supports development of various student skills. Beside a path-planning theory, the
students practice programming, and they muster experience in optimization of algorithms.
One of the most complex parts of the teaching aid is a high-level control system. This system
has been developed within my thesis.

The high-level control system is a central part of the teaching aid, which ensures
communication with a user, a mobile robot, a camera and a path-planning routine. Moreover,
the control system must provide additional services such as image processing, object
detection, or object localization.

Since the teaching aid is a core topic of this thesis, a detailed description of the aid is logically
a content of the first section of the thesis. The teaching aid is aimed at practicing path-
planning theory. Thus, a brief description of search methods, heuristic functions,
configuration space and decomposition methods is given in the following section. The high-
level control system, gathers information about the real world using the camera; hence,
image-processing related tasks are very important in the context of this work. Thus, the next
section deals with image processing fundamentals. This section gives an overview of various
image-processing operations, as well as an introduction into a digital image representation.
These three sections represent the theoretical part of the thesis.

A practical part of the thesis deals with design and implementation of the teaching aid. An
analysis of requirements of the high-level control system is covered at first. Description of
the process of design can be found in the following section. Evaluation of the proposed
solution is explained in the penultimate section. Finally, a conclusion is given in the last
section of the thesis.

14

1 Description of the laboratory work

The basis of this laboratory work is to provide to students a training environment for their
experiences in programming and artificial intelligence. A little bit about computer software
communication over sockets is also provided. This teaching aid was described in an article,
Control System of a Semi-Autonomous Mobile Robot (Škrabánek, et al., 2016) and based
on next two articles, High-Level Control System for a Path-Planning Teaching Aid
(Škrabánek, et al., 2016) and Attractive Robot's design suitable for image processing
(Škrabánek, et al., 2014).

This laboratory work is based on a camera system which gives information about how
the problem looks. The base high-level control system communicate with clients (problem
solvers), robot (executes command from control system) and maze.

However, the maze is not connected to any computer. For work with maze, a camera
system is used which detects how the maze looks and gives information about robot position.

Students can implement any path-planning algorithm to their software. It depends on
their imagination. Cooperation with this laboratory work can give feedback to the student on
how good is his/her implemented algorithm.

1.1 Purpose of the teaching aid

A student can implement any path-planning algorithm in their routine. The application can
communicate with the control system by the socket interface communication.

A basic requirement on the control system is an ability to create a simple
communication interface with any programming language. Thanks to this, students can
choose their favorite language. The proposed solution will be language independent thanks
to the socket communication.

In such a way, students can use our communication interface to get all information
about teaching aid configuration and give back to our interface their solution for this
problem. Once the student’s application returns a solution it is displayed in our high-level
control system for checking, and robots will move forward according to this solution.

If a student’s solution is not good, the robot may collide with a wall in the maze. This
behavior is expected. If the path-plan is good, the robot safely moves from a start (actual)
position to a target position.

1.2 Components of the laboratory work

The laboratory work composes of several components. All of these components have their
roles in this system. We can divide the components to three groups. In the first one, space is
composed from partitions called maze. The second group is the computer system. This
computer system is composed of camera, network, high-level control system and client
solvers (student routines). The last item consists of the mobile robot.

15

1.2.1. Maze

The maze is constructed from a building kit and consists of black and red labeled partitions,
posts and small yellow square markers. Using the partitions and posts, a maze of various
sizes and layouts can be constructed. In Figure 1 is shown one possible layout of the maze
constructed by a building kit. An outer shape of the maze must be rectangular. The yellow
markers must be always placed in corners. The markers are key for a localization of the maze
in images. As will be explained later, meeting of these requirements is fundamental for
correct image processing.

Figure 1 – An example of a correctly assembled maze captured by the camera system.

1.2.2. Camera system

The camera system consists of the camera and a camera stand with a movable arm.
Maximum height of the stand is 3 meters and the arm is 1.5 meter long. For correct usage,
the arm must be placed in a horizontal position and a camera's swath must be perpendicular
to the maze. It means that the camera will be parallel with a base of the maze in an ideal
state. In other cases, some unwanted distortions of the images may occur. The distortions
may prevent a maze layout detection.

The camera is fixed on the end part of the arm. Within this thesis, an IP camera D-
Link DCS-935L was used. The camera can capture images or stream a live video. It supports
an RGB or a gray scale mode. The maximal resolution of the camera is 1280×720 pixels.
The camera supports a WiFi network connection using a RTSP protocol.

Figure 2 – An example of a correctly installed camera's system3

3 Image taken from the material owned by Ing. Pavel Škrabánek Ph.D.

16

1.2.3. Mobile robot

The mobile robot is one of the main components of this teaching aid. It is based on an
Arduino building kit. A robot can communicate with our system by Bluetooth technology.
All commands for the robot are received via this communication interface.

Received commands are in step format. There are only three type of steps – rotate,
forward and stop. These commands are sent to a robot by the control system. Commands are
in order due to selected solution received from the student routine. More about a robot
navigation and control can be found in (Škrabánek, et al., 2016).

Steps which will make a clash with walls are not checked by the control system. The
reason for this is a demonstration of a student’s solution performance which might be
incorrect.

A robot can use only one set of solution steps in any moment. Other solutions are
invalid after the first step, because the original problem is changed.

1.2.4. High-level control system

The high-level control system consists of computer software and a hardware platform. The
system has a responsibility for all that is done in this laboratory work. The control system
must handle a few basic tasks which have been determined.

Maze detection is the first one of these tasks. The control system must detect the
maze and convert it to a graph representation. How the conversion is done, is described in
the next sections.

The second task is to display the problem for the student. Control application is
divided to two panels. In the first one is a graphical representation of the detected maze with
actual configuration (robot position and walls) and on the second panel, operation buttons
are shown.

The next task is robot observing. This part of control system cares about robot
position in the maze and updates graphic maze representation. This part of the control system
must process every real robot rotation and move.

The last task is a communication with student routines. This is needed because one
of requirements is implementation of any Path-planning algorithm. Socket communication
was chosen, because it seems to be simplest for implementation of other algorithms. This
system must provide information to client applications about a problem configuration over
a defined text protocol.

Not one Path-planning algorithm is implemented in control system software.

17

Figure 3 – Control System Prototype

18

2 The Path-planning

Path-planning is the process of searching for a path from one position to the target position
with knowledge about the maze. It is assumed that both positions are known and both of
these positions are in the maze. It means that the robot must be able to achieve target position
from start position. (Kanniah, et al., 2013)

2.1 Short introduction to path-planning

Path-planning is a relatively common problem in many computer systems which have to
solve some decision problem. (Russell, et al., 2010) This problem can be almost anything.
In computer space we are able to talk about problems shown on a graph. (Kanniah, et al.,
2013) There is a very easy solution how the problem can be transformed to a graph. After
transforming, the search algorithm starts to find the path to solve the problem. Path-planning
is one type of graph problem for a robot in maze. The graph is a discrete map of the problem.

The result of the path-planning algorithm is a sequence of steps (Kanniah, et al.,
2013), which is needed to be done to achieve the goal. A successful conclusion of the
problem is when all steps are finished. In this case, the optimal path that satisfies the criteria
defined by the task or defined by the problem, can be discussed. (Kanniah, et al., 2013)

However, not all path problem solvers work in the same way. Some solvers search
only for a part of path and other look at the complete path. Both types have some advantages
and disadvantages. For example, partial solvers are faster than other solvers, but they do not
always warrant finding of the shortest path. On the other hand, complete path solvers are
able to search for the shortest path that satisfies a given criterion. But such a search process
can cost so much time and memory. Memory and time cost depends on problem space size.
And this cost can grow awfully fast with only one small change in space or with one small
resize of space. (Kanniah, et al., 2013)

2.2 Search for path-plan

The basic Path-planning problem is defined by knowledge about space, where a path is
needed to be found. The basic knowledge can be, for example, a space with obstacles. There
is a defined problem to find the path with no collision with obstacles while the sequence of
steps are being realized. The process of looking for a sequence of steps that reaches the goal
is called a search. (Russell, et al., 2010)

Searching for a path-plan can be achieved by different planning methods. The two
most popular methods are uninformed methods, informed methods. All of these methods can
work with cell decomposed space and a search path plan in it. And also they work with graph
representation of physical space. (Siegwart, et al., 2004)

The goal formulation must exist before the path-planning search starts. Goal
formulation is achieved by current situation - for example it can be based on user decision

19

about the target position of the robot. When a goal exists, problem formulation can be started.
Problem formulation is the process of deciding which actions are needed to reach the goal.

Driver path-plan problem

Figure 4 - Simplified graph of Romania (Russell, et al., 2010)

In Fig. Figure 4 a graph representation of Romania roads between towns is shown.
In this graph, a path-plan from one town to another town can be searched for. Path-planning
strategy is dependent on the problem goal, defined criteria and selected method.

The criteria are conditions which must be successfully achieved by the Path-plan.
One of most used criterion is the shortest length of path. In another case for example, fastest
path can be found, but all information to reach this criterion must be given in the graph.

Toy Problem – 8 puzzle

8-puzzle is one type of childhood logical toys. But it´s also one common example for Path-
planning. On this toy exists one blank space and eight numbered tiles. The dimension of the
space is 3×3. The goal state can be achieved by moving tile to a blank space. Every move
can be called as step. And all steps together in sequence from first to last is called a path-
plan. (Russell, et al., 2010)

20

Figure 5 – Examples of possible start and goal state representations in the 8-puzzle (Russell, et al.,
2010)

Standard problem formulation for the 8-puzzle is:

• State (Node): One of the possible states of puzzle configuration. The state is
determined by numbered tile positions and position of the blank place. There are 9!
= 362,880 states but only 9!/2 = 181,440 are reachable from the initial state.

• Initial state: Any puzzle state can be marked as the initial state. It is a start state for
searching a Path-plan.

• Actions (Steps): In this puzzle exists 4 possible actions – slide Left, Right, Up and
Down. A subset of possible actions are defined by the blank position. Action Left
cannot be done while the blank is at the rightmost column. Top action cannot be done
while the blank is at bottom row and so on.

• Goal state: Any admissible states can be marked as the goal state.
• Action cost: Every action cost is 1.

For this toy exists one rule which need to be respected. No one tile can be moved in any
other way except sliding to blank place.

2.2.1. Uninformed methods

Uninformed methods are methods which have no information about the problem other than
its definition. Thanks to that, they are often called blind methods. „All they can do is generate
a successor and distinguish a goal state from a non-goal state.” (Russell, et al., 2010)
Methods are distinguished by the order in which nodes are expanded. The Path-plan is
constructed from a sequence of states. Sequence of states are in an order which need to be
visited to achieve a goal state. (Kanniah, et al., 2013)

21

We can set criteria to evaluate an algorithm performance. To evaluate criteria these
questions must be answered:

• Completeness – If one or more solutions exist, is there a guarantee to find them?
• Optimality – If a solution is found will it be the optimal4 one?
• Time complexity – How long does it take to find a solution? (Usually measured in

count of expanded nodes.)
• Space complexity – How much memory is needed to perform the search?

