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Abstract

The acceleration of explosively driven aluminum flyer was successfully simulated using
LS-DYNA code. The properties of the explosive (A-1X-1, RDX/binder 95/5) was completely
calculated by Explo5 program (detonation velocity and pressure, JWL parameters for the
expansion isentrope).The results were compared to the experimentally obtained velocity
profile, measured previously with PDV. The both curves agree by shape, velocity values at
the individual steps and their duration. Also the terminal velocities agree very well.
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1 Introduction

Flyer plate experiments are used in the field of shock physics for determination of material
properties under shock loading [1-3]. Stationary plate is subjected to shock loading and the rear
surface velocity is measured. The loading is often achieved by impacting projectile and the
state of the studied material is determined from known impact velocity and projectile proper-
ties.

In the field of explosives, metal plate is placed in contact with the explosive charge and ac-
celeration caused by interaction of the flyer surface with the detonation products is measured.
Two important pieces of information can be obtained from such test. Firstly the velocity profile
acquired when using known explosive can be used to characterize the velocity that the metal
reaches at particular distance. This is problem was first addressed by Gurney [4-6] during
WWII but is of particular interest in ammunition construction or explosive welding. Secondly
using known metal flyer enables determination of explosive properties. In such experiment ve-
locity of the free surface (or apparent velocity measured through impedance matching window)
corresponds to the shock amplitude generated by the explosive on the interface between the
detonation products and the accelerated metal. Knowing the metal properties one can deter-
mine properties such as particle velocity or detonation pressure of the explosive under study
[7].

Determination of the rear surface velocity can be done by various methods including PDV
(Photonic Doppler Velocimetry) [8, 9], VISAR (Velocity Interferometry System for Any Re-
flector) [10], Fabry-Perot interferometry [11], contact pins [12] or high speed imaging by
streak cameras [1, 2]. All of these methods provide results, however with significant difference
in time and spatial resolution, ease of measurement preparation or price. PDV and VISAR are
commonly used today.

Experimental determination of the velocity profile is possible, however requires prepara-
tion of the explosive and pressing it to a reasonably sized charge to achieve stable detonation
parameters. In the early stages of development of new substances it is desirable to have ability
to simulate the flyer acceleration numerically, e.g. using finite element codes. One of these
codes, widely used for the simulation of detonation, is LS-DYNA. To conduct such numerical
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calculation it is necessary to describe the explosive and its expansion isentrope which is not
known for new substances and must be calculated using for example Explo5 code. Together
with generally known properties of the flyer and also the behavior of surrounding air accelera-
tion profile can be determined.

In this contribution we demonstrate the use of Explo5 for determination of explosive prop-
erties of composition containing 95 percent of RDX and 5 percent of nonexplosive binder and
the use of the calculated detonation parameters in determination of an aluminum flyer velocity
profile. The calculated results are then compared to experimental ones demonstrating predic-
tive capability of this approach.

2 Experiment

The experiment was in detail described elsewhere [13], only the brief description follows.
An aluminum disc was accelerated by the explosive charge with a diameter 40 mm and length
40 mm (A-IX-1, 95% of RDX, 3% ceresin, 2% stearin, density 1.66 g-cm™). An aluminum disc
(40 mm in diameter, nominally 1 mm thick) was placed on the upper side of the charge. The
real thickness of the aluminum flyer was 0.96 mm. The charge was initiated from the bottom
with a standard electric blasting cup which was centered using a polypropylene guide ring in
the a 40 g booster charge of Semtex 1A - plastic bonded explosive based on pentaerythritol
tetranitrate (PETN). The booster charge served more as a detonator holder than a real booster
charge and therefore was omitted from the model. The velocity of the disc was measured using
single channel PDV system.

3 Thermochemical calculation

Calculation of detonation parameters was conducted using Explo5 V6.02 thermochemical
code [14]. The empirical Becker-Kistiakowsky-Wilson (BKW) equation of state was used for
detonation products. The BKWG-S set of parameters (o =0.5; B=0.38; k=9.32; 0 =4120)
was selected which is nearly the same as the BKWN set used in [15] which fits well for high
explosives in a wide range of densities.

The input parameters corresponded to the ones defined in experimental section. The explo-
sive composition was defined as 95% of RDX, 3% of wax and 2% of stearin, because the
ceresin is not present in the compound database. The initial density was set to 1.66 g-cm™. The
equilibrium freezing temperature was set to 1800 K.

4 LS-DYNA simulation

The acceleration of the aluminum disc was simulated using of LS-DYNA code [16]. The
entire experiment, as described in section 2, was modeled using ALE (Arbitrary Lagrangian
Eulerian) approach. Due to the symmetry, geometry was simplified to 2D (axial symmetry) to
reduce the number of elements and nodes. Both explosive and air were modeled as an Euler
type materials. Aluminum was modeled as Lagrange type material. The part of a model “bel-
low” the Lagrangian part was modeled as a vacuum (Euler). The interaction of Euler and La-
grange parts of the model was ensured by the *CONSTRAINED LAGRANGE IN SOLID
card.

