
 

 

 

Abstract—The aim of this paper is to describe parametric curve-

fitting methods for modelling extreme historical losses of natural 

catastrophes in the world. Article summarizes relevant theoretical 

results Extreme value theory (EVT) and Excess over Threshold 

Method (EOT) and results of their application to the data about 

amounts of damages in world catastrophe events in time period 2010-

2014, published by Swiss Re studies Sigma. We aim to develop the 

models for extreme catastrophic losses by selecting a particular 

probability distributions through statistical analysis of empirical data 

with the best possible estimate of the upper tail area. 

 

Keywords—Block maxima models, excess over threshold 

method, extreme value distribution, generalized Pareto distribution. 

I. INTRODUCTION 

atastrophic events affect various regions of the world with 

increasing frequency and intensity (Fig.1 and Fig.2). 

Many regions are threatened by catastrophic risks large range, 

where extensive disruptions are frequently, sometimes more 

than once a year. Large catastrophic events can be caused by 

natural phenomena or are caused by man (Fig.1). It should be 

noted that many events of natural character are to a large 

extent influenced by human activity. Serious events in recent 

years are often the result of terrorist acts. 

 
Fig.1 Number of catastrophic events 1970-2014 
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According to the latest sigma study, global insured losses 

from natural catastrophes and man-made disasters were USD 

35 billion in 2014, down from USD 44 billion in 2013 and 

well below the USD 64 billion-average of the previous 10 

years. There were 189 natural catastrophe events in 2014, the 

highest ever on sigma records, causing global economic losses 

of USD 110 billion. (Swiss Re sigma No 2/2015, p. 4) 

 

 
Fig.2 Total catastrophe losses 1970-2014 

 

Catastrophe modelling is a risk management tool that uses 

computer technology to help insurers, reinsurers and risk 

managers better assess the potential losses caused by natural 

and man-made catastrophes. Natural catastrophe models use 

historical disaster information to simulate the characteristics of 

potential catastrophes and to determine the potential losses 

cost. The modelling process evolved in the late 1980s as 

companies became increasingly aware of their exposure to 

catastrophic risks. After hurricane Andrew in 1992 and the 

Northridge earthquake in 1994, use of catastrophe models took 

off as companies sought to more accurately analyze, write and 

price for natural catastrophe risk. 

We are interested in probability modelling of extreme 

catastrophe losses, specifically the tails of loss severity 

distributions. Thus is of particular relevance in reinsurance if 

we are required to choose or price a high-excess layer. In this 

situation it is essential to find a good statistical model for the 

largest observed historical losses. 

In the modelling of catastrophe events statistical methods 

are commonly used for inference from historical data. Extreme 

Value Theory (EVT) [2], [8], [9] emerges as a basic tool in 

modelling such risks. It began with the paper by Dodd in 1923, 
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followed by the paper Fisher and Tippett in 1928, after by the 

papers by de Finetti in 1932, by Gumbel in 1935 and by von 

Mises in 1936, to cite the more relevant; the first complete 

frame in what regards probabilistic problems is due to 

Gnedenko in 1943. Following the theoretical developments of 

the extreme value theory many scholarly papers, as 

(Zhongxian, 2003), (Skřivánková, Tartaľová, 2008), (Jindrová, 

Sipková, 2014), (Jindrová, Pacáková, 2016), (Pacáková, 

Kubec, 2012), (Pacáková, Brebera, 2015) dealing with the 

variety of practical applications of the theory were published. 

The Generalized Extreme Value (GEV), Gumbel, Frechet, 

Weibull, and the Generalized Pareto (GPD) distributions are 

just the tip of the iceberg of an entirely new and quickly 

growing branch of statistics. Various authors have noted that 

this theory is relevant to the modelling of extreme values [3], 

[8], [10].  

II. EXTREME VALUE THEORY 

There are two principal kinds of models for extreme values. 

The oldest group of models are the block maxima models; 

these are models for the largest observations collected from 

large samples of identically distributed observations. A more 

modern group of models are the peaks-over-threshold models; 

these are models for all large observations which exceed a 

high threshold. 