Breath-first search

A breadth first search (BFS) is an algorithm for traverse or search on a tree or a graph data
structure. The strategy for searching in a structure starts from the initial state of the problem.
Simply all nodes are expanded at actual depth in the search structure before any nodes from
the next level are expanded. (Russell, et al., 2010)

Figure 6 - Order which the nodes are expanded by BFS

Breadth first search works all the time with the shallowest unexpanded node in a
chosen expansion. This is guaranteed by use of a FIFO queue collection. Thus, new nodes
are inserted to the end of the queue. This algorithm works with one more collection. The
second collection is used for explored nodes.

In every step the front node is taken from the FIFO queue. This node is compared
with the goal node to determine if the goal is achieved or not. If not, this node is stored to
expanded collection, and after it is expanded, all its unexplored child nodes are inserted to
the end of FIFO queue.

The algorithm can end in two different situations. The first one is to reach a goal state
when the algorithm return path contains all parents from last explored node to root. The
second situation can occur when all nodes are expanded and processed, and searched the
target node does not occur in the structure.

4 Optimal solution mean that solution has the lowest path cost among all solutions. (Sedgewick, et al., 2011)

22

Figure 7 - Breadth-first algorithm pseudocode (Sedgewick, et al., 2011)

 Figure 7 shows pseudocode of a BFS algorithm. In a short, this algorithm does
traverse from root (initial state) and search for a goal (target state). During the search process,
the FIFO queue is used. To this queue is new node is inserted by insert() method and the first
node (the oldest element) is removed by the first() method. Variable child is a successor of
the actual node. For every child node, their parent is set. Each iteration is checked for a goal
state. If a goal state is found the actual node is returned.

Figure 8 - Breadth-first search on a simple binary tree, partial of the solution is indicated from left to
right

Fig. Figure 8 shows a simplified working algorithm. The actual node is represented
by orange color and explored states are green. Unpainted nodes are in the FIFO queue and
wait for exploration. Nodes indicated by a dotted line are nodes which are not now available.
These nodes are waiting for exploring of their parents to be queued to FIFO. The next step
will only occur if their parent is not a goal state.

The basic problem of BFS algorithm is memory requirements. Memory requirements
grow with exponential-complexity in every subsequent depth level. Problems with more than
16 depths are not solvable in real life on a personal computer. According to this knowledge
can be said BFS is usable for every problem, but only if a problem has minimal states.
(Siegwart, et al., 2004)

23

Depth-first search

Another representative of the uninformed method is the depth-first search (DFS). This
method is also for search and traverse on a tree or in a graph structure such as BFS. The
difference from BFS is primarily in a used queue. BFS uses a FIFO queue and DFS uses
LIFO. The strategy of BFS is based on work with the deepest node where no successors
exist. (Even, 2011)

The basic version of this algorithm can fail on the graph structure, because there
exists loops between nodes. (Cormen, 2009) This problem can be solved by additional extra
memory collection to avoid these loops.

Figure 9 – Order which the nodes are expanded by DFS

This method uses two collections. The first one is an open LIFO queue collection
where unexplored nodes are stored. The second closed collection has stored explored nodes.
Every step acquires the front element from the LIFO (it mean last inserted node) queue. The
node is expanded only if this actual node is not a goal state. All successors of this node are
inserted to an open queue if they are not in the closed queue. (Even, 2011) (Siegwart, et al.,
2004)

A basic DFS algorithm can finish in three situations. The first one is a successful
search for a goal state which returns a Path-plan for it. The second one is full expansion of
all states and no goal state found. And the last one is a "dead cycle" between two states.
When DFS uses a closed queue the last situation is prevented from appearing. (Even, 2011)

In Figure 10, the pseudocode of DFS is shown. In short, this algorithm traverses from
a root node (initial state) to a goal (target state). Firstly, two collections (one is an open LIFO
queue and second one is a closed collection), with an ability to check contained states, are
created. After collections are created, the root node is inserted into FIFO by a method
insert(). While the LIFO queue is not empty, the loop is repeated. In each iteration of the
loop, the first node (last inserted) in the LIFO queue is moved from this queue to the closed
queue, and compared with the goal state. If actual node is a goal, the algorithm will return

24

this actual node. From the returned node, a path to root is calculated using parent relations.
Otherwise, each successor is added to the open queue, only if this successor is not contained
in a closed collection.

Figure 10 - Depth-first algorithm pseudocode (Sedgewick, et al., 2011)

In Fig. Figure 11 a simplified working algorithm is shown. The actual node is
represented by orange color and explored states are green. Unpainted nodes are in the LIFO
queue and wait for exploration. Nodes indicated by a dotted line are nodes which are not
now available. These nodes are waiting for exploration of their predecessor to be queued in
LIFO. The next steps only occur if their predecessors are not goal state.

Figure 11 - Depth-first search on a simple binary tree, partial solution is indicated from left to right

The main advantage of the DFS algorithm is memory requirements, which are
diametrically different from the breadth-first algorithm. The primary disadvantage of the
depth-first search algorithm is that, it is not guaranteed to find the solution and if the solution
is found, it might not be the optimal solution. (Even, 2011)

The depth-first search has got a modification with limit for maximum depth. This
modification is based on criteria in which level is the search stopped. This variant can be
again modified with iteration, when every iteration increases maximal depth. This
modification is called Depth-first iterative deepening, and it finishes when goal state is
achieved or when maximal allowed depth is reached. (Even, 2011)

25

Figure 12 - Depth-first iterative deeping pseudocode (Sedgewick, et al., 2011)

This pseudocode expects implementation of the Depth-first iterative search which
ends when maximal level is reached. A search with every new maximal depth is done again
from the root and all queues are cleared. When the goal is reached, the algorithm does not
continue to the next depth level.

“In general, iterative deepening is the preferred uninformed search method when the
search space is large and the depth of the solution is not known.” (Russell, et al., 2010)

Bi-directional search

The main idea of bi-directional search (BIS) is to start from both sides simultaneously. One
part searches for a path from the initial state to goal, and the second part searches from the
goal to initial state. (Cormen, 2009) When both search parts meet in some node – the path
from initial state to goal is achieved. In bidirectional search combination of DFS and BFS
algorithm can be used. (Russell, et al., 2010)

Solution of this algorithm may not be optimal. Additional research is needed to test
if any shortcuts in structure exist. (Even, 2011) The second problem, which makes this
algorithm weak, is a high space complexity. (Cormen, 2009)

Figure 13 - A schematic view of a bidirectional search

26

2.2.2. Uninformed methods comparison

Before comparison of these algorithms can be started. Some variables, which are needed to
be known, must be defined:

• branching factor b – maximum number of successors of any node, (Russell, et al.,
2010)

• depth d – maximal depth from root where can be found goal state, (Even, 2011)
• maximum length m – maximum length of any path in the space, (Russell, et al., 2010)

• depth limit l – maximal depth – used only for Depth limited and Iterative Deeping
algorithms.

Criterion
Breadth-

First Depth-First
Depth
limited

Iterative
Deepening Bidirectional

Complete? Yes No No Yes Yes

Time O(bd) O(bm) O(bl) O(bd) O(bd/2)

Space O(bd) O(bm) O(bl) O(bd) O(bd/2)

Optimal? Yes No No Yes Yes

Table 1 - Evaluation of tree-search versions of algorithm (Even, 2011) (Cormen, 2009)
 (Sedgewick, et al., 2011)

Every complete algorithm must have a finite b. The bidirectional method must
moreover use, in either direction, the breadth-first search algorithm, or a combination of BFS
and iterative deepening search algorithms. BFS, Iterative Deepening and Bidirectional
algorithms are optimal only if step costs are all identical. (Russell, et al., 2010)

Big O notation

Big O notation is used to classify algorithms according to how long it takes to find a solution
or how much space is needed according to the input problems (Mohr, 2007).

The most common notations are O(1) – constant; O(log n) – logarithmic; O(n) –
linear; O(n log n) – log-linear; O(n2) – quadratic; O(cn) – exponential and O(n!) – factorial.

Common notations are sorted from slowest growth to fastest growth. That means that
the O(1) has best performance and O(n!) is the worst (Mohr, 2007).

27

Figure 14 - Big-O Complexity Chart5

2.2.3. Informed methods

Informed methods are strategies that know whatever non-goal state is "more promising".
Informed methods use a heuristic function which gives weight for next steps. All informed
methods use it to decide which next node is the best. Thanks to a heuristic function method,
which works with problem-specific knowledge, solutions can more efficiently be found
compared to uninformed methods. (Cormen, 2009) (Russell, et al., 2010)

These methods are based, besides the heuristic function h(n), on an evaluation
function g(n). The evaluation function is constructed as a cost estimate and helps to select
the node which will be evaluated in the next step. If condition h(n) = 0 is accomplished, the
n is the goal state. (Russell, et al., 2010) The evaluation function returns a number describing
the desirability to expand the node. By this number, the algorithm decides which node is the
best successor.

Greedy search – Greedy best-first search

Greedy search strategy works in all nodes only with local values of heuristic function
g(n) = f(n). In every step, the greedy search expands the node with the biggest value. Due to
that, the optimal solution for the problem is not guaranteed. (Even, 2011) The optimal one
can be in another branch of the structure. This shows why the algorithm is called "greedy" -
at each step, it tries to get as close to the goal as it can. (Russell, et al., 2010)

A greedy search on tree is also incomplete in the finite state space. This appears when
the algorithm expands a bad node which has no goal state in its successors. This situation is
called a dead end, because a goal state can never be reached.

5 Source: http://bigocheatsheet.com, Visited: 26. March 2017

28

Figure 15 - Greedy search with dead end problem

Fig.Figure 15 - Greedy search with dead end problem shows poor evaluation of a tree
with dead end and without reaching the goal state. The expected goal state is painted by red
color. Unfortunately, the bad successor 32 was selected in the first step, which causes entry
to a dead way. Orange color is actually an expanded node and green are expanded nodes in
path.

In the same tree as Fig. Figure 15 - Greedy search with dead end problem, we can
define another problem. The problem is based on finding the biggest sum of numbers in the
nodes. There will be the same problem because greedy search picks in first expanding
iteration, node 32 and never gets the correct result. In this case, the correct result is the sum
of 17 + 11 + 99 = 127, but result 17 + 32 + 14 = 63 is incorrectly selected. (Hazewinkel,
1995)

The greedy search method is used to construct a tree to find an optimal solution in
the Huffman coding tree. (Huffman, 2007)

Figure 16 - Greedy search recursive algorithm pseudocode

This pseudocode is based on recursive algorithm and a priority queue. If the root
node entered to the function is a goal state, the node will be returned. Otherwise, the
algorithm checks the existence of node successors. If the node has no successor, the method
returns NULL. If the node has successors, the priority queue is used to get the most feasible
successor using the heuristic function (the nodes sorted according to h). It means that the
first node in the priority queue is the feasible successor. Everything is done again for the
successor. The algorithm ends when no successor exists or a goal state is reached.

