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Abstract 

This article deals with the issue of creating homogenous tariff classes of non-life insurance and 
modelling the cost of standard claims of each tariff class. We use a Generalized Linear Models 
(GLM) for the purpose of finding significant risk factors and also to determine the cost of 
standard claims of the individual tariff classes. The theoretical part will be completed by 
application on a typical heterogeneous portfolio of the Motor Third Party Liability (MTPL). All 
calculations were performed using the R software. The result of the GLM is a multiplicative 
model where the cost of standard claim of a particular tariff class is given as a product of the 
cost of standard claim of the reference class and the relativities of the tariff class. 
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1. Introduction 
In a homogeneous portfolio, where all policyholders have the same risk level, there is no 

reason to let the amount of premium vary. In practice, most portfolios are heterogeneous. 
They mix individuals with different risk levels. 

There is a need of risk classification (see Denuit and Charpentier (2005)). Nowadays, it has 
become extremely difficult for insurance companies to maintain cross subsidies between 
different risks categories in a competitive setting. Therefore, actuaries have to design a tariff 
structure that will fairly distribute the burden of claims among policyholders. We apply 
Generalized Linear Models (GLM) to achieve risk classification (see Cox (1972)). 

Ratemaking (or risk classification) is essentially about classifying policies according to 
their risk characteristics. The classification variables are called a priori variables, as their 
values can be determined before the policyholder starts to be covered by the insurance 
company. In the Motor Third Party Liability (MTPL) insurance, they include the age, gender 
and occupation of the policyholder, the type and use of their car, etc. These observable 
characteristics are typically seen as non-random covariates. Even with all the covariates 
included in price lists, substantial risk differentials remain amongst individual drivers (due to 
hidden characteristics like temper and skill, aggressiveness behind the wheel, knowledge of 
the highway, etc.). 

 
The pure premium is the amount the insurance company should charge in order to be able 

to indemnify all the claims, without loss nor profit. The computation of the pure premium by 
Jee (1989) relies on a statistical model incorporating all the available information about the 
risk. The ratemaking aims to evaluate as possible the pure premium for each policyholder. 

 Usually, the total claim S, generated by a policy of the portfolio, is not the modelling 
target. Instead, the different components of S are modelled separately, such as: frequency 
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claims, standard claims costs, cost of large claims, etc. This allows for a better understanding 
of the price list, as the risk factors influencing each component of S are isolated. The total 
claim amount iS  generated by policyholder i can generally be decomposed as: 
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where iN  is the number of standard claims filed by policyholder i, 

ikC  is the cost of the k-th standard claim filed by policyholder i, 

iJ  indicates whether the policy i produced a large claim (at least), 

iL  is the cost of this large claims, if any. 

If insurance data is subdivided into risk classes determined by many a priori variables, 
actuaries work with figures which are small in exposure and claim numbers (it is even 
possible that no observations are available for a particular combination of the rating factors). 
Hence, simple average will be suspect and a regression model is required. 

2. Generalized linear models (GLM) 
Generalized Linear Models (GLM), Nelder and McCullagh (1989), are ideally suited to the 

analysis of non-normal data which insurance analysts typically encounter. The GLM are used 
to assess and quantify the relationship between a response variable (or dependent variable) 
and a set of possible explanatory variables (or independent variables). 

GLM is important in insurance applications as: 
• the assumption of normality is often not applicable, for example claim counts, claim 

sizes or claim occurrences on a single policy do not obey the Gaussian distribution; 
• the relationship between outcomes and explanatory variables is often multiplicative 

rather than additive. 
With the GLM, the variability in one variable is explained by the changes in one or more 

other variables. The variable being explained (claim count, claim cost, etc.) is called the 
response variable. The variables that are doing the explaining are the explanatory variables, 
also called risk factors or risk characteristics in insurance. 

GLM describes the connection between the response and the explanatory variables. The 
explanatory variables may be, and often are, related. 

A question arises which explanatory variables are predictive of the response, and what is 
the appropriate scale for their inclusion in the model? 

 

2.1 Severity model – Gamma regression for standard claims 

Our explanatory variables are assumed to be categorical. A categorical variable with κ 
levels separates the portfolio into κ classes. It can be coded via k-1 binary variables being all 
zero for the reference level. The linear predictor (or score) for each class is given by the 
linear combination: 
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characteristics) for the i-th policyholder. 