4.1 Model

The axisymmetric model consists of over 46,000 shell elements and is displayed in figure
1. The element sizes are 0.25 mm in an Eulerian part and 0.083 mm in a Lagrangian part.
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Figure 1: An axisymmetric 2D FEM model. Overall view of the model is on the left side and a
detail is on the right side. There are Eulerian parts (green air and red explosive, vacuum “bellow” the
aluminum is not shown) and one Lagrangian part - yellow aluminum.

4.2 Material parameters

The properties of the explosive (A-IX-1, RDX/ceresin/stearin 95/3/2) were obtained from
the Explo5 code and the explosive was modeled as a *MAT HIGH EXPLOSIVE BURN with
*EOS_JWL — equation (1):

“ryv, WE,
\%

P=A(1-=2)exp “V+B(1—-—=%)exp

R,V R,V M

where P is pressure, V is relative volume and A4, B, R\, R,, ® and E, are JWL constants cal-
culated by the EXPLO 5 thermochemical code. The properties of the explosive, as used as an
input for LS-DYNA simulation, are listed in table 1.

Table 1: The calculated properties of A-IX-1.
d [kg'm™] D [m-s'] Pc; [GPa]

1660 8258 27.35
JWL parameters
A [GPa] B [GPa] Ri[-] R, [-] o [-] E, [GPa]
887.8658 23.82617 5.18 1.60 0.452 9.19

The air was modeled as an ideal gas (*MAT NULL with the density 1.225 kg-m” and
*EOS LINEAR POLYNOMIAL, Cy=C, = C, = C; = Cs = 0 and C4 = Cs = 0.400) and the
vacuum was modeled as *MAT _VACUUM, with the density 1.225 kg-m~. The linear polyno-
mial equation of state follows:
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P:C0+C1H+C2H2+C3M3+<C4+C5M+C6M2)E (2)

where P is pressure, u is the ratio of current density to initial density, £ is internal energy
and C,-Cj are constants.

The aluminum was described by Johnson-Cook equation (*MAT _JOHNSON_COOK) and
with linear polynomial EOS (*EOS_LINEAR POLYNOMIAL), according to [17]. The John-
son-Cook model expresses the flow stress oy as:

o,=[A+Be"™|(1+Clné)[1—(T,)"] 3)

where ¢ is effective plastic strain, &= &l & ( €, isused to determine 4), Ty is homolo-
gous temperature 7y = (T — Tr)/(Tu- Tr) (T is temperature, Ty is melting temperature and Tk is
dlcp'l‘ od & (d is density and Cp is spe-
cific heat), and finally 4, B, N, C and M are constants.

In addition there is an element failure criterion, that allows for the immediate reduction in
element stress to zero (erosion). The strain at fracture, &, is given by:

reference temperature when determining 4), AT=

&= D+ Dyexp( Dy )1+ D,1né) (1+D,T,,) @

where P is mean stress (pressure) and o,y is effective stress. Fracture/failure occurs when D
reaches the value 1:

p=y A ()

£

Finally, the Johnson-Cook model implementation in LS-DYNA also includes a spall crite-
rion. The tensile pressure was limited to pressure cutoff (Pc =350 MPa) in this case. The prop-
erties of aluminum 6061-T6, used for the simulation were taken from [17] and are summarized
in table 2.

Table 2: The properties of 6061-T6 aluminum, according to [17].

Johnson-Cook strength model:

A [MPa] B [MPa] N[-] C[-] M [-] g, [s"]
324.1 113.8 0.42 0.002 1.34 1.0

d [kg'm?] G [GPa] Ta [°C] T.[°C]  C, [GPa~°C"]
2703 27.6 600 25 869

Johnson-Cook failure model:
D [-] D; [-] D; [-] D, [-] Ds [-]
-0.77 1.45 -0.47 0.0 1.6

Linear polynomial equation of state (Cy = Cs = C¢ = Eo = 0):
C: [GPa] C, [GPa] C; [GPa] Cs [-]
74.2 60.5 36.5 1.96
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5 Comparison of experimental and simulated velocity profiles

The sequential deformation of the flyer at four discrete times can be seen in figure 2. The
false colors correspond to the actual velocities of the flyer. The velocity gradually increases.
The elements on the sides of the flyer are deleted after exceeding the damage criterion (eq. 5).

The comparison of experimental velocity profile (solid black curve) with the result of the
simulation (dashed red curve) is shown in figure 3. Both experimental and simulated records
were taken in the top central part of the aluminum disc.

The expected stepwise character of both curves is typical for the acceleration of solid mate-
rial by explosive. The steps are produced by a reflection of a shockwave in a flyer. The simu-
lated velocities on the individual steps are close to the experimental ones as are the duration of
the steps. The terminal velocity agrees very well, which is a sign of a correct overall energetic
balance.

6 Conclusion

The acceleration of Al flyer with A-IX-1 was succesfully simulated using the LS-DYNA
code. The properties of the explosive (detonation velocity and pressure, JWL parameters for
the expansion isentrope) were completely calculated by Explo5 program, the properties of alu-
minum were taken from the literature. The simulated velocity profile shows a good agreement
with the experimental one, measured with PDV. Both curves agree in shape, velocity values at
the individual steps, their duration and the terminal velocities.
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Figure 2: Subsequent deformation of the flyer. The velocity is included in figure as a fringe level.
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Figure 3: The comparison of experimental and simulated velocity profiles for nominally 1 mm Al
disc.
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