29

A* (A star) algorithm

A* algorithm is widely used in many systems to solve cost based problems. This algorithm
guarantees to find the cheapest path from initial state to goal - if a good heuristic function is
supplied. To reach a goal, a simple formula is used (Russell, et al., 2010)

���� = ���� + ℎ���. (1)

This equation combines cost to reach actual node g(n) and cost to get from the actual
node to goal node. The result of this equation is an estimated cost f(n) of the cheapest path
from initial state to reach goal state. The algorithm is complete and optimal, if heuristic
function h(n) satisfies certain conditions. Optimality of the A* algorithm is achieved, if
heuristic function h(n) is admissible, if graph-search version is optimal, if h(n) is consistent,
and if h(n) is consistent. Then values of f(n) along any path are non-decreasing. (Cormen,
2009)

Let us suppose that the node n' is a successor of the node n then

���′� = ���� + ���, �, �′�, (2)

where a is an action. It must hold for these two nodes that (Russell, et al., 2010)

����� = ����� + ℎ���� = ���� + ���, �, ��� + ℎ���� ≥ ���� + ℎ��� = ����. (3)

While evaluating the A* algorithm two conditions are needed to be checked, before
a successor is inserted into the open list for future expansion. When popping the best
successor, the open collection needs to be sorted by value of calculated f(n).

Figure 17 - A* (A Start) algorithm pseudocode

Figure 17 shows the pseudocode of A* algorithm. During the process two collections
are created. One collection is for open nodes (which are not expanded yet) and closed
collection for expanded nodes is the second one. At the start the root is added to open

30

collection. This is done because the algorithm works, while open collection is not empty. In
every iteration the best node is selected from the open collection by
sortAndPopBestSuccessor() method. Then every successor is compared with goal state and
if it is not a goal state, the metrics are calculated by heuristic function and compared with
other nodes in closed and opened collections. If its metric is still the lowest one, the node is
added to open collection. Every node is added to closed collection.

This algorithm is used most commonly, because it is very fast and optimal – if a good
heuristic function is chosen. Very low memory is needed because only necessary states are
expanded. We can say – this algorithm is best one. But the overall performance and speed is
dependent on the selected heuristic function which can be slowest part of the algorithm.

2.2.4. Heuristic function

In general, heuristic function is part of an algorithm where additional knowledge about the
problem is imparted to the search algorithm. There exists only one constraint: a goal node
has h(n) = 0. A Heuristic function can be called “intelligence” for informed path-planning
methods. (Russell, et al., 2010)

The main task of this function h(n) is to return a non-negative real number which
represents an estimate cost from the actual node n to a goal node. The Heuristic function
h(n) can not underestimate the path from the actual node to next node. In every step the
heuristic function must return a lower path-cost than the actual cost is. (Even, 2011)

This function is used to determine which step is the best in the next action. Almost
every path-planning algorithm chooses the lowest cost to determine the next state - because
there is an assumption about the lowest cost for generated path. If the heuristic function is a
good one, the lowest number is nearest to the goal state. (Russell, et al., 2010)

The two most common used heuristic functions are Euclidean distance and
Manhattan distance. The value of both of these distances decrease in every step.

Euclidean distance

The Euclidean distance ϱ is defined as straight-line distance between two points in Euclidean
space. Distance ϱ between two points A and B is calculated with Pythagoras theorem
(Sedgewick, et al., 2011):

���, �� = ���� − ���� + ��� − ����, (4)

where x1,y1 are coordinates of point A and x2,y2 are coordinates of point B. The result
of this formula is equal to the distance between place A and place B. The real distance
between two real points is shown in Fig. Figure 18 - Euclidean distance.

31

Figure 18 - Euclidean distance

Manhattan distance

Manhattan distance is usable where diagonal moves are restricted. A good example is
moving in a city, where going across block of houses is not allowed or 8-puzzle where only
horizontal and vertical moves are allowed (Sedgewick, et al., 2011). Distance ϱ between two
places A and B is calculated by simple formula:

���, �� = |�� − ��| + |�� − ��| (5)

where x1,y1 are coordinates of point A and x2,y2 are coordinates of point B.

The result of this formula is equal to the sum of absolute differences of x and y
coordinates of places A and B. The real result between two points is calculated by this
formula and shown in Figure 19.

Figure 19 - Manhattan distance

2.3 Configuration space and decomposition

The configuration space is a type of discrete representation of the real world. In this
configuration all important information is stored, which is needed for use in path-planning
algorithms. In our case 2D space configuration is used. Every state or position of a robot is
described by Cartesian coordinates (xR, yR) in configuration space C and rotation angle ƟR.
(Škrabánek, et al., 2015)

For a fully specified space configuration we need to be able to recognize where
obstacles are in the workspace W. For this case, we need to map the obstacles in
configuration space and after this, take into consideration the subset of configuration space
C, that makes contact-free configurations. (Latombe, 1991)

Every obstacle Bi, i = 1 to q, in the workspace W is mapped in a region C:

32

 ��� = �� ∈ �/���� ∩ �� ≠ ∅% (6)

which is called a C-obstacle. The union of all the C-obstacles

⋃ ���'�(� (7)

is called the C-obstacle region, and the set

�)*++ = �\ ⋃ ���'�(� = -� ∈ .
/�'� ∩ 0⋃ ��'�(� 1 = ∅2 (8)

is called the free space. (Latombe, 1991)

Space decomposition is a process where the real world is converted to a network of
cells. These cells are the potential position of the robot. With this network an adjacency
matrix can be constructed. With this matrix neighboring cells are specified. This information
is used by a search algorithm to find the path-plan from the initial position to target position.
In an adjacency matrix only binary values are stored. One (true) for open path and zero
(false) is the unreachable path to the next cell. Count of neighboring cells is not restricted
because it depends on the selected type of cell decomposition.

Exact cell decomposition

This methods achieves the decomposition by selecting boundaries between discrete cells
based on geometric corners. The free space is externally bounded by a polygon and divided
by vertical lines. Vertical lines divide the free space to cells which can be used for path-
planning (See Figure 20). The second step is to construct the graph which represents
structure - in most cases, adjacency matrix. (Latombe, 1991)

These representations can be compact because each such area is stored as a single
node, because it is not dependent on size cell and cell position. There are only two necessary
pieces of information - initial cell and target cell. (Siegwart, et al., 2004)

Figure 20 - Example of exact cell decomposition (Latombe, 1991)

33

The next figure shows how the exact cell decomposition process is transformed to a
graph representation. This transformation is done on decomposition space from Figure 20.

Figure 21 - Adjacency relations between the cells (Latombe, 1991)

Fixed cell decomposition

An alternative to exact cell decomposition is a fixed cell decomposition. This method is
based on partitioning a space to equally large cells, in most cases as squares. For this method,
there exists one big disadvantage why it is not often used. The disadvantage is that obstacles
are not only rectangles, and some cells are marked as an obstacle, but only a small piece
from the obstacle is on it. Because of this inaccuracy, an almost empty cell can be identified
as an obstacle, and with this inaccuracy can be marked as closed path - which can be open
in real space. (Latombe, 1991) (Siegwart, et al., 2004)

There is a recommendation to use the smallest fixed size of squares for elimination
of this disadvantage. Fixed cell decomposition with this problem is shown in Figure 22
(right). In the same Figure on the left side, is shown original problem decomposition without
marking the cell as an obstacle (black square). (Siegwart, et al., 2004) At first sight, the
problem is seen with moving between central and right obstacles after apply obstacle
markers. In the result, adjacent structures are marked as a closed path.

Figure 22 - Fixed cell decomposition problem

Adaptive (variable) cell decomposition

A modified version of fixed cell decomposition is adaptive cell decomposition. This method
is improved by gradual decomposition of a bigger cell where obstacles are divided into a

34

smaller cell. This improvement provides better accuracy for marked obstacles in space and
removes the disadvantage of fixed cell decomposition. (Latombe, 1991)

Decomposition by this method is done in these steps:

1. divide full working space to a four big equal sized rectangles,
2. pick all rectangles where is piece of obstacle found,
3. divide all rectangles contains obstacle again to four equal sized rectangles.

This process is done while all obstacles are bordered, or when the maximum level of
divide factor is reached. The dividing factor depends on user selection and corresponds to
the count of iteration for dividing rectangles. In the last dividing step, obstacles are definitely
marked. (Siegwart, et al., 2004)

Figure 23 - Workspace decomposed by adaptive cell decom1position method (Siegwart, et al., 2004)

In Figure 23 the decomposed space is shown with divide factor 4. The resulting
rectangle sizes for individual steps during the decomposition is also shown. For clarity only
one colored rectangle is shown from every step. But in result all equal sized rectangles are
generated in one iteration of dividing.

Figure 24 - Comparison of resulted path-plan for these two methods.6

6 Based by figures from (Siegwart, et al., 2004)

35

Figure 24 shows the difference between resulted path-plan after adaptive cell
decomposition (left) and after fixed cell decomposition (right). On first sight, the path on
right is longer thanks to above mentioned disadvantage and the states need to be expanded
further.

36

3 Image Processing

Image processing is a method for image enhancement with algorithms and operations. The
output of these is an image ready for analysis. Object detection in the image is one of most
common used operations. But for this operation and many other operations, basic knowledge
about images and digital image representation is needed. Almost all operations are based on
these steps:

• Get image (from camera, video stream or simple computer drawing).
• Store the image in an appropriate format.

• Image preprocessing (white balance, noise reduction, restoration, compression...).
This step is based on requirements by final operation.

• Image analysis (segmentation, image registration, matching and comparison).

• Image post processing - perform the requested operation.

The purposes of image processing can be divided into these five groups (Monga, et al.,
2015):

• Visualization – transforming digital data into images representing information about
the data.

• Image sharpening and restoration – repairing corrupt/noisy image and estimating
clean.

• Image retrieval - looking for the image of interest.
• Measurement of pattern - measures various objects in an image.
• Image Recognition – distinguish the objects in an image.

