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Research Article 
 

Applicability of linear and nonlinear retention-time models for 
reversed-phase liquid chromatography separations of small 
molecules, peptides, and intact proteins 

Eva Tyteca1 Jelle De Vos1 Nikola Vankova1, 2 Petr Cesla2 Gert Desmet1  Sebastiaan Eeltink1 
1 Department  of Chemical Engineering, Vrije Universiteit Brussel, Brussels, Belgium 
2 Faculty of Chemical Technology, Department  of Analytical 
Chemistry,  University of Pardubice, Pardubice, Czech Republic 

 
The applicability and predictive properties of the linear solvent strength model and two non- linear retention-time models, i.e., the 
quadratic model and the Neue model, were assessed for the separation  of small molecules  (phenol  derivatives), peptides,  and 
intact proteins. Retention-time  measurements were conducted  in isocratic mode and gradient  mode  ap- plying different gradient 
times and elution-strength combinations. The quadratic model provided the most accurate retention-factor  predictions for small 
molecules (average abso- lute prediction error of 1.5%) and peptides separations (with a prediction error of 2.3%). An advantage of 
the Neue model is that it can provide accurate predictions based on only three gradient scouting runs, making tedious isocratic 
retention-time measurements obsolete. For peptides, the use of gradient scouting runs  in combination with the Neue model 
resulted in better prediction errors (<2.2%) compared to the use of isocratic runs. The applicability of the quadratic  model is 
limited due to a complex combination of error and exponential functions.  For protein separations,  only a small elution window 
could be applied, which is due to the strong effect of the content of organic modifier on retention.  Hence, the linear retention-
time behavior of intact proteins  is well described by the linear solvent strength model. Prediction errors using gradient scouting 
runs were significantly lower (2.2%) than when using isocratic scouting runs (3.2%). 

 
Keywords:  Linear solvent  strength  model  / Method  development / Neue–Kuss model / Retention-time prediction / 
Selectivity 
 
 
1   Introduction 

 
It is generally accepted that the retention  of small nonpolar 
molecules  analyzed in RP-LC mode  is dominated  by parti- 
tioning  [1]. When  operating  the column  in isocratic mode, 
baseline separation of a mixture with components that have a 
wide range in hydrophobicity is often not achievable within a 
reasonable time. To overcome the “general-elution problem,” 
a gradient in solvent strength  can be applied [2]. Because the 
peak width in gradient  mode  is mainly  determined by the 
retention  factor at the time of elution, a gradient separation 
results  in narrow  and approximately constant  peak widths, 
and hence, comparable detection sensitivity. 

The development of retention models, describing the re- 
tention  factor (k) as function  of mobile-phase  composition 
(<!) is crucial for method development strategies, in which the 
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aim is to achieve the desired separation performance within 
the shortest possible analysis time. Method development for 
the analysis of mixtures usually requires a great deal of exper- 
tise and can be time consuming (up to several weeks of work), 
because  of the  high  probability of overlapping  peaks  [3, 4] 
and the sensitive dependency of the retention  time of the 
individual analytes on, for example, the employed gradient 
slope. Since the late 1970’s many attempts  have been made 
to develop retention-time models and implement them in 
computer-assisted method  development  (CAMD) software, 
such as Chromsword  [5] and DryLab [6]. Different retention- 
time models in RP-LC have been developed with applicable 
expressions  describing  the relation  between  k and <!, such 
as the linear solvent strength  (LSS) model [7], the quadratic 
retention-time model [8–10], and the Neue model [11]. The 
LSS model introduced  by Snyder and Dolan in the 1980’s is 
most frequently  applied in method  development  strategies, 
and describes isocratic retention in RP-LC, which is expressed 
as [7]: 
 
ln (k) = ln (kw ) − S · c.                                                                  (1) 

 
where kw  is the extrapolated value of k for <!0 , i.e., in pure 
water and  S is the  solvent strength  parameter,  which is a 
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is only valid in a narrow range of <! values [18]. To account 
for this  aspect, and  also to improve  retention-time model- 
ing when multimodal  retention  mechanisms occur, nonlin- 
ear retention-time models have been proposed in literature, 
including  the quadratic model (Eq. 2) [8] and the model de- 
veloped by Neue and Kuss (Eq. 3) [11]: 

 
ln (k) = ln (kw ) − S1 · c. − S2 · c.2                                                                            (2) 

 
 

     
S1 · c.    