A. Block Maxima Models 

By [8] the Fisher-Tippett theorem [1] is the fundamental 

result in Extreme Value Theory (EVT) and can be considered 

to have the same status in EVT as the central limit theorem has 

in the study of sums. The theorem describes the limiting 

behaviour of appropriately normalized sample maxima.  

Suppose catastrophe losses are denoted by the independent, 

identically distributed random variables
1 2
, , ...X X , who’s 

common distribution function is    X
F x P X x  , where 

0x  . 

Extreme Value Theorem (Fisher and Tippet, 1928):  

Suppose 
1 2
, , ...X X  are independent, identically distributed 

(iid) with distribution function (df)  .X
F x  If there exist 

constants cn > 0 and dn   R such that 
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where Mn = max (X1, …, Xn), Y is non-degenerate with 

distribution function G. Then G is of one the following types: 
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These three types of limiting distribution there are in 

standard form. We can parameterize them within the location 

and scale families. 
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The generalized Gumbel, Frechet and Weibull families can 

be combined into a single family of the generalized extreme 

value distributions (GEV) in the form  
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It is straightforward to check the result by letting 

 

 
1

 


,    d


  


, 

,           when  0

,        when   0

c


 

 
  

 

     (2) 

 

B. Excess over Threshold Method  

The modelling using the excess over threshold method 

follows the assumptions and conclusions in Generalized Pareto 

Distribution (GPD) Theorem. Suppose 
1 2
, ,...,

n
x x x  are raw 

observations independently from a common distribution F(x). 

Given a high threshold u, assume 
     1 2

, ,...,
k

x x x  are 

observations that exceed u. Here we define the ascendances as 

 i i
x x u   for 1, 2, ... ,i k . 

Then for a large enough threshold u by the GPD Theorem 

(Pickands 1975) the generalized Pareto distribution (3) is the 



 

 

limiting distribution for the distribution of the excesses, as the 

threshold tends to the right endpoint.  

The conditional distribution function of Y = (X – u / X > u) 

is approximately 
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x
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defined on 

 

  x: x > 0  and   1 x/  > 0  , where  u    . 

The family of distributions defined by equation (3) is called 

the generalized Pareto family (GPD). For a fixed high 

threshold u, the two parameters are the shape parameter ξ and 

the scale parameter . For simpler notation, we may just use σ 

for the scale parameter if there is no confusion. 

By GPD Theorem 
i

x  may be regarded as realization of 

independently random variable which follows a generalized 

Pareto family with unknown parameters ξ  and σ.  In case 

ξ 0 , the likelihood function can be obtained directly from 

(4):  
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III. RESULTS OF MODELLING 

C. Data and exploratory analysis 

The analysis focus on 264 total losses of natural 

catastrophes ranging from 8 to 210 000 (in USD millions) in 

time period from January 2010 to December 2014, published 

in Swiss Re sigma 2011-2015.  

Based on Swiss re sigma criteria [15, p. 2] an event is 

classified as a catastrophe and included in the sigma database 

when insured claims, total losses or the number of casualties 

exceed certain thresholds (Table 1). 

 

Table 1: The sigma event selection criteria, 2014 

Insured loss thresholds 

 Maritime disasters 19.6 million 

 Aviation 39.3 million 

 Other losses 48.8 million 

or Total economic loss threshold 97.6 million 

or Casualties   

 Dead or missing 20 

 Injured  50 

 Homeless  2000 

      (Sigma No 2/2015, p. 2) 

 

By Table 1 we have the historical catastrophe data on losses 

which exceed a certain amount known as a threshold, or the 

transacted losses. The time series plot (Fig.3) allows us to 

identify the most extreme losses and their approximate times 

of occurrences.  

We will start with exploratory analysis of the total 

catastrophe losses data.  Summary statistics in Table 2 and 

Box and Whisker plot show that there are many small losses 

and a few very large values of losses. The conclusion is that 

we need to find some long tail distribution that provides a 

suitable model for the variation amongst the catastrophe losses 

data.  