  

Let kC  be the cost of the k-th standard claim. We assume 1C , 2C , … that are independent. 

Let each kC  conform to the Gamma distribution. 

The ),(Gam αµ  probability density function can be cast into 
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The annual expected cost of standard claim (in a Gamma regression we use log link 
function) for each class is given by: 
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The intercept 0β  representing the risk associated with the reference class (for which

021 ==== pxxx L ) and )exp( 0β  is the annual expected cost of standard claim for a policy 

in the reference class. When all explanatory variables are categorical, each policyholder is 
represented by a vector with components equal to ‘0’ or ‘1’. 

The annual expected cost of standard claim is then equal to: 
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 where )exp( jβ  models the effect of the j-th ratemaking variable. 

If 0>jβ  then )exp( jβ  increases the annual expected cost of standard claim. The 

)exp( jβ  is the multiplicative effect on the annual expected cost of standard claim due to the 

covariate associated with jβ , while holding the other explanatory variables constant. On 

contrary, if 0<jβ  then )exp( jβ  decreases the annual expected cost of standard claim. 

We are estimating the parameters jβ  by the maximum likelihood approach. 

Let in  be the number of claims reported by policyholder i, and let 
iinii ccc ,,, 21 K  be the 

corresponding claim costs. 
The likelihood function associated with the observations writes 
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where ( )i
T Xβ ⋅= expiµ .  

The log-likelihood equations are 
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The goodness of fit is measured by deviance (the smaller, the better). The deviance can 
also be used to compare the fit of two models by taking the difference in the deviances. The 
difference in the deviance, between the more complex model (full model) FD  and the 

deviance of the simpler model (reduced model) RD  with some parameters dropped out, can 



  

also be used to test the null hypothesis that the additional parameters in the full model are 
equal to zero. Let us test the null hypothesis: 

 
H0: 

T
q ),,,,( 210 ββββ L== 0ββ  

H1: 
T

p ),,,,( 210 ββββ L== 1ββ  

That is, H0: 021 ==== ++ pqq βββ L . 

The difference in the deviances is a χ2 distributed variable (under the null hypothesis that 
the additional regression parameters are equal to zero) with degrees of freedom equal to the 
difference in the number of regression parameters between the full and the reduced model, or 
equivalently the number of additional parameters in the full model: 

FR DD − ∼ 2
qp−χ .     (8) 

We can formally test the hypothesis that the additional parameters in the full model are 
zero, by using the difference of the deviances in a formal statistical test. H0 is rejected if 

FR DD −  is “too large”, that is if FR DD − > )1(2 αχ −−qp . If the χ2 is statistically significant, 

then we accept the full model. If it is not significant, we accept the reduced model. The goal 
of our regression analysis is to find a set of explanatory variables that have high explanatory 
power as measured through goodness of fit. 

3. Results 
Our data set is based on one-year vehicle insurance policies of the Motor TPL (Third Party 

Liability) portfolio of one Belgian insurance company . There are 163 657 policies, of which 
18 345 produced at least one claim. The analysis is performed with the help of the GLM 
procedure of R language [R Core Team 2015] and R packages “car” (Fox, Weisberg (2011)), 
“epicalc” (Chongsuvivatwong (2012)) and “gmodels” (Warnes (2013)). 

 
Table 1. Description of variables with their modalities 

Variable Description with modalities 
duree Length of the coverage period (or exposure to risk) 
nbrtotc Number of claims 
chargtot Total claim amount 
agecar Age of the vehicle: 0-1, 2-5, 6-10, >10 
sexp Sex of the driver: Male or Female 
fuelc Type of fuel: Petrol or Gasoil 
split Split of the premium: Monthly, Once, Thrice, Twice 
usec Use of the vehicle: Private or Professional 
fleetc Vehicle belonging to a fleet: Yes or No 
sportc Sports car: Yes or No 
coverp Coverage: MTPL, MPTL+, MPTL+++ 
powerc Power of the vehicle: <66 kW, 66-110 kW, >110 kW 

Source: Author’s own study. 

 First we eliminate atypical extreme losses. By the look at the histogram or pdf of costs 
(Figure1.) we have chosen a threshold of 50 000 €. Out of the 163 657 data 18 305 represents 
standard costs (less than 50 000). It means we omit 40 largest costs. The reference class is 
composed of the modalities of the variables with the largest risk-exposure. In our case it is: 
Male, agecar 6-10, Petrol, split Once, Private use, No fleet, No sportcar, MTPL cover and 



  

power <66 kW. Often only the total claim amount •iC  is available and not the individual ijc

´s. In this case, it is convenient to work with the mean claim amount or mean cost 
i

i
i n

C
C •= , 

where ni is the number of claims reported by policyholder i. 
  