\ 
ln (k) = ln (kw ) + 2 · ln (1 + S2 · c.) −  

1 + S2 · c. (3) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.  Overlay of the peak profiles measured in isocratic mode 
for (A) 2-nitrophenol employing 60 (first-eluting peak), 50, 40, 30, 
20, and 10% ACN (last-eluting peak) as mobile  phase; (B) insulin 
employing 28 (first-eluting peak), 27, 26, 25, and 24% ACN (last- 
eluting  peak) as mobile  phase; and (C) cytochrome c employing 
25.6 (first-eluting peak), 25.2, 24.8, 24.4, and 24% ACN (last-eluting 
peak) as mobile  phase. The asterisk marks the injection pulse. 
The small molecule  and peptide separations  were obtained  on a 
C18 column,  proteins  on a C4 column.  The applied  flow  rate was 
0.3 mL/min. 

 
 

constant for a given analyte and organic solvent. The LSS 
model  has  been  applied  for  both  small-molecule  separa- 
tions [12–14] and biomolecules, including  peptides and pro- 
teins  [15–17]. However,  due  to strong  dependency  of the 
retention  time of biomolecules  on solvent composition,  al- 
most no isocratic data are readily available to establish  and 
validate retention-time models. Furthermore, it has been re- 
ported that the LSS model (for small-molecule  separations) 

where kw is the extrapolated intercept, S1 is the slope, and S2 is 
the curvature coefficient. The Neue model also shows a strong 
resemblance  to the equation  used by Bosch and Rosé s [19], 
using the polarity index as a measure  of elution strength  of 
a mobile phase, which extends the applicability of the model 
over the full range of mobile-phase compositions.  The mod- 
els defined by Eqs. (2) and (3) can accurately fit the concave 
trend that may become apparent  when using acetonitrile in- 
stead of methanol as an organic modifier, or when undesired 
secondary retention effects with silanol groups present at the 
stationary  phase  surface  affect retention  [20, 21]. However, 
the main disadvantage of these models is that a large number 
of isocratic data points  is required  to accurately fit the cur- 
vature between ln k and <! [22].  Furthermore, the quadratic 
model is likely to provide an erroneous  value of kw  during 
extrapolation [11]. 

In this study, we investigated  the possibilities and lim- 
itations of the applicability of the LSS model, the quadratic 
retention-time model,  and  the  Neue  retention-time model 
to accurately estimate gradient retention factors for small 
molecules, i.e., phenol derivatives, and biomolecules includ- 
ing synthetic peptides and intact proteins with molecular 
weight (MW) values ranging  between  817 and  66 430 Da. 
Retention-model  parameters have been based on isocratic 
retention-time RP-LC measurements applying mobile phases 
with different  solvent strength.  The accuracy of retention- 
time predictions based on LSS kw and S parameters and the 
kw , S1 , and the S2  for the nonlinear  models have also been 
assessed by performing scouting runs  in gradient mode ap- 
plying different combinations of gradient times and gradient 
windows. 
 