 

 
Fig.3 Chronologically arranged the total losses of natural 

         catastrophes 2010-2014 

 

Table 2: Summary Statistics for Total Losses 

Count 264 

Average 2997.82 

Median 600.0 

Standard deviation 14247.2 

Coeff. of variation 475.251% 

Minimum 8.0 

Maximum 210000 

Skewness 12.369 

Stnd. skewness 82.0464 

Kurtosis 172.897 

Stnd. kurtosis 573.434 
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Fig.4 Box and Whisker plot of total catastrophe losses 

 

D. Fitting lognormal distribution 

This analysis shows the results of fitting a lognormal 

distribution to the data on total losses using Statgraphics 

Centurion XV statistical package.  The estimated parameters 

of the fitted distribution are shown in Table 3.  We have tested 

whether the lognormal distribution fits the data adequately by 



 

 

selecting Goodness-of-Fit Tests procedure [1], [7], [12].   

 

Table 3: Estimated parameters of lognormal distribution 

Lognormal 

mean = 2033.88 

standard deviation = 5470.41 

Log scale: mean = 6.56356 

Log scale: std. dev. = 1.452 

 

Table 4 shows the results of tests run to determine whether 

total losses can be adequately modelled by a lognormal 

distribution.  The chi-squared test divides the range of total 

losses into no overlapping intervals and compares the number 

of observations in each class to the number expected based on 

the fitted distribution. 

 The Kolmogorov-Smirnov test computes the maximum 

distance between the cumulative distribution of total losses and 

the CDF of the fitted lognormal distribution.  In this case, the 

maximum distance is 0.0693061.   

 

Table 4: Goodness-of-Fit Tests for total losses 

Chi-Squared Test 

 Upper 

Limit 

Observed 

Frequency 

Expected 

Frequency 

Chi- 

Squared 

at or below 1000.0 164 156.74 0.34 

 2000.0 46 44.57 0.05 

 3000.0 11 20.40 4.33 

 4000.0 11 11.49 0.02 

 5000.0 9 7.24 0.43 

 6000.0 4 4.91 0.17 

 7000.0 5 3.50 0.64 

 8000.0 2 2.60 0.14 

 10000.0 1 3.53 1.82 

above 10000.0 11 9.02 0.44 

Chi-Squared = 8.36049 with 7 d.f.   P-Value = 0.301882 

 

Kolmogorov-Smirnov Test 

 Lognormal 

DPLUS 0,0693061 

DMINUS 0.051097 

DN 0.0693061 

P-Value 0.158378 

 

Since the smallest P-value amongst the tests performed is 

greater than or equal to 0.05, we cannot reject the hypothesis 

that total losses comes from a lognormal distribution with 95% 

confidence. 

We can also assess visually how well the lognormal 

distribution fits by Frequency Histogram (Fig.4) and Quantile-

Quantile plot against lognormal distribution (Fig.5). The 

lognormal line is close to the data at the lower end, but 

deviates away from the data at higher values of losses. 
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Fig.5 Histogram and fitted lognormal distributions 
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Fig.6 Quantile-Quantile plot of the fitted lognormal distribution 

 

Evidently, the upper tail of the lognormal distribution is not 

enough fat. We concluded that we need to find another 

distribution as a good probability model for extreme natural 

catastrophe losses. 
 

Table 5 Selected quantiles for catastrophe losses 

Lower Tail Area (<=) Lognormal 

0.5 708.787 

0.75 1887.32 

0.9 4556.76 

0.95 7722.4 

0.99 20773.0 

Table 5 presents the values of selected quantiles for the 

fitted lognormal distribution. The output indicates that the 

value of the fitted lognormal distribution below which we 

would find 95% values of catastrophe losses is 7 722,4 USD 

millions, and the value below which we would find 99% values 

of catastrophe losses is 20 773 USD millions, so 1% losses 

could exceed this value. 

E.  Block Maxima Models – results 

Our aim is to obtain a good estimate of the severity 

distribution in the upper tail, or good fit distributions of the 

extreme losses exceed some high quantiles.  

First we use the oldest group of models known as the block 

maxima models; these are models for the largest observations 

collected from large samples of identically distributed 

observations (Part II A). 