3.1 Digital image representation

There exists two main image representations: vector data model and raster (bitmap) data
model. Whereas the raster model is based on graphic pixels, the vector data model is based
on polygons, lines and points. These models have some advantages and some disadvantages.
(Rafael, et al., 2008)

Raster data model

The raster data model is based on a pixel grid (Figure 25), where each pixel7 [px] has one
color from a color model. The two most common color models are the RGB model which is
designed for adaptive color mixing (in general, for lighted equipment - for example
monitors) and CMYK which is designed for places where subtractive mixing of colors is
needed (good example are printers). In RGB model every pixel on the raster grid has three
basic components – Red, Green and Blue component. In image processing the grayscale
color model (only shades of black) or binary color model is often used. (Sonka, et al., 2008)

7 Pixel is an image element.

37

Figure 25 - Most used bitmap grids – (a) Square grid. (b) Hexagonal grid.

The final color count is based on selected color depth. Generally these color depths are used:

• 1-bit – monochrome (2 colors),
• 8-bit – color/grayscale (256 colors or 256 shades of black),

• 16-bit – high color (32,768 colors with transparency or 65,536 colors without
transparency),

• 24-bit – true color (16,777,216 colors),

• 32-bit – deep color (4,294,967,296 colors).

Color count is calculated from an easy formula, where n is bit depth (Rafael, et al., 2008):

34 = 26. (9)

The main advantage of raster data model usage, is the possibility of having more
details (shadow detail) in the picture than in the vector data model. But the disadvantage is
therefore with higher memory requirements.

General formula for calculating image size in Bytes SB (Rafael, et al., 2008):

S8 = w ∗ h ∗ <
=. (9)

where w is width in pixels, h is height in pixels, and b is color bit color depth (8-bit,…).

Due to this disadvantage a compression for saving images is introduced. One version
of a compression is loss and lossless. (Sonka, et al., 2008) At present, the ordinary resolution
is about 3,500 × 5,000 pixels for DSLR cameras (about 17,5Mpx - ± 52,5MB without
compression).

The lossless compression is based on a conversion to the shortest sequence of bytes
and after decoding we get back the original file. Resultant compression rate is based on
repeating the same sequence of bytes in file. This compression is used in tiff, png, and gif
image file types. (Salomon, et al., 2009)

The loss compression is based on removing unimportant information from the image.
Unimportant information is information which the human eye can not recognize. After

38

decoding the original image is not obtained, and some information is irretrievably lost.
Amount of lost information can be chosen by the level of compression. In this case, every
new file save must be counted with repeatable compression. This algorithm is used in JPEG
image file types. (Sonka, et al., 2008) (Rafael, et al., 2008)

The final quality of an image on the raster data model, depends on chosen grid size
(resolution), color depth, and compression. Figure 26 shows the difference between a
100×100px image resized to 400×400px, and the original 400×400px image. Both of these
images are stored from original 1024×1024 image, selected color depth is 24 bits and JPEG
compression level 80%. The original image is stored in PNG format with same color depth.
The size of the original image is 2.2MB (lossless compression), image file size (a) on Figure
26 has 48kb and (b) is 1.7kb. The difference between them is seen on first sight – raster
model is not usable for image resizing to a bigger resolution. (Rafael, et al., 2008)

Figure 26 - (a) 400 x 400px, (b) 100 x 100px

Vector data model

Vector data model is based on a polygons, which is defined by points, lines and colors. Each
point of every polygon has its own definite position on axes. Every line has assigned various
attributes and includes stroke color, shape, curve, thickness, and fill.

The opposite of rasterize process is vectorization. In this process, the raster model
image is transformed to vector model, but this operation is more difficult than rasterization
and in most case cannot be done automatically by a computer. The possible result of
vectorization is shown in Figure 27.

39

Figure 27 - Vectorized photo of Theodore Roosevelt8

Raster and vector final summary comparison

Table 2 summarizes the basic characteristic of these two image data models. This
summarization is based on gained knowledge while writing the thesis.

Vector Raster
Polygon based Raster based

Better for logos, drawings and illustrations Better for photos

Can be scaled without quality losing
Without quality losing can be only down
scaled

Resolution-independent – for every
resolution is small file size

Large resolution and higher detailed image
is result of large file size

Easy conversion to raster
Vectorization is depending on file
complexity – more complex = more time

Special software needed In many systems is raster native format

Table 2 - Comparison of raster and vector model

3.2 Point operations

Point operations are focused to perform an operations at every pixel on an image. These
operations are based on changing image size, colors, contrast, geometry, or local structures
of the image. To every pixel is applied a sequence of required functions. Each new pixel
value depends exclusively on its previous value at the same position and is independent from
any other neighboring pixel values. The point operations are functions only for exactly one
pixel - all operations are applied pixel-by-pixel. (Rafael, et al., 2008) (Sonka, et al., 2008)

8 Source: http://vectorsquad.com/?p=945

40

A simple formula for Point operations application, where is P(x) required operation,
f(x,y) is an input pixel, and G(x,y) is result pixel:

>��, �� = ?����, ��) (10)

Figure 28 – Apply the function P to f(x,y)

3.2.1. Brightness transformations

Brightness transformations belong to a group of picture adjustment. This transformation is
one of the basic point operations which is needed to be done before image analysis is
performed. Brightness transformation is based on RGB conversion to grayscale image.

These transformations are divided to two classes: brightness correction and gray-
scale transformation. Brightness correction takes into account its original brightness and
its position in the image. Gray-scale transformations change brightness without regard to
position. (Sonka, et al., 2008)

Brightness correction

If we want to do a brightness correction, we need to get a reference image, where we can get
an error coefficient for each pixel. When the reference image exists, and error coefficient
e(x,y) can be counted from this image, we can apply brightness correction for each pixel on
the input image as:

���, �� = @��, �� ∗ ���, �� (12)

But this method can be used only if the degradation process on the image is stable.
The stable degradation means, if the degradation is a linear multiplication in the next steps -
it is possible to correct the degradation by repeating this correction.

 If we change the source of images, a new calibration of error coefficients e(x,y) for
each pixel is needed. This method has one problem - brightness value can overflow if the
error coefficient is bigger than 1. In this case we need to crop the maximum value to exactly
255. The ideal image for brightness correction has an average value of 128 for brightness of
all pixels. (Sonka, et al., 2008)

41

Gray-scale transformation

Gray-scale transformation is not based on a pixel position. A transformation P of the original
brightness p from scale <p0,pk>into brightness q from a new scale <q0,qk> is given by:

� = ?�A� (13)

The most common gray-scale transformations are shown in Figure 29, where three main
functions are shown. The input of these functions are grayscale images.

• Function (a) enhances the image contrast between brightness values p1 and p2.

• Function (b) is called brightness thresholding and result is black-white image.
• Function (c) is negative transformation.

Figure 29 - Gray-scale transformations

All of these gray-scale transformations can be easily done in real-time on
conventional desktop computers, or on commonly available mobile phones. (Říha, 2012) To
achieve these operations, often only 256 bytes of memory are needed. (Sonka, et al., 2008)
The original calculated brightness is the index to the look-up table, where the new brightness
is taken. “These transformations are used mainly when an image is viewed by a human
observer.” (Sonka, et al., 2008)

3.2.2. Histogram equalization

This technique is based on gray-scale transformation for a contrast enhancement. The aim is
to create an image with equally distributed brightness levels over the whole brightness scale.
When the brightness value is near maximum it needs to be decreased and conversely
enhanced when brightness is near the minimum. Next, denote the input histogram by H(p)
and input gray-scale as <p0,pk>. The intention is to find a monotonic pixel brightness
transformation q = P(p) such that the desired output histogram G(q) is uniform over the
whole output brightness scale. The histogram can be treated as a discrete probability density
function. (Sonka, et al., 2008)

∑ >���� = ∑ C�A��D�(ED�(E (14)

42

The sums in equation (14) can be interpreted as discrete distribution functions.
Denote the rows and column count as N. Then the equalized histogram G(q) corresponds to
the uniform probability density function f whose function value is a constant (Sonka, et al.,
2008):

� = FG
'HI'J. (15)

After replacing the left side of the equation (14) with value from equation (15), the
histogram can be obtained precisely only for the idealized continuous probability density:

K� = L �
'HI'J MN = FG∗�'I'J�

'HI'J
''J = L C�N�MNOOJ . (16)

The desired pixel brightness transformation function P can be derived as:

� = ?�A� = 'HI'JFG ∗ L C�N�MN + �EOOJ . (17)

For a better idea of what histogram equalization is – refer to Figure 30 (Sonka, et
al., 2008)Figure 30. This Figure shows HRCT of a lung before and after equalization.
Figure 31 shows the difference between these two image histograms.

Figure 30 - Histogram equalization (Left) Original image. (Right) Equalized image.

Figure 31 - Histogram equalization for Figure 30

43

3.2.3. Thresholding operations

The thresholding basic idea is to find an optimal gray-level threshold value for separate
objects of interest in an image. Segmentation by thresholding operations are fast and simple
for segmenting light objects on a dark background. (Chandrakala, et al., 2016)

Thanks to thresholding we can segment an image to segments, and after it we can
detect edges by differences in light and dark segments. Thresholding operations work with
gray-level images and after the threshold process we get a binary image in two colors - black
and white. (Chandrakala, et al., 2016)

Easily can be said: "If g(x,y) is a threshold version of f(x,y) as some global threshold
T, g is equal to 1 if f(x,y) >= T and zero otherwise." (Das, et al., 2011)

���, �� = - 1 Q� ���, �� ≥ R0 otherwise (18)

Thresholding has a relatively big problem with pixel neighbors. This problem is
ignorance of the relationship between neighboring pixels. The result can be computed with
misleading errors thanks to image compression, digital noise or shadows in the image. In all
of these cases some segments in the image can be lost - some segments can be marked as a
"black" segment while it is not. (Das, et al., 2011)

The most commonly used thresholding techniques are simple thresholding, Otsu
thresholding and Polynomial Curve Fitting. Another less commonly used method is adaptive
thresholding.

Simple thresholding

The simple thresholding technique is based only on checking the condition if the value of
the actual pixel is greater or lower. In general, if value T is greater than the pixel value, the
pixel is marked as 1 (white - foreground), otherwise it is 0 (black – background).
(Chandrakala, et al., 2016)

This technique is useful in discriminating the foreground from the background. If a
best-fit threshold value is chosen, the resulting image contains information about the position
and shape of the objects of interest (foreground). (Chandrakala, et al., 2016)

Otsu9 thresholding

Otsu's method is based on an automatic method of finding the threshold value that minimizes
the weight class variance in the histogram. This method operates directly on the gray level
histogram, because it will be fast. The histogram is computed only once before the method
is executed. The method tries to minimize overlap of image segments by adjusting threshold

9 Method is named after Nobuyuki Otsu

44

value, however this method does not work properly with non-uniform illumination.
(Chandrakala, et al., 2016) (Qu, et al., 2010)

Polynomial Curve Fitting

This method is based on segmentation of an image by fitting a polynomial curve to the
histogram and finding the point of inflection, to get the minimum value for thresholding.
Algorithms based on this method are very robust and efficient in comparison with the others.
This method has however, the disadvantage of biasedness and impossibility of making a
valid estimate of the residual variation of the curve. (Chandrakala, et al., 2016)

Adaptive thresholding

The next method is adaptive thresholding. This method can accept a grayscale image or color
image as input; and output is a binary image representing the segmentation. This method
computes a threshold for each pixel in the image. But the same principle is used as in simple
thresholding. The value below threshold T is set to the background color and otherwise to
the foreground color.