 
2   Material and methods 
 
2.1  Chemical and materials 
 
Acetonitrile (ACN, HPLC supragradient quality) and formic 
acid (FA) were obtained  from Biosolve (Valkenswaard, The 
Netherlands).  Deionized  HPLC-grade  water  was produced 
in-house  using  a  Milli-Q  water  purification  system 
(Millipore,  Molsheim,  France).  Uracil,  5-amino-2- 
nitrophenol (1), 4-nitrophenol  (2), 3-nitrophenol  (3), o-cresol 
(4), 2-nitrophenol  (5), 4-bromphenol  (6), 3,4-dimethylphenol 



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure  2. Relationship  be- 
tween retention factor and 
solvent    strength    measured 
for phenol derivatives by iso- 
cratic HPLC measurements on 
an Accurcore  C18  column  af- 
ter   fitting  the   LSS   model 
(A), quadratic  model  (B), and 
Neue model  (C), and the 
corresponding residuals plots 
depicting the percentage  dif- 
ferences between experimen- 
tal and predicted  kg  (D–F). 

 
 

(7),  4-bromo-2-nitrophenol    (8),  4-bromo-2,6-xylenol  (9), 
five synthetic  peptides,  i.e., neurotensin (10), angiotensin 
I  human  acetate  salt  hydrate  (11), bradykinin   fragment 
1–8 acetate salt hydrate  (12), adrenocorticotropic  hormone 
fragment  18–39 human  (ACTH; 13), and  insulin  chain  B 
oxidized from bovine pancreas  (14), and three proteins,  i.e., 
cytochrome  c from  equine  heart  (15), carbonic  anhydrase 
from bovine erythrocytes (16), and BSA (17) were purchased 
from Sigma–Aldrich (Steinheim,  Germany). 

A stock solution  of uracil and individual phenol deriva- 
tives was prepared by dissolving 500 ppm of each compound 
in 70:30% v/v ACN/water.  For each peptide and protein,  a 
stock solution was prepared by dissolving 1000 ppm of each 

analyte in water containing  0.05% v/v FA. The individual 
phenol,  peptide,  and  protein  sample  mixtures  were  pre- 
pared  by diluting  the  stock solutions  to concentrations in 
the range of 40–80 ppm for phenols, 4–100 ppm (bradykinin 
and neurotensin), 10–100 ppm (insulin and angiotensin), 20– 
200  ppm   (ACTH),  and   100–1000  ppm   (cytochrome   c, 
carbonic   anhydrase,   and   BSA).  All  samples   were   dis- 
solved in  mobile-phase  compositions  corresponding to ei- 
ther the isocratic elution conditions or gradient starting 
conditions. 

For the separation  of phenols and peptides an Accucore 
C18 column (100 × 2.1 mm id, pore size: 80 Å) packed with 
2.6 f.Lm core–shell C18 silica-modified particles obtained from 



 

 

 
 

 
 

Figure 3.  Deviation  in predicted  gradient  retention factor based 
on S and kw  values determined using isocratic  retention-time 
measurements and experimental retention factors  measured  in 
gradient mode. (A) Comparison  of deviations in kg  based on LSS 
model  (black striped  line) and Neue model  (red dotted  line) and 
(B) Comparison of deviations in kg   based on quadratic  model 
(blue striped line) and Neue model (red dotted line). Different 
symbols  represent different gradient  conditions, i.e., 5–95% ACN 
with tG  = 5 min (circles); 5–95% ACN with tG  = 10 min (triangles), 
5–95% ACN with tG  = 15 min (diamonds); 10–95% ACN with tG  = 
10 min (squares), 15–95% ACN with tG  = 10 min (stars). 

 
 

Thermo  Fisher Scientific (Germering,  Germany)  was used. 
Protein separations  were conducted using an Accucore-150- 
C4 column (150 × 2.1 mm id, pore size: 150 Å) packed with 
2.6 f.Lm core–shell C4 silica-modified particles (Thermo Fisher 
Scientific). 

