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Introduction to Experimental Analysis  

This book brings a review of basic methods for design and evaluation of 
experiments. It shows the principal steps and explains the causes of dispersion and 
errors of the measured values, as well as statistical methods for their evaluation. It 
is shown how the measured values can be described by simple characteristics or 
probability distributions. Then, characterisation of relations between investigated 
quantities is described, including fitting of the data by regression functions. It is 
explained how confidence intervals can be created, which contain the true values of 
the parameters, and how many tests are necessary for obtaining the results with the 
demanded accuracy or for the verification of a certain hypothesis. One chapter is 
devoted to the theory of similarity and dimensional analysis, which help one to 
reduce the extent of experiments and make the results more general. Other chapters 
explain the analysis of variance, design of experiments, and experimental finding 
of a maximum or minimum. These procedures facilitate finding of the most 
important factors and optimum parameters. Sensitivity analysis shows how 
variations of the input quantities cause deviations of the investigated quantity from 
the optimum or nominal value. The last chapter is devoted to the efficient tools for 
the study of random influences, such as the Monte Carlo simulation technique. The 
use of the described methods is illustrated on examples and the individual chapters 
are supplemented by references. 

The pdf version is freely accessible on http://hdl.handle.net/10195/66961. 
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There is nothing more practical in the world than good theory. 

            Ludwig Boltzmann 

 

 

Measure everything measurable, and the not measurable make  

to be measurable. 

            Galileo Galilei 
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1. Introduction  

The main purpose of research is to obtain information on the investigated object. 
Often, also, it is necessary to find optimum composition of a compound or 
optimum parameters of a process, a component or another object. The demanded 
information can be obtained by theoretical activity, by observation and by 
experiment. Theoretical activity means work with abstract models. In 
observation, our attitude is passive; we just observe what is happening and record 
characteristic phenomena and values of variables, without intervening into the 
investigated object or changing the conditions during the observation. In some 
cases, observation is the only possibility for obtaining information. Examples are 
the study of properties of stars or human society, or the development of new kinds 
of medicine that could cure, but also kill. Experiment is a purposeful activity, 
which should bring deeper insight and more information. It is a series of activities 
enabling systematic observation with controlled action on the investigated real 
object or a model of the real object. The model can be physical (built from real 
materials) or computer (simulation). Observation and experiment enable collecting 
of input data and verification of a hypothesis on the investigated object. 

Experiments are very important for providing information. Historically, various 
methods have been developed, which make experimenting and the evaluation of 
results more systematic and efficient. Every year, many students and other people 
become engaged in experimental research and must learn how to do it. And still 
valid is the experience made by Pascal: “Only at the end of work we know how we 
should have started”. This book wants to mitigate this problem by presenting a 
brief review of the basic methods and approaches.  

The author has spent many years in applied research. Later, at the University of 
Pardubice, he gave lectures on research methods for students from various 
countries and branches of science and engineering. With this extensive experience 
he decided to prepare a concise book for students and other people who wish to 
have some insight as to how experiments can be effectively organised and 
evaluated – regardless their professional orientation. Therefore, he has placed 
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emphasis on explaining the basic terms and universal procedures useful for various 
branches of research. In order to enable practicing the described methods for 
readers without special tools, the examples shown in the book can be solved with 
the help of “omnipresent” Excel.  

This book on experimental analysis is divided into fourteen chapters. This first 
chapter introduces the topic and the arrangement of the book. The second chapter 
outlines the principal steps of experimental research. Chapter 3 identifies what 
kinds of errors can appear in an experiment or measurement, and shows also ways 
for their avoidance or reduction. The following chapter explains the basic terms of 
probability and statistical methods usual in experimental analysis – just to help 
those who are not familiar with these important tools. Chapter 5 indicates the 
determination of important characteristics of an investigated quantity, such as the 
average, a histogram, or the parameters of probability distribution. Chapter 6 is 
devoted to various characteristics of relationships between two or more quantities. 
Chapter 7 explains the fitting of empirical data by regression functions and 
determination of their parameters. The applications are shown on specific 
examples. Chapter 8 is devoted to the determination of the repetition of 
experiments and measurements needed for obtaining results with demanded 
accuracy. It explains the confidence intervals and also the statistical tests for 
proving whether the difference between two procedures is significant or not. 
Chapter 9 presents the principles of the similarity theory and dimensional analysis. 
They both are very powerful tools that can reduce the extent of necessary 
experiments and make the results more general. Chapter 10 explains the principles 
of the analysis of variance, which can reveal the significance of various factors. 
The following chapter 11 is devoted to the design of experiments (DOE), which 
aims at fast and efficient revelation of the most influential factors and finding the 
best parameters of a structure or conditions of a process. Chapter 12 shows 
experimental procedures for finding a maximum or minimum of a certain function. 
Chapter 13 (Sensitivity analysis) shows how the variations of input variables 
contribute to the deviations of the output quantity from its nominal or optimum 
value. The last chapter (14) is devoted to very efficient tools for the investigation 
of the behaviour of random quantities, namely the simulation method Monte Carlo 
and Latin Hypercube Sampling. The individual chapters are complemented with 
references.  
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2. Principal Steps of Experimental 
Research   