The difference between simple thresholding and adaptive thresholding is calculated
with sub image (not only with one pixel). The threshold value for each pixel in this method
is found by interpolating the result of the sub images. There is a risk when sub image is too
large and bad threshold value is calculated. In this case optimal size of sub image needs to
be found. Unless the sub image is well chosen, the method result is very poor and many
objects in the image can be marked as background. (Chandrakala, et al., 2016) (Sonka, et al.,
2008)

Figure 32 - Image thresholding (1) Original image, (2) Simple thresholding, (3) Otsu method and
(4) Poly curve fitting (Chandrakala, et al., 2016)

Figure 32 - Imageshows the basic comparison of these methods on a photo of rice
image.

3.3 Geometric transformations

All geometric transformations are based on displacement of pixels from their original
position (x,y) to a new position (x+tx, y+ty) in the new image (called spatial transformation).

45

These transformations allow elimination of image distortions or undesirable effects. The
distortions might be caused e.g. by a lens distortion or a bad camera orientation.

The transformations can be used also for rotation of image or change of the view
angle. Such operations are often used in remote sensing when in maps, there is a need to fix
effects which arise by earth rotation, satellite position and so on.

Spatial transformation

In these transformations every pixel (x,y) of the original image is mapped to a new pixel
(x', y') in a new coordinate system in the new image. But, the digital image is always a 2D
array of image pixels in an implicit discrete grid. By this mapping a place out of the grid can
be achieved (see Figure 33). In this case, there must be a final step of calculating pixel
brightness from several neighborhood pixels. This brightness is usually calculated as an
interpolation of these pixels. (Rhody, 2005)

�� = Z���, �� (19)

�� = Z���, �� (20)

Functions Z1 and Z2 in equation (19, 20) are functions depends on x and y (pixel
coordinates).

Figure 33 - Spatial transformation (Rhody, 2005)

Affine transformation

All possible geometric transformations are special cases of Affine Mapping. This mapping
is a function between two affine spaces which preserves points, straight lines and planes.
The general transformation equation in homogeneous coordinate system is:

[�′ �′ \′] = [� � \]. ^ (21)

Where M is general 3x3 transformation matrix.

46

^ = _`�� `�� `�a`�� `�� `�a`a� `a� `aa
b (22)

In general, an affine transformation is a composition of translations, scales, rotations,
and shears. An affine transformation can be represented by these matrix equation:

[�′ �′ 1] = [� � 1]. _`�� `�� 0`�� `�� 0`a� `a� 1b (23)

The result of the 2D transformations must lie on the same plane, e.g., w’ = w = 1. W
can be any value. Generally, the homogeneous coordinates must be divided by w' order to
be left with results in the plane w' = w = 1 (Rhody, 2005).

3.3.1. Translation

All points are translated to a new position by adding offsets tx and ty to x and y, respectively.
This operation is known as “shift”.

The translation transformation matrix is (Říha, 2012):

^ = _ 1 0 00 1 0cd ce 1b (24)

Figure 34 - Example of translation

3.3.2. Scale

Every point is scaled by applying the scale factors Sx and Sy to the x and y coordinates,
respectively. To enlarge the original image, the both factors need to be specified as positive
values greater than one. To scale down, both factors need to be set to number between zero
and one. Negative scale factor values can cause the image to be a reflected, yielded and
mirrored image.

This special type of scale is a non proportional resize. This case can appear when the
scale factor Sx is not equal to Sy. Then the resultant image proportions are altered.

The scale transformation matrix is (Rhody, 2005):

^ = _fd 0 00 fe 00 0 1b (25)

47

Figure 35 - Example of scale - Sx,Sy = 2 (Enlargement)

3.3.3. Rotation

Each point in the x’y’ -plane is rotated about the origin through the counterclockwise angle
θ. The origin is in most cases, the center of image (Rhody, 2005).

The rotation is defined by this transformation matrix (Rhody, 2005):

^ = _ �gN h NQ� h 0−NQ� h �gN h 00 0 1b (25)

Figure 36 - Example of rotation - θ = 45°

3.3.4. Shear

The last basic affine transformation is Shear. By allowing m21 to be nonzero, x is made
linearly dependent on both x and y, while y remains identical to y’. A similar operation can
be applied along the v-axis to compute new values for y, while x remains unaffected. This
effect, called shear, is therefore produced by using the off-diagonal terms (Rhody, 2005).

The shear transformation along the x-axis is:

^ = _ 1 0 0Ce 1 00 0 1b. (26)

The shear transformation along the y-axis is:

^ = _1 Cd 00 1 00 0 1b. (26)

Where Hx and Hy is used to make x’, y’ linearly dependent on x’ and y’.

48

Figure 37 - Example of shear along x-axis

3.4 Composite affine transformation

The transformation matrix of a subsequence of simple affine transformations is:

^ = i�i�ia … i6. (27)

Then the inverse transform is:

^Ik = i�I�i�I�iaI� … i6I� (28)

Suppose that you want the composite representation for translation, scale and rotation
(in that order) (Rhody, 2005).

i = _ �gN h NQ� h 0−NQ� h �gN h 00 0 1b _fd 0 00 fe 00 0 1b _1 0 cd0 1 ce0 0 1 b (29)

 = l fd �gN h fe NQ� h fdcd NQ� h + fece NQ� h−fe NQ� h fe �gN h fece NQ� h − fdcd NQ� hm

Figure 38 - Result – Translation, Scale 2x, Rotation � = 75°

3.5 Perspective transformation

A perspective transformation results when m13 and m23 is nonzero. This transformation is
frequently used in conjunction with a projection onto a viewing plane. This operation is
known as a perspective projection. The perspective projection of any set of parallel lines
which, are not parallel to the projection plane, will converge to a vanishing point – the center
of projection. This transformation is useful for rendering more realistic images (Wolberg,
1988). Perspective projection causes perspective distortion (Sonka, et al., 2008).

49

Perspective transformation is used because work with 3D in computer vision is very
difficult. This transformation provides all points along a line, pointing from the optical center
towards a scene point, as one single image point. Perspective transformation is a loss-data
transformation and inverse transformation is very hard to calculate. (Sonka, et al., 2008)

Figure 39 - Example of apply a perspective transformation10

Figure 39 shows perspective transformation for a Sudoku solver. The plane projection
is needed to run the OCR and cell detection. Firstly corners of the base square are detected,
and after, the image is transformed with this information to a plane projection. In this case,
the transformation is done by OpenCV framework with knowledge of original corner
position and supplied information about final corner position. The transformation matrix for
this case is discretely calculated during the transformation process.

3.6 Image smoothing

The image smoothing process is in most cases used as a noise reduction filter – this is the
key technology of an image enhancement, which can improve quality of a resulted image.
So, this step is necessary in much image-processing software. In some literature, smoothing
is also called blurring. (Szeliski, 2011) (Goyal, et al., 2012)

To perform a smoothing operation, it is necessary to apply a filter to an image. The
most common used filters are a linear filter, a box filter, the Gaussian filter and a median
filter. (Phillips, 2000) Every filter calculation is based on a function which is applied to every
pixel of an image. This function is based on a kernel - which is in most cases, the center
pixel in a filtering segment. The kernel pixel is replaced by a new pixel created by filter
calculation. The new pixel is calculated from neighboring pixels. (Szeliski, 2011)

10 Source: http://opencvpython.blogspot.cz/2012_06_01_archive.html

50

Linear filter

The most common filter type of smoothing is a linear filter. Resulting pixel value is
determined as a weighted sum of input pixel values.

>��, �� = ∑ ��� + n, � + o�. ℎ�n, o�D,p (30)

Where is h(k,l) the mentioned kernel, which is nothing more than the coefficients of
the filter. (Szeliski, 2011)

Gaussian filter

Figure 40 - Example image with applied Gaussian filter

The Gaussian filter is based on Gaussian function. According to this function, the weight of
neighboring pixels is decreased by the spatial distance between them and the kernel. The
biggest weight value would be in the middle (kernel). This decrease can be shown in Figure
41, where the blue color symbolizes a lower value coefficient and red color is the highest.
(Szeliski, 2011)

>E��, �� = �@q�rqsr�G
GtrG uq0vqsv1G

GtrG (31)

Where is w the mean and x represents the variance.

51

Figure 41 - 2D Gaussian function graph

Box filter

The Box filter is based on a linear filter. The kernel value is still based on equation (30),
where f(x+k, y+l) is calculated from a simple matrix with means of neighbor’s pixels and
coefficient. The matrix and matrix size for filter is specified by the user. There are three
examples of 5×5 filter matrix with their coefficient:























=

11111

11111

11111

11111

11111

25

1
recth























=

01110

11111

11111

11111

01110

21

1
circh























=

12321

24642

36963

24642

12321

81

1
pyrh

 The coefficient is the sum of individual means of elements. These three matrices
contains hrect = Uniform rectangular filter, hcirc = Uniform circular filter and hpyr = Triangular
pyramidal filter for an image smoothing. (Szeliski, 2011)

3.7 Shape analysis

The main goals of shape analysis are shape recognition, categorization, matching,
description, decomposition and determination of position and orientation. By shape analysis
many entities like flat objects, projections of 3D objects, segmented binary images, planar
shapes, curves, and closed contours can be analyzed. (Acharya, et al., 2005)

On shape analysis, many object recognition algorithms are based, because the basic
shape of an object is stable and is not expected to change. Every shape is the ensemble of
geometrical information of an object which does not change, even though the location, scale

52

and orientation of the object are changed. Thus the shape is invariant to Euclidean similarity
transformations. (Acharya, et al., 2005)

There is several approaches for analysis methods. These approaches can be divided to
three main groups (Csetverikov, 2003):

• Scalar transform vs Space domain methods. In scalar methods objects are
compared by statistical pattern recognition algorithms and in space by structural
pattern recognition algorithms. Output of scalar transformation are vectors, and
output for space domain is another image.

• Information preserving methods where is loss of information controllable and
information non-preserving where is information loss is not controllable.

• The last group is based on area-based with points ordered in 2D and contour-based
methods where points are ordered along contours. Analysis by this kind of approach
can be suitable for different kinds of analysis.

Landmark points (Key points)

Landmark points are one way to describe a shape pattern by defining a finite set of points
inside the object. These points are classified as (Acharya, et al., 2005):

• Anatomical landmark points – assigned by experts – points correspond between
organisms in some biologically meaningful way (joins of tissues or bones).