 

 
 

2.2  Instrumentation and LC conditions 
 

HPLC  experiments   were  conducted   using   an   Ultimate 
3000 RSLC system  (Thermo  Fisher  Scientific)  composed 

 

 

 
 
Figure 4.  Comparison  of the retention-time prediction accuracy 
based on LSS model  (closed symbols)  and Neue model  (open 
symbols)  of individual nitrophenols. Neue model  built  on <!  = 
0.05–0.95 with  tG   = 5, 10, and 15 min  (red dotted  lines); Neue 
model  built  on <! = 0.05–0.95 with  tG  = 5 and 10 min,  and <! = 
0.10–0.95 with tG  = 10 min (blue full lines). 
 
 
 
of degasser,  a binary high-pressure pump,  a thermostatted 
pulled-loop autosampler  equipped with a six-port injection 
valve containing  a 1.2 f.LL injection  loop, a temperature- 
controlled column compartment set at 30°C, and a diode array 
detector with a 2.5 f.LL flow cell. NanoViper tubing (Thermo 
Fisher  Scientific) was used to connect  the column  with in- 
jector and detector (inlet and outlet tubing 350 × 0.075 mm 
id). 

The external  time  (text ) and  pressure  contributions  in- 
duced  by connection  tubing  were determined by injecting 
uracil while replacing the column  with a zero-dead volume 
connector. The column dead time (t0 ) was determined by in- 
jecting uracil applying a mobile-phase composition of 76:24% 
v/v of ACN/water. The column  dead time corrected for ex- 
ternal contributions was 0.54 min.  The dwell time (tD ) was 
determined by adding  acetone  tracer in the mobile  phase, 
recording a blank gradient run, and performing UV detection 
at 254 nm. tD was determined to be 1.4 min at 0.3 mL/min. 

Phenols were separated under isocratic and gradient con- 
ditions using water and ACN as mobile phase. The isocratic 
separations  of phenol  derivatives were measured  in a wide 
range  of acetonitrile/water ratios, with <! ranging  between 
0.05 and 0.95 ACN. A mixture containing  nine phenols and 
uracil was separated applying linear gradients with initial 
mobile-phase  compositions  (<!0 ) starting  at 0.05, 0.10, and 
0.15 ACN to a final mobile-phase composition (<!end ) contain- 
ing 0.95 ACN. Gradient separations were conducted applying 
gradient times (tG ) of 5, 10, and 15 min, respectively. Peptides 
and  proteins  were  separated  under  isocratic  and  gradient 



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.  Relationship between  re- 
tention factor and solvent strength 
measured for synthetic peptides by 
isocratic HPLC measurements on an 
Accurcore  C18   column  after  fitting 
the LSS model (A), quadratic model 
(B), and Neue model (C), and the cor- 
responding residuals plots (D–F). 

 
 

conditions  using  aqueous  ACN mixtures  containing  0.05% 
v/v FA. Linear gradient separations were conducted applying 
<!0  values of 0.04, 0.08, 0.12, 0.16, and 0.20 and <!end  of 0.64 
ACN, with tG  of 3.42, 5, 10, and 15 min.  All HPLC experi- 
ments  were performed  applying a flow rate of 0.3 mL/min, 
corresponding to the optimal van-Deemter flow rate for small- 
molecule separations. 

 
 
 

2.3  Numerical methods 
 

To obtain the kw  and S parameters from isocratic retention- 
time  measurements, an  in-house  written  Matlab program 
that employs least-square fitting was used. For the nonlinear 
models, fitting was performed by the Matlab routine lsqcurve- 
fit. A grid search in starting values was implemented. For the 

linear and quadratic model, using isocratic runs, the Matlab 
routine polyfit was used. For the linear model, using gradient 
scouting runs, the analytical expression for the gradient reten- 
tion factor was implemented in the Matlab routine  lsqcurve- 
fit. The residuals  of the isocratic fitting were calculated as 
(kpredicted  – kexp ) and the percentage errors were determined as 
(kpredicted  –kexp )/kexp . 
 