 

 

The catastrophe losses data presented by Fig.3 we have 

divided into k blocks (Table 7) of essentially equal size n = 11, 

16, 21, 24. The maximum of the values in these blocks 

contains Table 6. For this part of modelling we have used 

spreadsheet MS Excel.  
 

Table 6: The maxima of the blocks of losses 

max_11 max_16 max_21 max_24 

52400 30000 30000 30000 

6400 52400 52400 52400 

210000 210000 6400 6400 

5000 11000 210000 6150 

16600 30000 11000 210000 

70000 5000 30000 11000 

6800 16600 4000 30000 

10300 15000 5000 1560 

12500 70000 16600 5000 

3700 6800 15000 16600 

7000 4960 70000 15000 

 12500 2630 8000 

 5000 6800 70000 

 3700 4820 2630 

 5970 10300 6800 

 7000 12500 4720 

  5000 4960 

  3700 12500 

  5150 2500 

  7000 5000 

  1000 3700 

   5150 

   5970 

   7000 

 

We do not have used some special software systems for 

EVT, but statistical software package Statistica 12 and 

Extremes Toolkit module of statistical program “R” allow us 

application of Fisher-Tippet Theorem. This theorem says that 

generalized extreme value (GEV) distribution is the natural 

limit distribution for normalized maxima. Module 

Distributions & Simulation of package Statistica 12 allows 

maximum likelihood estimation of three parameters and 

performing goodness of fit test with GEV distribution with 

distribution function (1) on maxima of blocks in Table 6. The 

results contain Table 7. By p-values for block maxima 

modelling by GEV using the Fisher-Tippet Theorem we can 

see very good fit for maxima of the all 4 blocks, but the best fit 

in case of n =16 and n = 11. 

 

 

 

Table 7: Results of block maxima modelling 

 n = 11 n = 16 n = 21 n = 24 
Number 
of blocks k = 24 k = 17 k = 13 k = 11 

MLE (µ) 
MLE (σ) 
MLE (ξ) 

0.26289 

1.01372 

0.15193 

-0.16874 

1.03052 

0.24680 

-0.01303 

0.79455 

0.54639 

-0.11785 

0.76895 

0.12996 

SE (µ) 
SE (σ) 
SE (ξ) 

0.35092 

0.27338 

0.26621 

0.30472 

0.25096 

0.25941 

0.21462 

0.21011 

0.29545 

0.18829 

0.14826 

0.21639 

p-value 0.99052 0.99260 0.89667 0.79892 

 

The plots on Fig.7 and Fig.9 are useful for visual examining 

the fit of GEV distribution based on sample data. We have 

overlaid a theoretical CDF on the same plot with empirical 

distribution of the sample to compare them. 

The black stair lines show the empirical distribution functions 

of empirical sample data and the blue curves present the 

theoretical CDF of the estimated generalized extreme values 

distributions (EVD) for different blocks of maxima. The red 

lines are the lower and upper bounds of the 95% confidence 

interval estimates of the CDF. It can be seen that the estimated 

EVD models falls inside the bands. 

 
Empirical distribution function
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 Empirical distribution function
 Generalized Extreme Value
 95% lower confidence interval
 95% upper confidence interval

-20000
0

20000
40000

60000
80000

1E5
1,2E5

1,4E5
1,6E5

1,8E5
2E5

2,2E5

0

10

20

30

40

50

60

70

80

90

100

R
e

la
ti
v
e

 f
re

q
u
e

n
c
y
 (

%
)

  

Fig.7 GEV distribution fitted to block maxima for n = 11 

 
Q-Q plot
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Fig.8 QQ-plot against the GEV distribution fitted to block  

              maxima for n = 11 



 

 

Empirical distribution function

Mean = 30370.6250, Std.dev. = 51500.6438, N = 16
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Fig.9 GEV distribution fitted to block maxima for n = 16 

 

Q-Q plot
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Fig.10 QQ-plot against the GEV distribution fitted to block  

               maxima for n = 16 

F. Results of Excess over Threshold Method  

We have fitted a generalized Pareto distribution using the 

maximum likelihood method for parameters estimation to the 

data above threshold of 3000 (Fig.12), above threshold of 

5000 (Fig.13) and above threshold 8000 (Fig. 15). 