• Mathematical landmark points – assigned by mathematical or geometrical
property (curvature or an extremum point).

• Pseudo-landmark points – set of constructed points on object either on the outline
or between other landmark points. May be appropriately defined by the user.

Each landmark points can be described as node or vertex of a polygon enclosing the
shape pattern. These points are key points or markers on any object (Acharya, et al., 2005).

Polygon as Shape Descriptor

One of the powerful representations of a planar shape may be the joining of the ordered pair
of an n-point polygon in k dimensions. Concatenating each dimension into a k × n-vector
can achieve this. Two dimensional planar shapes may thus be represented as (Acharya, et
al., 2005):

� = [���, ��, ⋯ , �6%, ���, ��, ⋯ , �6%]. (32)

“The location, scale and rotational invariant shape representation may be achieved by
establish a coordinate reference with respect to position, scale, and rotation, to which all the
shape patterns should be aligned.” (Acharya, et al., 2005) The shape alignment procedure
involves four steps (Acharya, et al., 2005):

53

• Compute the centroid of each shape.
• Resize each shape to equal size.
• Align with respect to position at their centroids.
• Align with respect to orientation by rotation.

Dominant points in Shape description

One method, to detect a set of dominant points, is to determine the curvature at each point,
and calculate the resultant cumulative curvature for all the points starting with the last
detected dominant point. (Teh, et al., 1989)

The dominant points are points along an image outline that mark important information
about the shape. These points are usually points of high curvature. In general, two different
approaches exist to find the curvature extrema on a digital curve. (Acharya, et al., 2005)

• Method 1 – to detect the dominant points directly through angle or corner detection
schemes (Teh, et al., 1989).

• Method II – to detect a piecewise polygonal approximation of the digital curve
depends on certain restrictions for the shape preserve. Thus dominant points
correspond approximately to the intersections of adjacent line segments of the
polygon. These intersections are known as vertices of break points of the polygon.
(Teh, et al., 1989)

54

4 Problem analysis

The goal of the master thesis is to design the high-level control system of the discussed
teaching (see section 1). Logically, the first step of the development process is an analysis
of the problem. The outputs of the analysis will allow us consideration of hardware
requirements and determination of an appropriate framework.

 For this teaching aid we need to distinguish between two roles. The first one role is
users, and the second one is a supervisor. The role of the user is need to be allowed connect
their path-planning routines, chose the target position, select the path-planning routine, and
initialize a path-plan execution. The role supervisor’s role must have the same authorization
as the user role; however, the supervisor should be allowed for changing the maze layout
and carry the robot to any position in the maze.

 The high-level control system must provide to the user functionalities from three
different domains. The first domain consists of Path-planning related tasks. Specifically,
tools for input start and goal position, way to connect a student routine, and transformation
of a path-plan to a sequence of steps belong here.

The next domain covers image processing related tasks. These tasks provide an
extraction of information from an input camera image about a maze configuration and a
robot position. These tasks map the information to a discrete model.

The last domain has a close relation with communication related tasks. It covers a
high-level control system interaction with the camera system, the robot, and the student’s
routine. The communication is supplied by standard communication protocols, e.g. WiFi is
used for the communication with the camera, Bluetooth for the communication with the
robot. A user vs. high-level control system, uncured by a graphical user interface (GUI),
belongs also to this domain.

One of the basic requirements is a simple selection of the path-planning algorithm.
The communication with path-planning routines will be realized via sockets. This protocol
will be specified in subsubsection 5.1.5 of this thesis. Next requirement is a simple use of
the GUI on tablet or another hardware with a touchscreen. This will allow us to use the
teaching aid within open days when its usage by children and youth is expected.

Within the problem analysis, I suggested communication protocol for these
applications. Via this protocol, user routines get data from the high-level control system and
they can calculate path-plans for the data. If the student routine finished the path-planning
process, the path-plan can be sent back via this protocol to the high-level control system, and
then system will send a transformed path-plan to a robot. Selection of the path-plan algorithm
is completely dependent on the student decision.

55

4.1 Objectives of teaching aid

The main objective of the teaching aid is to support an understanding of the path-planning
problematic by students. Within the practical work, the students improve their knowledge of
path-planning algorithms. Further, the teaching aid might be used during the open days.

4.2 Requirements

Based on the problem analysis, we divided requirements on the high-level control system on
functional and non-functional requirements.

4.2.1. Functional requirements

The functional requirements are requirements which specify functions and parts of the final
application. Following functional requirements were identified:

• Requirement on a tool for analysis the maze – this requirement is the base for
high-level control system.

• Requirement on a tool for the robot detection – this requirement is needed because
the high-level control system needs to know a robot’s position and its orientation.

• Requirement on a communication module with the robot - this requirement is
needed, because we need have some interface for communication with robot.

• Requirement on a communication protocol with the student routine – this
requirement achieve the communication between a high-level control system and a
student routine. And a protocol must be simple for an implementation, and easy
understandable for implementer.

• Requirement on a management of an attached student’s routine - this
requirement is needed, because in a one moment can be attached more than one
routine and we need to be able to switch between them.

4.2.2. Non-functional requirements

The non-functional requirements are requirements which specifies the result application, for
example, with appearance restrictions or defines the hosting system. In my case, are defined
only these two non-functional requirements:

• Requirement on an intuitive GUI – within this requirement is needed to design a
full screen application with big icons. This requirement meets the request to usage
of the touching device. The big icons is needed for a comfortable control (avoid the
miss click).

• Requirement on a portability of the application between various operating
systems.

56

4.3 Ready-to-use tools

4.3.1. Maze detector analysis

The most complicated part of the high-level control system is a maze detector. The maze
detector ensures analysis of a maze layout using top view images captured by the camera.
The analysis of the maze layout is essential for creating the discrete model of the robot’s
operation environment. We used the exact cell decomposition for the conversion of the
environment into the discrete model. In our approach, the adjacency matrix is used for its
representation.

Various image processing and computer vision algorithms are employed in the
detector developed by Škrabánek. (Škrabánek, 2015) It takes advantage of properly chosen
colors of the maze components. An example of the maze is shown in Figure 1. Yellow
corner markers, black and red partitions, and white floor are highlighted in this figure.

Simplified, the analysis of the maze layout consist of following steps:

1. determining the position of the maze in the image;
2. enhancement and transformation of the image;
3. measurement of the partition length using the red partitions;
4. conversion of the input image into a binary image,
5. analysis of the maze layout using a sliding window applied on the binary

image, resulting in the discrete model.

Size of the sliding window is determined by the size of the partitions. As is shown in
Fig. 44, the sliding wind captures a cell of the maze and its nearest surrounding. Presence of
partitions is judge using a complex technique which is detailed in (Škrabánek, 2015).

Figure 42 - Sub image divide

4.3.2. Robot detection

A solution aimed at localization of the robot in the maze has been developed by Škrabánek.
It allow using various Transformers symbols for robot’s marking. (Škrabánek, et al., 2014)

57

5 Software design

Software design is a process which creates specifications of a software to meet the
requirements of the product owner. This process is helpful to programmers to understand the
problematic of creating concrete software. In general, this process is done by the product
owner or software architect. The programmer only implements the designed result.
(Lyytinen, et al., 2007)

The main task while software design is done, is specification of software modules,
basic data structures, and their responsibility in resulting software. Every module has a
specified collaborative module with which it can communicate. If there is a module without
a colleague, there might be a problem in software design. Ideally, every one module is
responsible only for one thing, but in most cases it cannot be done easily.

5.1 Modules

In this part of thesis, I will describe all system modules and their basic responsibility and
collaborative modules, which are a result of the problem analysis.

5.1.1. GUI & environment

Figure 43 - Final graphic user interface

This is the most important part of the high-level control system. An actual state of the maze
is shown to the user by GUI. The adjacency matrix is used for render the maze. The
application works under a full screen mode. A robot position is updated every second and
the full maze analysis is done after the user clicks on "Analyze maze" button.

58

There are three more buttons – Select routine, Go, and Turn off. At the start, buttons
"Select routine" and "Go!" are disabled. It is because no student routine is connected. When
a routine is connected both buttons are allowed. With "Select routine" button, the user is
shows a dialog with selection of a student’s routines, where can he decide which routine to
use. The button "Go!" function, is to submit the step sequence to the robot. Button "Turn
off" will close the full application. To select the target position, touch the cell on the screen.

In the maze cells are with different colors. Where red color marks the start cell, green
is mark for a target position and yellow is the calculated path by a student’s routine. The
robot marker marks the robot position in a real maze.

This module collaborates with a maze layout analysis, a robot observer, a robot
communication module, and with a client manager. This module has the most workload and
the only one which has visual interface.

5.1.2. Camera system module

The camera system module has only one responsibility. This responsibility can be divided
to a two functions. The first one, is communication with a digital video camera over
RTSP/HTTP protocol, and the second one is to provide an image from a camera to the
requesting module. This module has only one external relation with OpenCV framework -
which is used to connect with a digital video camera.

If the camera system module returns no image, an error message will be shown. This
state can happen while there is no digital video camera connected or if it is not available.
Both of these problems can occurs because a camera is not directly connected by
USB11/FireWire12 or so on.

This module can communicate with different cameras, which support the RTSP
protocol or direct HTTP access to an actual image.

5.1.3. Maze layout analysis

The maze layout analysis is the second most important module. This module has the main
responsibility of the maze analysis. This module collaborates with the camera module and
with the GUI. This module will work in its own thread, because the analysis process can
block the application – when the analysis is not finished quickly (slow image transfer, big
maze…).

When the user wants to analyze a maze, this module will request a new image of the
maze from camera module and analyze it. After analysis is done, the adjacency matrix will
be returned to the GUI module. GUI module will update a graphic of the maze panel and
show the new configuration of the maze.

11 Universal Serial Bus for connecting peripherals.
12 Standard serial bus (known too as IEEE 1394) for connecting peripherals – mostly for cameras.

59

The module is based on the maze detector which was introduced in subsubsection
4.3.1. The maze detector is based on OpenCV framework. In this framework is implemented
much algorithms to work with an images, cameras, colors and so on. The size of the sliding
window was determined as 1.3 times the length of partitions.

The implementation of this module was the most time consuming part of the
development process. Within the development process, several challenges arised. They
resulted in several modifications.

The main problem of the maze detector is diverse environment. In these environment
is some influences which are needed to be prevent or reduce. In relation to physical
environment are there sun shine and shadows. In case, of this two are needed to adjust
ambient light. This shadows can impair maze detection, because the maze detection is based
on colors.

