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Abstract: This article aims to present the application of probability modelling and simulations based on 

quantile function of extreme insured losses in the world natural catastrophes based on data in time 

period 1970-2014, published in Swiss Re Sigma No2/2015. Quantile function provides an appropriate 

and flexible approach to the probability modelling needed to obtain well-fitted tails. We are 

specifically interested in modelling and simulations the tails of loss distributions. In a number of 

applications of quantile functions in insurance and reinsurance risk management interest focuses 

particularly on the extreme observations in the upper tail of probability distribution. Fortunately it is 

possible to simulate the observations in one tail of distribution without simulating the central values. 

This advantage will be used for estimate a few extreme high insured losses in the world's natural 

catastrophes in future. 
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1 Introduction 
The enormous impact of catastrophic events on our 

society is deep and long. Not only we need to 

investigate the causes of such events and develop 

plans to protect against them, but also we will have 

to resolve the resulting huge financial loss. 

The occurrences of catastrophic events are 

becoming more frequent (Fig.1) and also grow 

indemnity of insurance and reinsurance companies 

at these events.  

 

 
Fig.1 Number of catastrophic events, 1970-2014 

Source: Swiss re economic Research&Consulting and Cat Perils 

 

From these facts it follows the need of 

knowledge the probability models for prediction of 

consequences of catastrophe events and thus select 

the best options to cover risks and correct setting 

premiums or reinsurance. 

Developments of the financial consequences of 

disasters have a major impact on the global 

insurance market and forcing the insurance and 

reinsurance companies to seek for new approaches 

and ways to cover these risks. Raises the concern 

that the capacity of the world's insurance and 

reinsurance markets in the future will not be 

sufficient to cover these risks and aims to seek 

alternative options for their transfer. 

In the modelling of extreme losses statistical 

methods are commonly used for inference from 

historical data. Different approaches had been 

proposed for certain circumstances, for example 

Extreme Value Theory, Excess over Threshold 

Method and other [4], [6]. We will present method 

for modelling and simulation based quantile 

function [1], [3], [5], [9].  

 

 

2 Problem Formulation 
Suppose losses are the independent, identically 

distributed (iid) random variables
1 2
, , ...X X , with 

common cumulative distribution function (CDF) 

   xXPxFX  , where 0x   (1) 
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The Quantile Function, QF, denoted as  pQ , 

expresses the p-quantile px  as a function of p: 

 pQx p  , which is the value of x for which

   pp xFxXPp   [1], [3]. 

The definitions of the QF and the CDF can by 

written for any pairs of values  px,  as  pQx   

and  xFp  . These functions are simple inverses 

of each other, provided that they are both 

continuous increasing functions. Thus, we can also 

write    pFpQ 1  and    xQxF 1 . 

We denoted a set of ordered sampling data of 

losses by 

         nnr xxxxx ,...,,...,,, 121 
. 

The corresponding random variables are being 

denoted by 

         nnr XXXXX ,...,,...,,, 121 
 

Thus  nX  for example is the random variable 

representing the largest observation of the sample of 

n observations. The n random variables are referred 

as the n order statistics. These statistics play a major 

role in modelling with quantile distribution  pQ .  

Consider first the distribution of the largest 

observations on  nX  with distribution function 

denoted     nn pxF  . By [1], [5], [7], [9] the 

probability 

       xXPpxF nnn   

is also probability that all n independent 

observations on X are less than or equal to this value 

x, which for each one is p. By the multiplication law 

of probability  

 
n

n pp  so  
n

npp 1  and    
n

nppxF 1 . 

Inverting  xF , to get the quantile function, we have 

       n

nnn pQpQ 1     (2) 

For the general r-th order statistic  rX  by so 

called The order statistics distribution rule [1] we 

get the result: If a sample of n observations from 

a distribution with quantile function  pQ  is 

ordered, then the quantile function of the 

distribution of the r-th order statistic is given by 

        1,,  rnrp rBETAINVQrprQ   (3) 

BETAINV   is a standard function in packages 

such as Excel. Thus, the quantiles of the order 

statistics can be evaluated directly from the 

distribution  pQ  of the data.  