 
 
3   Results and discussion 
 
To grasp as much  similarities  and/or  differences  in reten- 
tion mechanisms/predictive ability of the retention  models 
for the separation  of small molecules and biomolecules, 
including  synthetic  peptides  and  intact  proteins,  all ana- 
lytes were  analyzed  using  the  same  instrument setup.  A 
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column  packed with silica core–shell C18  particles was used 
for the separation  of small molecules,  i.e., selected phenol 
derivatives that have been listed as priority pollutants  by the 
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To cover a broad hydrophobicity range, a test mixture contain- 
ing nitro-, alkyl-, and bromophenol derivatives was compiled 
for this study. The peptides were also analyzed using the C18 

column  and  the  MW of the  synthetic  peptides  ranged  be- 
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(5) 

tween 817 and 5734 Da. Intact proteins  with MW of 12 384, 
29 000, and 66 430 Da were separated  on a packed column 
with C4  functionality. Insulin,  composed of 51 amino acids, 
bridges the gap between the small MW peptides  and intact 
proteins. 

After conducting  an initial gradient  scouting  run  to es- 
timate the applicable range of mobile-phase compositions, 
isocratic retention-time measurements were conducted.  Al- 
though  we opted to reach the same k-range as for the small 
molecules by selection of biomolecules  with a broad MW 
range, the applicable solvent composition  range for peptides 
and especially proteins  was much  smaller  compared  to the 
small molecules.  Figure 1 shows an overlay of elution  pro- 
files of a selected phenol (Fig. 1A), a peptide (Fig. 1B), and 
an intact protein (Fig. 1C) obtained in isocratic mode at dif- 
ferent <! values. With increasing  MW the applicable <! range 
decreases,  corresponding  to a higher  solvent strength  fac- 
tor S. Indeed,  a relationship  between  the  S-value and  the 
MW of the molecules  was already proposed  by Snyder and 
Dolan  [7]. Using  low solvent strength,  broad  peaks  and  a 
low S/N  are obtained  affecting the accurate  determination 
of the  retention  time.  To account  for dispersion,  limiting 
the detectability, the concentration  of the intact proteins was 
increased. 

 

 
 
 

3.1  Retention-time modeling of phenol derivatives 
 

Isocratic retention-time measurements were performed  and 
the relationship  between retention  factor (k) and solvent 
strength  (<!) was modeled  using  the  LSS model  (Fig. 2A), 
the quadratic  retention  time-model  (Fig. 2B), and the Neue 
model (Fig. 2C). Figure 2D and E show the corresponding 
residual plots. The nonlinear  retention  behavior of the phe- 
nol derivatives is most pronounced at low and high ACN 
content, and is only taken into account by the quadratic and 
Neue model. Although an S-shaped trend in residuals is ob- 
served when  applying the  quadratic  retention-time model, 
the absolute values in residuals  for the nonlinear  retention- 
time models are in both cases relatively small. Next, kg can be 
estimated  using the following analytical expressions  for the 
LSS [24] and the Neue model, respectively [11]: 

where k0  represents the analyte retention  factor at the start 
of the gradient. Determining kg  for the quadratic  model in- 
volved numerical  integration [25]. The experimental gradient 
retention  factors (kg = tR  − 1) were determined for all indi- 
vidual analytes directly from the chromatograms recorded in 
gradient  mode while applying tG  = 5, 10, and 15 min  with 
<!0  –<!e   from  0.05 to 0.95, and  a fixed gradient  time  (tG  = 
10 min) with different gradient starting conditions (<!0 = 0.10 
and 0.15, respectively). Figure 3 shows the deviation between 
the experimental  kg  and kg  values based on Eqs. (4) and (5) 
predicted by S and kw parameters measured in isocratic mode 
for each analyte individually. In Fig. 3A, the prediction errors 
using  the LSS and Neue models are compared.  The largest 
deviation between the predicted and measured kg value apply- 
ing the LSS model is observed for early eluting analytes. The 
nonlinearity present in the isocratic curve is accounted for by 
the Neue model, which leads to more accurate predictions of 
kg . The quadratic model was found to perform slightly better 
than  the Neue model  (average absolute  prediction  error  of 
1.5 versus 2.4%), see Fig. 3B. 

