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Abstract - This paper presents a design of a Doppler AMTI filter, for a radar with a variable pulse repetition period (stagger). The 

filter can suppress ground and volume clutter echoes simultaneously. The maximum filter impulse response length is limited to 

5 coefficients due to a limited radar system stability and a radar antenna movement.  
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1.  INTRODUCTION 

This work deals with a simple ground and volume 
clutter cancelation in monostatic radar with a variable 
pulse repetition period (stagger). The impulse response 
length is limited to a maximum of 5 coefficients according 
to the client’s requirements. This short filter is particularly 
suitable for semi-coherent (magnetron) radars with a low 
frequency stability, or where the antenna beam intercepts 
only a few impulse echoes. The processed data is in the 
form of a signal complex envelope. The data was provided 
by the company RETIA Inc. 

The clutter consists of both the received echoes 
scattered from a static ground objects with zero Doppler 
frequency and the volume clutter of echoes scattered from 
moving meteo-objects with nonzero Doppler frequency 
(figure 1). To detect and track airplanes or helicopters both 
clutter types should be extracted from the received signal. 
In history this problem has been solved using analog filters 
with two stop bands. Nowadays thanks to a high 
processors computation performance available, it is 
possible to solve this problem using digital Doppler filters.  

2. CLUTTER PARAMETERS 

In the figure 1 a transmitted pulse is scattered back by 
three typical objects: by a moving airplane, a moving 
meteo-clutter and a static ground clutter. The frequencies 

of the echoes are shifted by Doppler frequencies d 

[1, 5, 7], which in the discrete time domain correspond to 

d: 

𝜔𝑑 =  −4𝜋
𝑣𝑑

𝜆
;  𝛺𝑑 =  𝑇𝑜𝑝𝜔𝑑,  (1.1) 

where is vd is the radial component  of the scattering object 
velocity, Top is a pulse repetition period and λ is the 
transmitted signal wavelength.  

 

Figure 1 – Transmitted and received signal 

The discrete time complex envelope spectrum of the 
echo from static and moving objects is shown in the 
figure 2. It is evident that to suppress both clutter types we 
need two stopbands: one at the zero frequency and the 

other at the meteo-clutter Doppler frequency d. 

 

Figure 2 – The complex envelope spectrum of the 
received signal 

The power and the Doppler frequency of a real signal 
are shown in the figures 3 and 4 where it is possible to note 
highly correlated echoes from a ground clutter and meteo-
clutter. The depicted signal was received during one 
antenna revolution. The presented data were provided by 
the company RETIA Inc.  
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Figure 3 - Clutter power in the real received signal 

 

Figure 4 – Clutter Doppler frequency in the real 
received signal 

3. AMTI FILTERS STRUCTURES 

In the literature, two types of AMTI filter are described. 
The first structure is demonstrated in figure 5. This “real 
AMTI” filter suppresses the both clutter types in one step. 
The second type – the “cascaded AMTI” shown in the 
figure 11 suppresses the ground clutter in the first step and 
the meteo-clutter in second step after the signal frequency 
shift by the meteo-clutter Doppler shift [1]. 

1.1 Real AMTI filter 

The structure of the real AMTI filter is illustrated in the 
figure 5. At first the signal entering the filter is shifted by 
the half of the meteo-clutter Doppler frequency Ωd/2 so 
that the ground and meteo-clutter spectra are 
symmetrically displaced around the zero frequency. Now 
it is possible to use a filter with symmetrical stopbands at 
±Ωd/2 frequencies. Such a transfer characteristics can be 
realized using a real filter with a cosine transfer function 
approximation keeping a constant group delay. If the 

group delay depends on the signal (Doppler) frequency the 
target range evaluated from the signal time delay is 
determined with a lower accuracy. ([1]). 

For the power transfer function H() of the real AMTI 
filter the equation (1.2) holds ([2]):   

|𝐻(𝛺)|2 = [𝑏2 +  2 ∙ 𝑏1𝑐𝑜𝑠(𝛺) + 2 ∙ 𝑏0𝑐𝑜𝑠(2𝛺)]2,  (1.2) 

where {b0, b1, b2} are the filter coefficients. 

Using the following equality ([3]):  

𝑐𝑜𝑠(2𝛺) = 2𝑐𝑜𝑠2(𝛺) −  1 (1.3) 

we get the equation 1.4: 

|𝐻(𝛺)|2 = [𝑏2 +  2 ∙ 𝑏1𝑐𝑜𝑠(𝛺) + 2 ∙ 𝑏0(2𝑐𝑜𝑠2(𝛺) − 1)]2     

 (1.4) 

After substitution of 1.5 into the equation 1.4 and 
a necessary adjustment, it is possible to get 1.6. 