By the Uniform transformation rule (Gilchrist) 

if U has a uniform distribution then the variable X, 

where  uQx   has a distribution with quantile 

function  pQ . Thus data and distributions can be 

visualized as generated from the uniform 

distribution by transformation  Q , where  pQ  is 

the quantile function. 

The uniform transformation rule shows that the 

values of x from any distribution with quantile 

function  pQ  can be simulated as  

 ii uQx  ,  
ni ...,,2,1  

where nuuu ,...,, 21  are simulated from uniform 

distribution on the interval [0, 1]. The non-

decreasing nature of  Q  ensures the proper 

ordering of the x. 

The quantile function thus provides the 

natural way to simulate values for those 

distributions for which it is an explicit function 

of p. 

 

2.1 Simulation of extremes 
Quantile function allows simulating the 

observations in the upper tail of distribution without 

simulating the central values.  

Consider the right-hand tail. The distribution of 

the largest observation has been shown to be  npQ 1
. 

Thus by [1], [5], [9] the largest observation can be 

simulated as     nn uQx  , where  
n

nn vu 1  and 

nv  is a random number from interval [0, 1]. If we 

now generate a set of transformed variables by  

 
n

nn vu 1  

     nnnn uvu   1

1

11
   (4) 

     12

1

22   nnnn uvu  

  

where the iv , ...,2,1,  nnni  are simply 

simulated set of independent random uniform 

variables, not ordered in any way. It will be seen 

from their definitions that ,iu ...,,2,1,  nnni  

form a decreasing series of values and    ii uu 1
. 

In fact, values  iu  form an ordering sequence 

from a uniform distribution. Notice that once  nu  is 

obtained, the relations have the general form  

     1

1

 mmmm uvu ,  ...,,2,1  nnm  

The order statistics for the largest observations 

on X are then simulated by  

    nn uQx   

    11   nn uQx     (5) 

    22   nn uQx  



  

In most simulation studies of n observation are 

generated and the sample analyses m times to give 

an overall view of their behavior. A technique that is 

sometimes used as an alternative to such simulation 

sometimes called a profile. Such a set of ideal 

observations could be the medians 
rM   ,1 n

nn vu 
 

nr ...,,2,1 . 

 

2.2 Pareto distribution   
Modelling of the tail of the loss distributions in 

general insurance is one of the problem areas, where 

obtaining a good fit to the extreme tails is of major 

importance. Thus is of particular relevance in non-

proportional reinsurance if we are required to 

choose or price a high-excess layer [2], [8], [12].   

The Pareto distribution function of the losses Xa 

that exceed known deductible a is [7], [8], [10]: 

( ) 1 ,

b

a

a
F x p x a

x

 
    

 
        (6) 

The quantile function QF we can derive by 

inverting this CDF in the form 

 
1/

( )
1

b

a
Q p

p



         (7) 

The parameter b is the Pareto parameter and we 

need it estimate it, the most often by maximum 

likelihood method in the form [7], [9] 

,

1

ln
n

a i

i

n

X

a

 
 
 



     (8) 

 

 

3 Problem Solution 
The publication [11], Swiss Re Sigma No2/2015 in 

Table 10, page 41, provides data about the 40 most 

costly insurance losses (1970, 2015). These data are 

the basis for our analysis. These values are ranging 

from 3410 to 78638 million USD in 2014 prices. 

We want to verify whether the 2-parameter 

Pareto distribution defined by (6) fits the data 

adequately by selecting Goodness-of-Fit Tests [1], 

[2], [9]. The first step is parameters estimation by 

maximum likelihood method [2], [8], [12]. The 

estimated parameters of the fitted distribution are 

shown in Table 1. In our parameters markers by (6) 

or (7) est a = 3410 and est b = 1.04777.  

 

Table 1 Parameters of Fitted Distribution 
Pareto (2-Parameter) 

shape = 1.04777 

lower threshold = 3410.0 

Source: Output from Statgraphics Centurion XV  

 

The Table 2 shows the results of test run to 

determine whether the most costly insurance losses 

can be adequately modeled by a 2-parameter Pareto 

distribution (6).   