Next problem can be a bad camera position or a non-parallel camera view with base
of maze. Both of these errors can misled by operating student or supervisor. In the maze
detector I tried to fix this problem by perspective projection based on a corner detection.
When this problem appeared some next problem are needed to be solved. This problem is to
find the last corner. Paper on whose is based this teaching aid, counts only with three marked
corners. But while I tried to calculate last maze corner, I was been confronted the problem
with imprecise of it. This problem is shown on Figure 44.

Figure 44 - Maze with 3 corner markers and calculated last corner

To prevent this problem is needed to place marker to last corner and detect every
corner. The perspective transformation is done, after detection of corners is completed.
Thanks to this transformation can be easily cropped the original image, according to the
position of the corners. The result of this process is shown on Figure 45Chyba! Nenalezen
zdroj odkazů..

60

Figure 45 - Maze with 4 corner (a) before perspective transformation (b) after

5.1.4. Robot observer

The robot observer module is active. Active, signifies a standalone thread which contacts
GUI when the robot position changes. The base timer for this module is set to 500
milliseconds and its work starts after a first successful analysis of the maze is done.

This module has only one responsibility and it is to observe the robot, and transfer
the new position and rotation information to GUI. The GUI will update graphics after
accepting this information and repaint the robot position.

5.1.5. Client manager

The client manager module has responsibility for acceping a connection from student
routines and communication with this rutine. The communication is defined by a simple text
protocol which will be described below.

This module is designed as a pool of connections, where a connection is created for
every new student's routine. User can switch between these connections (as shown in Figure
46) in the GUI. Every connection has its own name to distinguish routines and own a thread
for checking, if connection is still available. To check availability of a routine, the simple
ping request, with 5 repeats in 500 milliseconds, is used. Thus, if student’s routine does not
respond for 3 seconds, it is disconnected, connection is closed, and GUI selection/buttons
are updated.

Every communication (excluding an incoming client connection from a student’s
routine) between high-level control system and a student’s routine is started by a HLCS
request. This is to avoid a flooding request from a badly written student routine. Every
unknown command is thrown out.

61

Figure 46 - GUI form for routine selection

Client communication protocol

The server side commands:

• Name? – This command is used for a new incoming connection to determine a
student routine’s name. The expected response is name in the student NetID format
(st#####). This format of NetID is defined by University of Pardubice.

• ping – Simple command for determine if is connection still alive. Simple response
is “ping”.

• solveproblem – This command signalizes a data block with adjacency matrix for an
actual maze. Lines with zeros and ones, which are separated by commas, are sent
after this command. Every line is for one cell. This command has a no response.

• dataok – By this command, client can recognize end of an adjacency matrix.
Response can be some commands from client side.

• QUIT – This command is used for inform the client about connection close. This
command has a no response.

The client side commands (acceptable by server side):

• from – This command is used to get an actual position of the robot in maze. The
expected response is a numeric cell ID.

• to – This command is used to get the required target position. The expected response
is a numeric cell ID.

• dimension – This command can be used to get the dimension of maze. The expected
response is two numeric values of width and height separated by comma (e.g. “5,2”).

• ok – This command is used to signalize to HLCS about computing the solution. This
command has no response.

• solution – This command is needed to be submitted after ok command. This
command signalizes to HLCS when path-planning is done. After this command
server expects next response with cell IDs of path plan. These cell IDs are needed to
be sorted by path-plan and separated by commas (e.g. “1,3,5,6,7”).

The example of protocol usage can be found in Attachment A.

62

5.1.6. Robot communication module

The last module is the robot communication module. This module has a responsibility to
communicate with a robot and transform the path-plan to a sequence of actions. This
transformation is needed because the robot has no information about cell IDs in the maze.

The problem analysis defines only three types of actions for the robot. These actions
are LEFT (rotate -90°), RIGHT (rotate 90°), and FORWARD. This three actions are enough
to describe how to go over the maze. In the most extreme situation, only two actions can be
used – ROTATE (for 90°) and FORWARD, but it can prolong the robots ride (by rotation
for 270° degrees – 3 times rotate for 90°). (Škrabánek, et al., 2016)

Figure 47 – Comparison of trajectories for 270° rotation and 90° rotation to same final direction

63

5.2 Analytic Class diagram

Figure 48 - Analytic Class diagram

64

The analytic class diagram shows interaction between classes. These classes are
designed during the problem analysis process. Either class can be implemented in the final
HLCS a bit differently, because the analytic class diagram is only a proposal of final
software. From the analytic diagram private methods and language classes are removed.

This analytic class diagram indicates relations between classes, attributes of classes,
public or protected class methods, and special classes like interface and enumerations.

Based on this analytic class diagram a high-level control system in JAVA Language is
implemented.

5.3 Implementation

The high-level control system implementation can be divided into three parts. These three
parts are defined by packages in source code. This division is shown in figure Figure 49 -
HLCS Source Packages.

Figure 49 - HLCS Source Packages

There are two main executive parts and one viewing part. The executive parts are (a)
Control System and (b) Image Detector; (c) GUI.Frames is viewing part.

From ControlSystem (a) the most important classes are RutineServer (service for
connected routines and communication with their clients), RobotService (service for robot),
and PathConverterService (provides a path-plan transformation to sequence of steps –
Actions). For ImageDetector (b) the important classes are MazeDetector (providing the maze
and robot detection) and AdjacencyMatrix (entity class represents adjacency matrix). For

65

GUI.Frames (c) MazePanel (which showing the entire maze configuration) and MainForm
(main full screen window) are important. The starting class is Maze in ControlSystem (a).

66

6 Experimental verification of the solution

For an experimental verification, the test scenarios are needed. These scenarios are designed
to check correctness of a teaching aid. The test scenarios were designed with respect to the
specific requirements.

6.1 Maze detection

The basic functionality of a maze detector will be tested in this test scenario.

Assumptions: The software is switched on.

a) The maze is detected from camera image requested from camera module,
b) the software shows an error message while maze analysis is obtained and camera is

switched off,
c) the software shows an error message when the maze analysis fails,
d) the maze is detected from adjacency matrix data file,
e) the software shows an error message when file does not contain the adjacency matrix

data,
f) the maze is detected from an image file,
g) the software shows an error message when image file does not contain a maze.

6.2 Student’s routine interface

The basic functionality of client manager, and interaction between client manager and GUI
will be tested in this scenario.

Assumptions: The software is switched on.

a) The buttons “Select routine” and “GO!” are disabled, if no routine is connected,
b) an error message is shown, if touch to cell is performed,
c) the buttons “Select routine” and “GO!” are enabled, if first routine is connected,
d) the buttons “Select routine” and “GO!” stay enabled, if next routine is connected,
e) the buttons “Select routine” and “GO!” stay enabled, if one of these routines is

disconnected and any routine is still connected,
f) dialog “Select routine” is shown after clicking on “Select routine”,
g) the buttons “Select routine” and “GO!” are disabled, if last routine is disconnected,
h) the routine is removed from “Select routine” dialog if a connection is lost,
i) if the dialog “Select routine” is opened and last routine is disconnected, the dialog

will close.

6.3 Getting path-plan from routine and transform to a sequence of steps

The combination of functions are tested in this scenario. In this case, communication
protocol is tested with student routines, robot communication module which transforms the

67

path-plan to a sequence of steps, and GUI which shows this information. The communication
protocol with student routine is also tested within this test case.

Assumption: The software is switched on. Robot communication interface is using
simulation mode (software is switched to simulation mode). One or more student routines
are connected. The software is in default settings.

a) The robot marker is shown at GUI and background of marker is red,
b) the target cell has green background after touch to cell is performed,
c) the new path-plan is shown by yellow background of cell,
d) the path-plan indication is repainted, if click to other cell is performed,
e) a robot communication module does nothing,
f) the path-plan is transformed to a sequence of steps, after click to “GO!” button is

performed,
g) the simulation mode performs steps in order of the sequence of steps,
h) the executed path-plan is removed from GUI and new robot position is re-colored to

red,
i) the new position is submitted as new start state, and the scenario can be repeated.

6.4 Robot detection

The basic functionality of a robot detector will be tested in this test scenario.

Assumptions: The software is switched on. The path plan routine is connected. Robot
communication interface does not use simulation mode. The maze is successfully analyzed
and shown on GUI.

a) The robot marker is shown on GUI for the robot’s real position,
b) the robot is rotated according to a real rotation in a maze,
c) the robot is tracked, while path-plan exists and user clicks on “GO!” button,
d) the robot position on GUI is updated after another real cell is reached.

68

7 Evaluation of verification

Results obtained from the verification process according to the test scenarios were
summarized in Tables 3 – 6. As follows from the results, the computer vision tasks are the
most prone to errors. Specifically, the robot detection module shows the most serious errors;
however, the maze layout analysis is also imperfect. These issues will be considered in the
following subsections.

Maze detection
Label Result Revealed error

a inaccurate Not all mazes are detected
b OK
c OK
d OK
e OK
f inaccurate Not all mazes are detected
g inaccurate Some images fall into detection

Table 3 - Evaluation of the maze detection test scenario

Student’s routine interface
Label Result Revealed error

a OK
b OK Sometime come “lag” before error message is shown.
c OK
d OK
e OK
f OK
g OK
h OK
i OK

Table 4 - Evaluation of the student's routine interface test scenario

69

Getting path-plan from routine and transform to a sequence of steps
Label Result Revealed error

a OK
b OK
c OK
d OK
e OK
f OK
g OK
h OK
i OK

Table 5 - Evaluation of the getting path-plan from routine and transform to a sequence of steps test

scenario

Robot detection
Label Result Revealed error

a inaccurate The robot is not detected at all places in the real maze.
b Fail Robot rotation is not recognizable.
c Fail Same as a part of test scenario.

d partial OK
The robot position is updated, but not all time to a new
correct position.

Table 6 - Evaluation of the robot detection test scenario

7.1 Maze detection

During the experimental verification of the maze detection, I tried to find bad
implementation in the maze detector. In the course of a test 10 different maze configurations
have been tried. 5 of these configurations are square and the others are rectangles. All of
these configurations have been tried in different view angles, different rotations, and
different positions in the workspace.

Verification is relatively good. Only a few maze configurations were not detected
properly. During the tests a problem with light was apparent. Thanks to an ambient light
from a window, some walls disappeared thanks to a reflective surface on top of the partition.
This problem has been partially solved by the addition of extra light above the maze.

70

Removing the reflective surface from walls will be more helpful. This problem is shown in
Figure 50.

Figure 50 - Maze with undesirable light

The next slight problem is a bad detectable maze which is too much rotated (above
approximately 35°). When the maze is rotated too much, detection is not successful, because
the maze is "destructed" by perspective transformation. The result of bad detection is shown
in Figure 51.

Figure 51 - Bad detected maze while is too much rotated

I was unable to remove this kind of problem, but I identified this problem occurring
in perplexity of corner positions. In every detection, I tried to mark all corners by their name
(like in Chyba! Nenalezen zdroj odkazů.) however this problem of undetected corners
remained. This problem can be fixed by rotate the maze.