Every experimental research consists of the following stages: preparation, 
realisation of experiments and measurements, evaluation of results, formulation of 
conclusions, and publication of results. The individual stages will be described here 
in detail.  

1) Preparation 

The preparation of experiments consists of the following steps:  

− Familiarisation with the problem and its general analysis, formulation of the 
object and task of the investigation. 

− Selection of suitable kinds of experiments and measuring methods with respect 
to available possibilities, including equipment, finance and time. 

− Choice of characteristic physical and other quantities describing the behaviour 
and important properties of the investigated object or phenomenon. Sometimes 
it is obvious from the beginning, what quantities will be used. Sometimes not, 
especially when studying something quite new. In some cases, we must even 
create a new quantity. Do not worry; remember Galileo Galilei: “Measure 
everything measurable, and the unmeasurable make to be measurable!”  For 
example, who would imagine (a hundred years ago) that the quantity of 
information could be measured!   

− Preparation of the plan of the experiments and measurements, including their 
extent (choice of the range and number of the levels of the measured quantities, 
and the number of experiments and tests).  

− Preparation of devices and necessary equipment, obtaining of specimens. 

The detailed plan of all experiments, including the time schedule, must be recorded 
in advance.  
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2) Realisation of experiments, observations and measurements 

The experiments are carried out according to the prepared plan. However, research 
is always accompanied by some uncertainty, and often the initial plan and time 
schedule must be modified with respect to the achieved results. Sometimes, 
therefore, the experiments are done in two or even more stages [1], as depicted in 
Fig. 2.1. The experiments in the first stage are of limited extent and serve for better 
determination of the extent and conditions of the remaining experiments. 

 

Stages of experiment. 
research   

Introductory  
study 

Preliminary 
experiments 

Final 
experiment 

     Analysis     

     Synthesis    

     Experiment,  
     data acquisition  

   

     Data evaluation    

     Formulation of           
     conclusions 

   

 

Figure 2.1.  Stages of experimental research. 

All experiments should be described in a research or operational log-book. Such 
records contain the following information: date and time of the tests, the list of 
used devices (including their types, series numbers and arrangement), the list of 
participating persons (including their role), and the description of the experiments, 
results and any associated comments or remarks regarding the observations. If 
possible, the records are done using a computer or laptop, but they can also be 
written by hand. Sometimes, pre-printed forms are used. Photos and sketches are 
useful. The experimenter can also use a video- or tape recorder, and comment there 
on his or her observations. All this should be done with care, because sometimes it 
is not possible to repeat the measurements or observations if the original data were 
lost. In general, the experiments and the results should be described in sufficiently 
explanatory manner to enable them to be repeated. 
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3) Evaluation of results 

The processing of the obtained data includes their sorting, creation of tables and 
diagrams, analysis of the results and proposal and verification of the relationships 
among the investigated quantities, including the determination of constants in 
regression functions, construction of confidence intervals and testing of various 
hypotheses about the investigated phenomena. 
 
4) Formulation of conclusions 

The evaluated results serve for the formulation of conclusions and for the 
preparation of a plan of further works. Then, a report can be written. Often, the 
results are published in a form of a presentation or poster at a conference or a paper 
in a journal. 
 
5) Publication of results 

Publishing is very important especially in the scientific community (universities, 
research institutions), but the reports, prepared in a readable form, are important for 
development departments as well. When preparing the information on our research 
for publication, it is useful to adhere to certain well-proven rules. A scientific paper 
is usually arranged in the following manner: 

1. Introduction, a brief formulation of the task of the work.  
2. A review of the state of knowledge on the topic, e.g. a review of relevant 

publications (books, papers in journals and conference proceedings, research 
reports). 

3. A detailed description of the used methods, devices and procedures. 
4. Description of the experiments and measurements. 
5. Evaluation and analysis of the results. 
6. Conclusions. 
7. List of references. 