Figure 1. Pdf of log-costs 

 

In R, the GLM analysis is performed via Gamma regression:  

glm(mean_cost ∼ agecar + sexp +…+ powerc, family = Gamma(link=log), weigths=nbrtotc) 
In this case the response variable is the mean cost. 

Then we test whether a particular category is significant or not. We start for a model 
incorporating all the available information and then exclude the irrelevant explanatory 
variables. The p-value tests the relevance of the variable. The limit of 5% is usually used to 
decide on this relevance. 

With the help of Anova analysis, we observe which variables are significant.  

> Anova(GLM_AnalysisCosts, type='III', test.statistic='F') 

Response: DataCosts[["MeanCharge"]] 
                          SS    Df       F    Pr(>F)     
DataCosts[["sexp"]]        1     1  0.1189  0.730271     
DataCosts[["usec"]]        0     1  0.0011  0.973738     
DataCosts[["fleetc"]]      3     1  0.5919  0.441697     
DataCosts[["sportc"]]      0     1  0.0786  0.779140     
DataCosts[["coverp"]]    273     2 24.3595 2.722e-11 *** 
DataCosts[["split"]]       7     3  0.3999  0.753046     
DataCosts[["fuelc"]]       1     1  0.1695  0.680581     
DataCosts[["agecar"]]     72     3  4.2983  0.004879 **  
DataCosts[["powerc"]]      3     2  0.3086  0.734473     
Residuals             102353 18289                       
--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

We remove ”usec” (p-value equals to 0.973738). We repeat this process until obtain only 
significant variables. 
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> Anova(GLM_AnalysisCosts, type='III', test.statistic='F') 

Response: DataCosts[["MeanCharge"]] 
                          SS    Df       F    Pr(>F)     
DataCosts[["coverp"]]    275     2 24.4359 2.522e-11 *** 
DataCosts[["agecar"]]     73     3  4.3501  0.004538 **  
Residuals             102786 18299                       
--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

At the end of the process the significant variables are: the type of cover and age of the 
vehicle. 

 
However, all the modalities do not need to be significant. Therefore, we try to gather the 

modalities using the fit.contrast procedure. 
 
We first look at the confidence interval of the predictions: 

> confint.default(GLM_AnalysisCosts,level = 0.95)     
                                     2.5 %     97.5 % 
(Intercept)                     7.10008164  7.2133231 
DataCosts[["coverp"]]B/MTPL+   -0.30591194 -0.1461062 
DataCosts[["coverp"]]B/MTPL+++  0.02844816  0.2530795 
DataCosts[["agecar"]]B/0-1      0.05554839  0.3699192 
DataCosts[["agecar"]]B/2-5     -0.13953754  0.0269593 
DataCosts[["agecar"]]C/>10     -0.06202141  0.1105743 

 

The process of gathering can be summarized as follows: Variable “agecar”: 2-5 and >10 are 
overlapping and they overlapping “0” the value of the reference class 6-10 of this variable. 
This means we try to gather them. 

> fit.contrast(GLM_AnalysisCosts,DataCosts[["agecar"]],c(-1,1,0,0)) 
                                      Estimate Std. Error  t value    Pr(>|t|) 
DataCosts[["agecar"]] c=( -1 1 0 0 ) 0.2127338  0.0801981 2.652604 0.007994252 
> fit.contrast(GLM_AnalysisCosts,DataCosts[["agecar"]],c(-1,0,1,0)) 
                                        Estimate Std. Error   t value Pr(>|t|) 
DataCosts[["agecar"]] c=( -1 0 1 0 ) -0.05628912 0.04247446 -1.325246 0.185106 
> fit.contrast(GLM_AnalysisCosts,DataCosts[["agecar"]],c(-1,0,0,1)) 
                                       Estimate Std. Error   t value  Pr(>|t|) 
DataCosts[["agecar"]] c=( -1 0 0 1 ) 0.02427644 0.04403032 0.5513572 0.5813955 
> fit.contrast(GLM_AnalysisCosts,DataCosts[["agecar"]],c(0,-1,1,0)) 
                                       Estimate Std. Error   t value     Pr(>|t|) 
DataCosts[["agecar"]] c=( 0 -1 1 0 ) -0.2690229 0.07848303 -3.427784 0.0006098684 
> fit.contrast(GLM_AnalysisCosts,DataCosts[["agecar"]],c(0,-1,0,1)) 
                                       Estimate Std. Error   t value   Pr(>|t|) 
DataCosts[["agecar"]] c=( 0 -1 0 1 ) -0.1884573 0.08500623 -2.216983 0.02663652 
> fit.contrast(GLM_AnalysisCosts,DataCosts[["agecar"]],c(0,0,-1,1)) 
                                       Estimate Std. Error  t value  Pr(>|t|) 
DataCosts[["agecar"]] c=( 0 0 -1 1 ) 0.08056556 0.05060952 1.591905 0.1114233 