Since the smallest P-value = 0.858776 amongst 

the tests performed is greater than or equal to 0.05 

we cannot reject the idea that losses comes from a 2-

parameter Pareto distribution with 95% confidence. 

 

Table 2 Results of Kolmogorov-Smirnov Test 
 Pareto (2-Parameter) 

DPLUS 0,0576431 

DMINUS 0,0955203 

DN 0,0955203 

P-Value 0,858776 

Source: Output from Statgraphics Centurion XV  
 

 

We can also by Quantile plot and Quantile-

Quantile or Q-Q plot assess visually how well 

the  2-parameter Pareto distribution with parameters 

(Table 1) fits the data. 

 

 
Fig 2 Quantile plot 

Source: Output from Statgraphics Centurion XV  
 

The Quantile Plot (Fig 2) shows the fraction of 

observations at or below x, together with the 

cumulative distribution function of the fitted 

distribution. To create the plot, the data are sorted 

from smallest to largest and plotted at the 

coordinates. Ideally, the points will lie close to the 

line for the fitted distribution, as is the case in the 

plot above.  

 
 Fig 3 Quantile-Quantile plot 
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Source: Output from Statgraphics Centurion XV 
The Quantile-Quantile plot (Fig 3) shows the 

fraction of observations at or below x plotted versus 

the equivalent percentiles of the fitted distribution. 

The fitted Pareto distribution has been used to 

define the x-axis. The fact that the points lie 

close to the diagonal line confirms the fact that 

the gamma distribution provides good model 

for the data. 

Table 3 Quantiles of fitted Pareto distribution 
Lower Tail Area (<=) Pareto (2-Parameter) 

0.5 6607.83 

0.75 12804.5 

0.9 30701.5 

0.95 59492.8 

0.99 276417 

Source: Output from Statgraphics Centurion XV  
 

The Table 3 contains the selected quantiles of 

Pareto distribution, which is well fitted model for 

the most costly insurance losses.   
If will not change conditions of the occurrence 

of these events on the globe, will not change even 

their distribution. Then 50% of the most costly 

insurance losses will exceed 6607.83 million USD, 

10% will exceed 30701.5 million USD, 1% will 

exceed 276417 million USD.  

Knowing the probability model and its 

parameters, we can use quantile function (7) 

and by simulation procedure described in 2.1 

we can find five the highest values at 40 most 

costly insurance losses.  

 
Table 4 Process of simulation Q(u) 

v n v^1/n u Q(u) 

0.235493 40 0.964494 0.964494 82481.36 

0.331321 39 0.972073 0.937558 48123.9 

0.331321 38 0.971348 0.910695 34201.76 

0.331321 37 0.970585 0.883908 26626.44 

0.331321 36 0.969781 0.857197 21851.37 

Source: Own calculation by (4) and (5)  

 
The steps of simulation presents Table 4 and 

possible the highest five values (in million USD) in 

the world natural catastrophes we can find in the last 

column denoted as Q(u). So the highest simulated 

loss is 82 421.36 million USD, the second highest is  

48123.9 million USD etc. 

Two last columns in Table 5 show the bounda-

ries for each order statistic. For example the highest 

possible insured loss is with probability 0.95 from  

24 991.87 million USD to 18 066 831.58 million 

USD and 0.5% of losses may even exceed the value 

of 18 066 831.58 million USD.  

Visualized results of the simulation process we 

can see at Fig 3. 

 
Table 5 Quantiles of selected order statistics 

 
Source: Own calculation by (3)  

 

 
Fig 3 Graphical result of simulation of 5 the 

largest most costly insurance losses 

 

 

4 Conclusion 
The results of the analysis based on data of extreme 

insured losses in the world natural catastrophes 
in time period 1970-2014 are alarming.  

Are justified concerns that the capacity of the 

world's insurance and reinsurance markets in the 

future will not be sufficient to cover these risks. It is 

high time for humanity to start emphatically remove 

the causes of the occurrence of catastrophes and 

their consequences. 
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