The kw  and S parameters for the LSS and Neue model 
can also be estimated  by gradient scouting runs using three 
different  tG  and two different  <!0  and applying Eqs. (4) and 
(5), employing a leave-two-out strategy to estimate S (S1  and 
S2 ) and kw  values. Figure 4 compares  the deviation between 
experimental kg and predicted values based on LSS and Neue 
models  for each analyte individually. The prediction  accu- 
racy using  the  LSS model  decreases  significantly  for early 
eluting analytes in case the gradient  starts at relatively high 
solvent strength. The predictions using the nonlinear Neue 
model outperform those obtained by applying the LSS model. 
Figure 4 also shows that the prediction accuracy depends on 
tG and <! combination  used during building of the model. 
Overall, predictions for kg using isocratic retention-time mea- 
surements and application of the Neue model were most ac- 
curate. 
 
 
3.2  Retention-time modeling of peptides and intact 

proteins 
 
Figures 5 and 6 show the LSS, quadratic, and Neue retention- 
time model fits and their residuals for peptides and intact 
proteins,  respectively. The  peptides  depict  a clear nonlin- 
ear retention  behavior, hence  the nonlinear  retention-time 
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model fits were more accurate. The residuals of the quadratic 
model are lower than those of the Neue model, and the Neue 
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model cannot cope with the strong nonlinearity that is present 
for the two most retained peptides (ACTH and insulin). Even 



 

 

 

 

 
 

Figure 6.  Relationship between  retention factor  and solvent  strength  measured  for intact  proteins  by isocratic  HPLC measurements on 
an Accurcore C18 column  after fitting the LSS model (A), quadratic  model (B), and Neue model (C), and the corresponding residuals plots 
(D–F). 

 

 
when  using  a C4   column,  only a very small  elution  win- 
dow could be applied for the retention-time determination of 
intact proteins.  This resulted  in an almost linear ln (k) ver- 
sus <! domain. At these conditions, the LSS model accurately 
describes  the  retention  behavior. At this  point  it can only 
be speculated  that outside  the <! range,  intact proteins  fea- 
ture  nonlinear  retention  behavior, similar  to peptides,  and 

that the extrapolation to determine kw may lead to significant 
underestimation compared to its true value. 

Using a similar strategy as applied in Section 3.1, the 
gradient retention  factors were estimated  based on isocratic 
model parameters and compared to experimental  values 
recorded  in  gradient  mode.  Figure  7A compares  the  LSS, 
Neue, and quadratic model predictions for a gradient time of 



 

 

 

 

 
 

Figure 7.  Comparison  of the retention-time prediction accuracy 
for peptides, based on isocratic measurements and applying the 
LSS (black solid line), quadratic (blue dotted line), and Neue mod- 
els (red striped  line) (A), and comparison of prediction accuracy 
based on isocratic  data (red open symbols)  and gradient  scout- 
ing runs (black solid symbols) using the Neue model. Gradient 
conditions: <! = 0.08–0.64 with  tG  = 15 min  (circles); <! = 0.12– 
0.64 with  tG  = 15 min (triangles);  <! = 0.15–0.64 with  tG  = 15 min 
(diamonds). 