𝑐𝑜𝑠(𝛺) = 𝑥 … 𝑖𝑓 𝛺 ∈ < 0, 𝜋 > → 𝑥 ∈ < −1,1 >               (1.5) 

|𝐻(𝑥)|2 = [(𝑏2 − 2𝑏0) + 2𝑏1𝑥 + 4𝑏0𝑥2]2  (1.6) 

Zeros of |H(x)|2 are the same as zeros of the second order 
polynomial H(x) (1.7).  

𝐻(𝑥) = [(𝑏2 − 2𝑏0) + 2𝑏1𝑥 + 4𝑏0𝑥2] (1.7) 

The next step is to express H(x) as a product of root factors 
(1.8): 

𝐻(𝑥) = (𝑥 − 𝑥1)(𝑥 − 𝑥2)  = 𝑥1𝑥2 −  (𝑥1 + 𝑥2)𝑥 + 𝑥2, (1.8) 

where x1, x2 are the roots of polynomial H(x). 

Comparing coefficients at the corresponding powers of 
x in the equations (1.7) and (1.8) we get:  

𝑏0 = 0,25   (1.9) 

𝑏1 =  −0,5(𝑥1 + 𝑥2)   (1.10) 

𝑏2 = 𝑥1𝑥2 + 2𝑏0   (1.11) 

The polynomial H(x) in (1.8) has always two roots, 
either real or complex conjugated. For the clutter 
suppression we need at least one real root (for example x1) 
near to:  

𝑥1 = 𝑐𝑜𝑠 (
𝛺𝑑

2
)   (1.12) 

Then the second root x2 should be also real. For finding 
of the second root, we can use one of the two following 
attitudes:  As we need to create the notches only at Doppler 
frequencies of the ground clutter and the meteo-clutter, 

then either  x2 - x1 = x  1 (close roots) or |x2| > 1 … 

then H() = 0 will have only one real solution in the 
interval Ω ∈ < 0,2π > (distant roots).  



  

Figure 5 – Structure of the real AMTI filter 

1.1.1 Real AMTI filter with the “distant 
roots” 

In the case of „distant roots“ we require: |x2| > 1. The 
calculation sequence should be as follows: 

 Calculation of the discrete time Doppler  angular  

frequency Ωd = 2Fd and the first root 

x1 = cos (Ωd/2), where Fd = dTop  

 Selection of an auxiliary variable x3 ∈ -1,1; 
x3 ≠ 0. 

 The second root calculation: x2 = 1/x3; (then 
|x2| > 1). 

The examples of the AMTI filter characteristics with 
distant roots with different position of the second root x2 
are shown in the figure 6. It is obvious that an 
inappropriate choice of the second root position could 
create warped characteristics in the internal passband (i.e. 
in the band between the notches in the figure 6). To 
overcome this problem additional optimization conditions 
should be used. The first one is not to allow the transfer 
function to drop in this band. The convenient indicator of 
this condition could be the first derivative sign. If this sign 
changes more than twice in the internal passband it is 
evident that the characteristics is bent. The second 
condition requires balanced parameters outside the stop 
band as described in the equation (1.13). 

|𝐻(Ω = 0)| = |𝐻(Ω = 𝜋)| (1.13) 

 

Figure 6 - frequency response for AMTI with “distance 
roots” 

The example of an optimized characteristics is shown 
in the figure 7. Here we selected the best response without 
any warping and with a maximum balance outside the stop 
band. 

 

Figure 7 - frequency response for AMTI with “distance 
roots” after optimization 
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1.1.2 Real AMTI filter with “close roots” 

In this case we are looking for two near solutions of the 

equation H() = 0  in the range of Ω ϵ <0,π>. Then: |x2-x1| 

 Δx << 1. The calculations sequence should be as follows: 

 Calculation of the discrete time angular Doppler 

frequency  Ωd = 2Fd  and x10, the  mean value of 
the x1 and x2:  x10 = cos (Ωd/2) = 0,5.( x1 + 

x2), where Fd = dTop 

 Selection of a positive value Δx << 1 (the roots x1 
and x2 distance). 

 Calculation of the roots: 𝑥1 =  𝑥10 −
∆𝑥

2
, 𝑥2 =

 𝑥10 +
∆𝑥

2
. 

The example of the power transfer function of a real 
AMTI filter with two close roots is displayed in the figure 
8. This filter advantage is in the possibility to adapt the 
stopband width to the clutter spectra requirements 
changing the roots distance. 

 

Figure 8 – Frequency response of the AMTI filter with 
“close roots” 

1.1.3 Effect of the stagger on frequency 
response of a real AMTI filter  

Now we will study the impact of a variable sample 
period on a depth of the filter suppression notches. It could 
be expected that the stopbands depths will be worse for a 
staggered signal then for a signal with a constant sample 
period. 