Sometimes, acknowledgment is placed at the end of paper (before the references). 
Here, the author can express thanks for help, for the support from a grant project or 
other sources, and also for the permission to publish some results or parts of other 
authors´ works; in such cases one must always cite properly the source. If we want 
to take over a full figure or data from another paper or a book, we should also get 
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the permission of the copyright owner (and mention it in the acknowledgment). 
And − our text must be free of any plagiarism.    

As regards the details of preparation of a paper for publication in a scientific 
journal, the author should always consult the guidelines for the arrangement of 
papers in that journal, including the style of references, page or word limitation, 
form of the abstract and number of figures allowed; various journals use various 
styles. Often, Instructions for Contributors are given at the pertinent web pages of 
the relevant journal.  
 
An example − Proposal of experiments 
In any investigation several possibilities usually exist as how to obtain the required 
information. The investigator has to decide which method to use with respect to his 
or her experience, the money and time available for this research, the equipment 
that is available “in house” or can be purchased or hired, and the requirements on 
the results with respect to their importance and accuracy. The diversity of 
possibilities of experimental research can be demonstrated on a simple problem − 
ascertaining the technical condition of a combustion engine. The relevant 
information can be obtained from: 1) Power characteristics (power and torque as 
functions of RPM measured by motor brake), or 2) Compression pressure and the 
tightness of combustion chamber, or 3) Noise and vibrations of the engine or its 
parts, 4) Consumption of fuel and lubricants, 5) Condition of lubricants (chemical 
composition, content of metallic particles), 6) Composition of exhaust gasses or 
other exhalations (CO, NOx…), 7) The power necessary to rotate the idle engine, 
which characterises the mechanical losses, 8) Wear of the cylinders (measured 
directly or from the metal particles in the oil)... Any of these possibilities can yield 
less or more relevant information, and the choice is the matter of the investigator.  

The reader is encouraged to propose further methods. 

Models and simulation 

A frequent task in research is creation of a suitable model of the studied process or 
object, or a model of the influence of the important factors on a certain property or 
phenomenon. On the other hand, the properties or phenomena are often 
investigated by means of an appropriate model or by simulation. For better 
understanding, some terms from this area will be explained here.  
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A model is a simplified object or a system, which can help in the analysis of a 
problem, usually at lower cost and in shorter time. It represents a system or its part 
and can be created in physical form (e.g. from metal or wood) or in mathematical 
form suitable for demonstrating its behaviour. Simulation involves subjecting the 
model to various inputs or conditions and observing how it behaves. It can deal 
with physical models subjected to the actual environment, or with mathematical 
models subjected to mathematical disturbance functions that simulate the expected 
conditions.   

A model can be descriptive or predictive. A descriptive model helps to understand 
a real-world object, system or phenomenon (e.g. a cutaway model of an engine). A 
predictive model helps to understand and predict its performance. 

Models can be classified as static or dynamic, deterministic or probabilistic, and 
iconic or analogue or symbolic. Properties of static models do not change with 
time, while dynamic models consider time-varying effects. Deterministic models 
are used if the outcome of the investigated event occurs with certainty. 
Probabilistic models are necessary if these events or values occur with some 
probability. Iconic model looks like a real thing (for example a scale model of an 
aircraft for wind tunnel tests). Analogue models are those that behave like real 
systems; however, such a model does not need to look like the real system it 
represents. There are many analogies between physical phenomena; well-known is 
the membrane analogy for study of the twist of bars via the response of inflated 
membrane of similar shape. Symbolic models are abstractions of the important 
quantifiable components of a certain system. A mathematical equation expressing 
the dependence of the output parameters on the input parameters is a symbolic 
model. One can distinguish between theoretical models, which are based on 
universally accepted laws of nature, and empirical models, which are the 
approximate mathematical representations based on experimental data. Both kinds 
of models are often denoted as mathematical models. 

In mathematical modelling the parts of the system are represented by idealised 
elements, which have the essential characteristics of the real components and 
whose behaviour can be described by mathematical equations. Only the simplest 
models can be studied by classical analytic methods. Computers have greatly 
expanded the use of mathematical modelling. The numerical methods and the 
ease with which they can test many specific states of the model have firmly 
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established computer modelling and simulation as powerful tools in research or 
design. The ability to simulate the operation of a system via a mathematical model 
is a great advantage in providing information, at lower cost and in shorter time than 
if experimentation with real objects were used. Moreover, there are situations in 
which experimentation is impossible because of cost, safety, or time. For example, 
airline pilots train on flight simulators and nuclear power plant operators learn from 
reactor simulators. 

More about organisation of experiments can be found in literature, for example [1 – 
4].  