 
 

15 min applying a broad gradient span (<! = 0.04–0.64) and 
a gradient  starting  at higher  ACN content  (<! = 0.20–0.64), 
respectively. Although the LSS fit is poor, the prediction  ac- 
curacy for peptides  applying the LSS model is surprisingly 
good when applying a broad gradient  span  (starting  at low 
ACN content).  However, when using  a relatively high con- 

 
tent of ACN at the start of the gradient, high prediction errors 
in the range up to 17% are found for the first eluting  pep- 
tide. The Neue model provides more accurate kg predictions, 
but also started to deviate significantly when high content of 
the organic modifier is used during the gradient start. The 
quadratic  model yielded the best results,  with only an aver- 
age prediction  error  of 2.3%. The use of gradient  scouting 
runs in combination  with the Neue model and the analytical 
expression in Eq. (5) resulted in better prediction errors com- 
pared to the use of isocratic runs, see Fig. 7B. The prediction 
error ranged typically between 0.1 and 1.3% and the average 
prediction  error was 2.2%. Only when the organic modifier 
content  at the gradient  start was increased  (<!0  > 0.16), the 
accuracy for the early eluting peptides decreased, which may 
be caused  by partial  isocratic elution  behavior. The use  of 
gradient scouting runs has the additional advantage of being 
faster and more generic in nature. Note that a grid search in 
the starting  values of the retention  parameters was needed 
during  the least-squares  optimization  to find an acceptable 
fitting. 

As shown in Fig. 6, an almost linear relationship  was ob- 
tained between ln k and <! in the solvent strength window that 
could be practically applied. Hence, for the intact proteins, the 
S and kw parameters were only determined applying the LSS 
model. Based on isocratic retention-time measurements the 
average prediction error was 3.2% with a maximum  error of 
4.8% (obtained when applying <!0  = 0.16 and tG  = 15 min). 
Using a CAMD strategy, we also investigated the use of gra- 
dient scouting runs to build the LSS and Neue retention-time 
models.  However, no acceptable fitting could be obtained, 
even with the use of a grid search with initial values for the 
retention  parameters, and  by changing  the  solver options 
to make  the optimization as sensitive as possible. We also 
considered different combinations of scouting runs (with dif- 
ferent gradient starting concentrations), but these resulted in 
an improper  fit. 
 
 
 
4   Concluding remarks 
 
For both the small molecules and the peptides, the attained 
isocratic k-values correspond to a relatively large solvent range 
in which nonlinearity  is present. Hence, a better description 
of the isocratic retention-time measurements can be found 
using the nonlinear retention models. However, for the most 
retentive peptides studied (ACTH and insulin)  the error on 
prediction accuracy increased significantly using the Neue 
model. For both the small-molecule and peptide separations, 
the quadratic model was found to provide more accurate re- 
tention  time predictions  than the Neue model. Considering 
the fact that an analytical expression for kg exists for the Neue 
model,  allowing fast and  generic  scouting  runs,  the  Neue 
model can be seen as the preferred  model for gradient  pre- 
diction of small molecules and peptides. Moreover, the pre- 
diction errors were reduced using the Neue model in case of 
peptide gradient separations. The resulting prediction errors 



 

 

 
were in a similar  range  to those obtained  by the quadratic 
model and isocratic scouting runs. 

In agreement  with the higher  MW of the proteins  and 
the expected high S values [7], the ln (k) versus <! curve was 
found to be very steep, resulting  in only a very small solvent 
range that can be used to achieve reliable peak integration 
(while obtaining a similar k-range compared to the small 
molecules and peptides). The LSS model and the considered 
nonlinear  models  gave very similar  fitting accuracy within 
the  solvent strength  range  applied.  Outside  of this  range, 
the nonlinear  models yielded physically impossible  extrapo- 
lations. Although it can be speculated that proteins should 
exhibit nonlinear  retention  behavior, similar to peptides, the 
solvent range that can be practically applied is too small to 
demonstrate this. The use of gradient  scouting  runs  to ac- 
curately estimate the retention  parameters in case of protein 
separation  was unsuccessful. Hence, for CAMD of proteins, 
individual isocratic runs  (at least two) should be performed 
to obtain the retention parameters. 
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R., Garcı́a-Alvarez-Coque, M. C., J. Chromatogr. A 2005, 
1063, 79–88. 


	k postprintu_wiley
	JSS 39_2016_1249 gradients prediction peptides proteins