These plots are useful for examining the distribution based 

on sample data. We have overlaid a theoretical CDF on the 

same plot with empirical distribution of the sample to compare 

them. As in part E the black stair lines on Fig.11, Fig.13 and 

Fig.15 show the empirical distribution functions of empirical 

sample data and the blue curves present the theoretical CDF of 

the estimated generalized Pareto distributions for different 

thresholds. The red lines are the lower and upper bounds of the 

95% confidence interval estimates of the CDF. It can be seen 

that the estimated parametric CDF falls inside the bands. 

These plots confirm the good fit of all three generalized Pareto 

distributions on total losses of natural catastrophes.  

The QQ-plots (Fig.12, Fig.14, and Fig.16) against the 

generalized Pareto distributions is another way to examine 

visually the hypothesis that the losses which exceed a very 

high threshold come from estimated   distributions. 

 

Empirical distribution function for u = 3000

Mean = 10092,380952, Std. dev. = 13225,860073, N = 42
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Fig.11 GPD fitted to 42 exceedance of the threshold 3000  

 

 
Q-Q plot against the GPD of the threshold 3000

0 10000 20000 30000 40000 50000 60000 70000 80000

Theoretical quantile

0,01 0,75 0,9 0,95

0

10000

20000

30000

40000

50000

60000

70000

80000

O
b

se
rv

ed
 q

u
an

ti
le

 
 

Fig.12 QQ-plot against the GPD fitted to 42 exceedances 

                of the threshold 3000 

 

 
Empirical distribution function for u = 5000

Mean = 15585,454545, Std. dev. = 16573,054070, N = 22
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Fig.13 GPD fitted to 22 exceedances of the threshold 5000 

 

 



 

 

Q-Q plot against the GPD of the threshold 5000
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Fig.14 QQ-plot against the GPD fitted to 22 exceedances 

                of the threshold 5000  

 

 

Empirical distribution function for u = 8000

Mean = 24800,000000, Std. dev. = 19721,105446, N = 11
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Fig.15 GPD fitted to 11 exceedance of the threshold 8000  

 

 
Q-Q plot against the GPD of the threshold 8000
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Fig.16 QQ-plot against the GPD fitte  to 11 exceedances 

                of the threshold 8000  

 

Table 8 contains the maximum likelihood estimations of 

parameters fitted generalized Pareto distributions on the data 

above three different thresholds. By p-values in this table we 

can state the best fit in the case of threshold u = 5 000. 

 

 

 
Table 8: Comparisons of estimated GPD for different thresholds 

 u = 3 000 u = 5 000 u = 8 000 

parametr ξ 2842.322 4195.862 13706.81 

parametr σ -0.67771 -0.75417 -0.19003 

p-value 0.850026 0.959389 0.760575 

IV. CONCLUSION 

The rising trends of number of catastrophic events and of 

total catastrophe losses in recent decades require that 

catastrophe models will continue to evolve amid the ever-

changing risk landscape. The probability models based on 

databases about the consequences of catastrophic events 

provide valuable information to the institutions with a focus on 

risk management and reduction of the impact of these events in 

the future. 

The probability models for extreme catastrophic losses 

exceeding a certain amount are particularly important for 

insurance and reinsurance companies to price a high-excess 

layer.  

We have shown that the generalized extreme values models 

and generalized Pareto distributions fit well to extremal losses 

of natural catastrophes and they are useful tools for estimating 

the tails of loss severity distributions. This is not altogether 

surprising. As we have explained in part I, using GVT and 

GPD models have solid foundations in the mathematical 

theory of the behavior of extremes and it is not simply a 

question of ad hoc curve fitting. 

Even with a good tail estimate we cannot be sure that future 

does not hold some unexpected catastrophic loss. The extreme 

value methods which we have explained and applied do not 

predict the future with certainty, but they do offer good models 

for explaining the extreme events.  
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