The modalities ">10" and "6-10" of "agecar" should be gathered (as ">5"), as the p-value 
equals 0.5814. We repeat the previous process with other modalities. 
Consequently, we gather modalities "B/2-5" and "C/>5" with the reference modality of 
"agecar" (as "A/>1"). 
 



  

Let us look at the summary of our fitting (output of R): 

> summary(GLM_AnalysisCosts) 
Call: glm(formula = DataCosts[["MeanCharge"]] ~ DataCosts[["coverp"]] +  
     DataCosts[["agecar"]], family = Gamma(link = log), weights = 

DataCosts[["nbrtotc"]]) 
 
Coefficients: 
                               Estimate Std. Error t value Pr(>|t|)     
(Intercept)                     7.15477    0.02150 332.831  < 2e-16 *** 
DataCosts[["coverp"]]B/MTPL+   -0.24636    0.03895  -6.325 2.59e-10 *** 
DataCosts[["coverp"]]B/MTPL+++  0.10340    0.05269   1.962  0.04973 *   
DataCosts[["agecar"]]B/0-1      0.24007    0.07618   3.151  0.00163 **  
--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 

Table 2. Estimated parameters and their relativities.  
 Costs 

Variable Modality Estimate β
r

 Relativities 
Intercept   7,15477 1 280,20 € 
sexp Female 0 100 % 
fleetc Yes 0 100 % 
sportc Yes 0 100 % 
coverp MTPL+ − 0.24636 78,16 % 

 MTPL+++ 0,10340 110,89 % 

fuelc Gasoil 0 100 % 
agecar 0-1 0.24007 127,13 % 
powerc >=66 kW 0 100 % 
split Other 0 100 % 

Source: Author’s own calculation. 

4. Conclusion 
We have applied the GLM model to achieve risk classification of a MTPL portfolio. We 

used a particular portfolio of policies with variables determined a priori. Different insurance 
companies could collect different explanatory variables. Portfolio of other insurance company 
could include different variables such as the age, the period a driver has held a driving 
licence, marital status, etc. Still they can use the same approach as we propose to find relevant 
explanatory variables and modalities. There are a number of software programs that insurance 
industry has developed, for instance SAS GENMOD is used in Denuit et al. (2007). We 
decided to use ‘R’ software, which is free available software. 

The result of the GLM is a multiplicative model where the cost of standard claim of a 

category is given by the cost of standard claim of the reference class * the relativities exp(jβ̂ ) 

of the category. The relativities measure the relative difference with respect to the reference 
class. The Gamma regression model for standard claims can be replaced by Inverse-Gaussian 
or Lognormal distribution. For extreme claims we would suggest Generalized Pareto 
distribution which provides good approximation to the excess distribution over large threshold 
(for instance 50 000 €). 

We can see how to partition a heterogeneous portfolio into more homogeneous classes 
with all policyholders belonging to the same class paying the same premium. However, tariff 



  

cells are still quite heterogeneous (some risk characteristics are unobservable) despite the use 
of many a priori variables. So, there is a need of the a posterior corrections. In a priori 
ratemaking, the actuaries aim to identify the best predictors and to compute the risk premium. 
In a posterior ratemaking, they aim to compute premium corrections according to past claims 
history. This experience rating is based on a ‘crime and punishment’ mechanism: claim-free 
policyholders are rewarded by premium discounts (bonus) and others (who report one or more 
claims) are penalized by premium surcharges (malus). Past claims experience can reveal the 
hidden features. 
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