To analyze the impact of the stagger on the filter 
transfer two matrices containing two models of complex 
envelopes of the input signals with constant amplitudes 
and variable Doppler frequencies were created.  In the 
rows of each matrix signal samples of a constant Doppler 
frequency (Ωm ϵ <0; Ωd/2>) are successively ordered.  In 
the first matrix the time distances Top between the adjacent 
samples are constant (the non-staggered signal). In the 
second matrix the sample distances are variable: 

Tvariable = Top ± dT where dT is a random variable in the 
range of < -0,01Top; 0,01Top > with a uniform distribution 
(the staggered signal). The both signals undergo the AMTI 
filtration and filter transfers for a staggered and non-
staggered signals are computed.  

Figure 9 compares frequency responses of the AMTI 
filter with distant roots for the staggered and for the 
constant sample period signal. It is evident that in the 
stopband the staggered period signal characteristics is 
much worse than that of the constant period one. The 
figure 10 displays the same situation for an AMTI filter 
with “close roots”. We can see, that in this case the 
suppression deterioration due to the stagger is less 
significant.  

 

Figure 9 - Frequency response of an AMTI filter with 
“distant roots” for a staggered and non-staggered period 

signal 

Figure 10 - Frequency response of an AMTI filter with 
“close roots” for a staggered and non-staggered period 

signal 

4. CASCADED AMTI FILTER 

This structure consists of two cascaded MTI filters 
(figure 11). Each MTI filter has one stop band at zero 
Doppler frequency for clutter suppression. After ground 
clutter suppression in the first filter the signal frequency is 
shifted by the Doppler frequency Ωd of the moving meteo-
clutter so that its power spectrum will appear at zero 
frequency again. And then it is suppressed using the 
second MTI filter [1]. 



 

Figure 11 – Cascaded AMTI filter 

This MTI filter pulse response is described by the 
following equation (1.14) [4, 5, 6]. 

ℎ𝑀𝑇𝐼(𝑡) =  𝛿(𝑡) − 2𝛿(𝑡 − 𝑇𝑜𝑝) + 𝛿(𝑡 − 2𝑇𝑜𝑝), (1.14) 

where Top is the (constant) radar repetition period. 

The figure 12 A) displays the spectrum of the input 
signal at the first MTI filter and in the figure 12 B) the 
spectrum of s2(t) after frequency shifting is shown. The 
frequency shift is described using the following equation 
(1.15): 

|𝑆2(𝛺)| = |𝑆𝑖𝑛(𝛺 − 𝛺𝑑)|  → 𝑠2(𝑡) =  𝑒−𝑗𝛺𝑑𝑡𝑠𝑖𝑛(𝑡), (1.15) 

where Sin is spectrum of the signal complex envelope at 
the mixer input and S2 is the spectrum at its output shifted 
by the Doppler frequency Ωd. 

Figure 12 – spectrum complex envelope before and after 
frequency shift 

Cascaded AMTI filter characteristics are shown in the 
figure 13. It is evident that the cascaded AMTI filter 
has deep and relatively wide stop bands. But in the case of 
a staggered period signal the suppression of the meteo-
clutter is very poor.   

 

Figure 13- Frequency response of a cascaded AMTI 
filter for staggered and non-staggered signals 

The anticipated reason of this effect could be a great 
uncertainty of time distances between signal s2 samples   
after the first MTI filtration since every sample at the first 
MTI filter output is a combination of three input samples 
with various time separations.  

5. AMTI FILTER REAL DATA TESTING 

The figure 14 illustrates a power and a Doppler 
frequency of a real received signal during one radar 
antenna revolution at a particular distance before and after 
filtration by the both versions of the real AMTI filter. The 
area with meteo-clutter we can find from the Doppler 
frequency plot as the wide area of nonzero Doppler shifts. 
In the power plots the blue and red curves represent the 
signal before and after filtration respectively. From here 
we can see that the both filters can suppress the both clutter 
types below the noise level.  The input signal includes also 
a reflection of a moving aircraft. Its signal to noise ratio is 
principally not affected by the filtration, being about 20 dB 
at the filters output.  
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Figure 14 – The real signal before and after filtration of real AMTI filter (the data were provided thanks to the company 

RETIA Inc. courtesy)

6. CONCLUSION 

In this paper the design of the AMTI filter was 
described. Two new algorithms for coefficients 
computation for a real AMTI filter were introduced. The 
main advantage of the design with the “close roots” is 
a direct design of a filter with wide filter stopbands.  The 
design with the “distant roots” needs a numerical 
optimization (par. 1.1.1) and leads to narrower stopbands. 
Finally, the cascaded AMTI filter was discussed. It was 
shown that it has not as a good characteristics as the 
previous one. In the last chapter the both designs of the 
real AMTI filter were tested with real measured data.  It 
was verified that the both suggested filter designs work 
satisfactorily.  
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