The last problem is caused by bad camera position. This will be done in most cases by
the operating user. Only returning the camera to the proper position is enough to fix this
problem.

7.2 Robot observing

Verification of the robot observing module was unsuccessful. During the test I tried to
implement two versions of a robot detection. The robot detection is based on robot markers.
The robot actual position and his rotation in maze is needed to be found. Unfortunately, all
of my implementations were unsuccessful.

The first implementation by a classic detection with a cascade classifier failed when
a robot marker is in light shadow and is not always detectable. This implementation is
unusable. However, the robot orientation detection fails in all cases.

71

Figure 52 – Key points of sample robot markers (colored circles)

Secondly I implemented the robot observation with landmark point detection.
Everything works well, while I tried to detect the robot in an image, with approximately
same size of a robot marker in image. When I used the smaller image as source of key points
– these points are incalculable by the detector.

Figure 53 – Sample key pointed maze with markers

72

Figure 54 - Sample bad key point association

 Insufficient camera resolution might be the problem of both these implementations.
In each case, a camera with a better resolution and a better image quality, can fix these
problems.

7.3 Implementation of client application with A* algorithm

The verification of a client application ended well. During the testing of the implementation,
the testing student’s routine met with no problems. My implementation of student’s routine
is implemented in JAVA programming language with recommended socket implementation
from language documentation.

Figure 55 - Simple routine GUI

The check of path-plan is done visually in the high-level control system. I tried to
find several routes for a maze and it was performed very well. During this, I tested the path-
plan to sequence steps transformation. It is done well. Further, while I tested this part of the
high-level control system, I decide to implement the simulation mode, where no robot and
camera is needed. In this simulation mode you can analyze the maze from an image file and
the robot will move only on the screen.

73

Figure 56 - Example of generated path by testing routine

Figure 57 - Example output during the communication with routine

The generated sequence of steps, for the path, which is shown on Figure 55, is:

FORWARD → LEFT → FORWARD → FORWARD → FORWARD → FORWARD →
FORWARD → FORWARD → RIGHT → FORWARD → FORWARD → FORWARD
→ LEFT → FORWARD → RIGHT → FORWARD → RIGHT → FORWARD

The correctness of this sequence of steps is verified by the simulation robot module which
accepts the sequence of step as input data for simulation.

74

Conclusion

In this thesis I tried to implements the high-level control system for autonomous
mobile robot. The maze detection, simulation mode, GUI interface, communication
protocol, and test student routine were all successful elements of this thesis. I am especially
satisfied with implementation of a simulation mode for testing this software without a robot.
Communication with a robot is not a part of this thesis.

Unfortunately, the robot detection did not work according to preconceived ideas.
These problems appeared during the implementation of the teaching aid. Such problems can
be eliminated by further research.

As is mentioned, it is maybe a problem with a camera which is used. Without
replacing the camera, I suggest to use a simple shape detection with a special mark for
recognition of a rotation of the robot.

For recapitulation, these problems are - ambient light in class where teaching aid is
used, impossibility to detect the last corner of the maze without the marker, problems with
camera connection using secured RTSP protocol, and detection of robot position and rotation
using a cascade classifier or the key points. For almost all problems, possible solutions are
proposed, in this thesis.

This teaching aid can be used for demonstrating path-planning and testing student’s
routines. The simulation mode gives to student’s sufficient possibility to check their
correctness of a path-planning routine implementation.

I wish to finish this teaching aid in the near future. The refactoring and optimization
of some software parts are needed, with increases precision of the maze detector.

75

Literature

Acharya, Tinku and Ray, Ajoy K. 2005. Image Processing: Principles and Applications.
Tuscon, Arizona: John Wiley & Sons, Inc., 2005. ISBN: 978-0-471-71998-4.

Cormen, Thomas H. 2009. Introduction to Algorithms. London: MIT Press, 2009. ISBN:
978-0-262-03384-8.

Csetverikov, Dmitrij. 2003. Basic Algorithms for Digital Image Analysis. [Web] Budapes,
Hungary: Institute of Informatics Eötvös Loránd University, 2003.

Das, Vinu and Thankachan, Nessy. 2011. Computational Intelligence and Information
Technology. Pune, India: Springer, 2011. ISBN: 978-3-6422-5734-6.

Even, Shimon. 2011. Graph Algorithms (2nd ed.). Cambridge: Cambridge University Press,
2011. ISBN: 978-0-521-73653-4.

Goyal, Aditya, Bijalwan, Akhilesh and Chowdhury, Kuntal. 2012. A Comprehensive
Review of Image Smoothing. s.l.: International Journal of Advanced Research in Computer
Engineering & Technology, 2012. ISSN: 2278-1323.

Hazewinkel, Michiel. 1995. Encyclopaedia of Mathematics. Dordrecht: Springer Science,
Business Media, 1995. ISBN: 978-0-7923-2975-6.

Huffman, David A. 2007. A Method for the Construction of Minimum-Redundancy Codes.
s.l.: IEEE, 2007. ISSN: 0096-8390.

Chandrakala, M. and Durga Devi, P. 2016. Threshold Based Segmentation Using Block.
Telangana, India: International Journal of Innovative Research in Computer, 2016. ISSN:
2320-9801.

Kanniah, Jagnnathan, Ercana, M. Fikret and Calderon, Carlos Acosta. 2013. Practical
Robot Design: Game Playing Robots. New York: CRC Press, 2013. ISBN: 978-1-4398-
1033-0.

Kašík, Marek. 2006. Potlačování vad obrazu vzniklých při snímání ve fluorescenční
mikroskopii. Masaryk University. [Online] 2006. [Cited: 05 06, 2017.]
https://is.muni.cz/th/50771/fi_r/rigorous.pdf.

Kaufman, Arie. 1993. Rendering, Visualization and Rasterization Hardware. Springer
Science, 1993. ISBN: 978-3-540-56787-5.

Latombe, Jean-Claude. 1991. Robot Motion Planning. Stanford: Springer Science, 1991.
ISBN: 978-1-4615-4022-9.

Lyytinen, Kalle, et al. 2007. Design Requirements Engineering: A Ten-Year Perspective.
Cleveland: Springer-Verlag Berlin Heidelberg, 2007. ISBN: 978-3-540-92966-6.

76

Mohr, Austin. 2007. Quantum Computing in Complexity Theory and Theory of
Computation. [http://www.austinmohr.com/Work_files/complexity.pdf] Carbondale:
Southern Illinois University at Carbondale, 2007.

Monga, Priyanka M. and Saurabh., Ghogate A. 2015. Scrutiny on Image Processing.
Badnera : s.n., 2015. ISSN: 2277-128X.

Phillips, Dwayne. 2000. Image Processing in C. Lawrence, Kansas: R & D Publications,
2000. ISBN: 0-13-104548-2.

Qu, Zhong and Li, Zhang. 2010. Intelligent Human-Machine Systems and Cybernetics.
Nanjing: IEEE Computer Society, 2010. ISBN: 978-0-7695-4151-8.

Rafael, Gonzales C. and Woods, Richard Eugen. 2008. Digital Image Processing. s.l.:
Pearson/Prentice Hall, 2008. ISBN: 978-01-3505267-9.

Rhody, Harvey. 2005. Lecture 2: Geometric Image Transformations. Rochester NY: Center
for Imaging Science, 2005.

Russell, Stuart J. and Norvig, Peter. 2010. Artificial Intelligence - A Modern Approach.
New Jersey: Pearson Education, Inc., 2010. ISBN: 978-0-13-604259-4.

Říha, K. 2012. Pokročilé techniky zpracování obrazu, skripka. Brno: VUT Brno, 2012.
ISBN: 978-80-214-4894-0.

Salomon, David and Motta, Giovanni. 2009. Handbook of Data Compression. s.l.:
Springer, 2009. ISBN: 1-84882-902-7.

Sedgewick, Robert and Wayne, Kevin. 2011. Algorithms. Boston: Pearson Education, Inc.,
2011. ISBN: 978-0-321-57351-3.

Siegwart, Roland and Nourbakhsh, Illah R. 2004. Introduction to Autonomous Mobile
Robots. London: MIT Press, 2004. ISBN: 0-262-19502-X.

Sonka, Milan, Hlavac, Vaclav and Boyle, Roger. 2008. Image Processing, Analysis, and
Machine Vision. Toronto: Thomson Learning, 2008. ISBN: 978-0-495-24428-7.

Szeliski, Richard. 2011. Computer Vision. London: Springer London, 2011. ISBN: 978-1-
84882-935-0.

Škrabánek, Pavel and Doležel, Petr. 2014. Attractive Robot's design suitable for image
processing. Pardubice : University of Pardubice, 2014.

Škrabánek, Pavel and Majerík, Filip. 2017. High-Level Control System for a Path-
Planning Teaching Aid. Pardubice: University of Pardubice, 2017.

Škrabánek, Pavel. 2015. Labyrinth Arrangement Analysis Based on Image Processing.
Brno: Springer, 2015. ISBN: 978-3-319-19824-8.

77

Škrabánek, Pavel, Mariška, Martin and Doležel, Petr. 2015. The time optimal path-
planning of mobile robots motion respecting the time cost of rotation. Pardubice: s.n., 2015.
ISBN: 978-1-4673-6627-4.

Škrabánek, Pavel, Vodička, Pavel and Yildirim-Yayilgan, Sule. 2016. Control System of
a Semi-Autonomous Mobile Robot. Pardubice : IFAC-PapersOnLine, 2016.

Teh, C. H. and Chin, R. T. 1989. On the Detection of Dominant Points. Madison, USA:
Institute of Electrical and Electronics Engineers, 1989. ISSN: 0162-8828.

Wolberg, George. 1988. Geometric Transformation Techniques for Digital Images: A
Survey. New York: Department of Computer Science, Columbia University, 1988.

78

Attachment A – Example usage of communication proto col

Direction Data

 Server awaiting connection…

Client->Server Request for connection…

Server->Client Name?

Client->Server st40429

Server->Client ping

Client->Server ping

Server->Client solveproblem

 0,1,0,0,0,1,0,0,0,0…

 …

 0,0,0,0,1,0,0,0,0,0…

 dataok

Client->Server from

Server->Client 1

Client->Server to

Server->Client 17

Client->Server dimension

Server->Client 4,4

Client->Server ok

Client->Server solution

Client->Server 1,2,5,3,6,…,17

Server->Client ping

Client->Server ping

Server->Client QUIT

 Client disconnected…

79

Attachment B – Accompanying CD

The accompanying CD contain:

• Master thesis in electronic version (PDF and DOCX – Word 2013)
• Source code of HLCS application

• OpenCV files for run the application
• Testing image of maze (JPG)

• Two example adjacency matrix sources (TXT)