Before we start explaining the individual methods of experimental analysis, let us 
make this serious topic less serious: Tibor Dévényi [5] likened scientific activity to 
the work of a four-stroke engine: 1. Intake (= study of the literature), 2. 
Compression (= making experiments, measurements and analysis of the results), 3. 
Ignition and combustion (= getting an idea, evaluation of the results), 4. Exhaust (= 
publication of the results). The similarity is obvious. However, this does not mean 
that our publications might be as harmful as exhaust gasses.   
 
References to Chapter 2 

1.  Bernard, J.: Technical experiment (In Czech: Technický experiment). ČVUT, 
Praha, 1999. 74 p. 

2.  Montgomery, D. C.: Design and analysis of experiments. Wiley, New York, 
2012 (8th edition). 730 p. 

3. Kropáč, O.: Methods of experimental research. (In Czech: Metody 
experimentálního výzkumu.) ČVUT, Praha, 1979. 139 p. 

4.   Dieter, G. E.: Engineering design. 2nd Edition. McGraw-Hill, New York, 1991. 
721 p. 

5.   Dévényi, T.: Career of Dr. Géza Ezésez or scientists and rodents. (In Hungarian: 
Dr. Ezésez Géza karrierje avagy Tudósok és rágcsálók.) Gondolat, Budapest, 
1975. 206 p. 
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3. Errors and Variance of Measured 
Values  

Accurate values of the investigated quantities are known only seldom. Generally, 
three kinds of values can be distinguished [1, 2]:  

- actual,  
- measured, 
- used in the following calculations. 

The measured values often differ from the accurate ones due to various errors 
appearing in the measurement. The reasons for the errors will be discussed in the 
next paragraphs. However, even if the measurement is accurate, the measured 
values can less or more vary even if the tests or measurements are repeated under 
the same conditions. One reason is inherent variability of the measured quantity or 
phenomenon. For example, the strength of a brittle material varies from one tested 
piece to another, the reason being different size of material defects responsible for 
the strength and fracture of the individual samples. Also the conditions of the 
individual tests can slightly vary, for example the temperature or humidity of the 
environment; sometimes the measurement is influenced by vibrations or other 
factors. And, finally, the values used in various subsequent calculations can differ 
from the measured ones because usually the average value or a certain quantile is 
used instead of the individual values; examples are coefficient of thermal 
expansion or nominal strength of a material.    

Let us now look at the errors in measurements. Three kinds of errors can be 
distinguished: gross, systematic and random [3 – 5].  

A gross error appears as a value obviously out of the common range of other 
values (Fig. 3.1). Gross errors arise due to inattention in reading the measured 
values, by using a wrong range of the measuring device, or by a technical fault. 
They can be revealed by repeating the measurement, by visual check of the plotted 
series of data, or by statistical tests for extreme values, so-called outliers [6]. 
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Figure 3.1.  Example of an outlier. 
 
Systematic errors arise due to permanent influence of some hidden factors (for 
example higher temperature or inaccuracy of the measuring device. They cause 
permanent shift of the measured values, either positive or negative. They cannot be 
revealed by repeating the experiment, but by the use of another method or 
conditions of the experiment. 
The main causes of systematic errors are: 

1) imperfection of our senses (vision, hearing), bad mental condition of the 
personnel (e.g. work under stress or in a hurry, tiredness, exhaustion), 

2) inaccuracy of measuring devices and methods, 

3) impossibility to arrange suitable conditions (temperature, pressure, 
humidity, no parasitic vibrations), 

4) the measurement itself can influence the measured quantity (examples: a 
relatively heavy sensor attached to a light component changes its dynamic 
characteristics, electric current can increase the temperature of a strain 
gauge and thus also its resistance). 

5) inappropriate method or approximation used in the data processing (e.g. 
the regression function is used in a wider interval than from which its 
constants were determined). Low numbers of the digits in calculations 

(errors due to rounding can sum up in chained calculations) − see at the 
end of this chapter. 

Systematic errors can be avoided in the following ways: 
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- Mental well-being of the personnel, without stresses during the 
experiments and measurements. 

- Use of sufficiently accurate devices. A rule of thumb says that the common 
error of the measuring device should be at least ten times smaller than the 
acceptable error in the determination of the measured quantity. For 
example, if the thickness of a certain component should be determined 
with accuracy 0.01 mm, a gauge with accuracy not worse than 0.001 mm 
must be used. Important devices must be calibrated from time to time. 

- The individual members in the measuring chain “sensor - connecting 
cables - amplifier - measuring device…” are arranged in series and their 
errors and inaccuracies sum up. The most efficient way for improvement is 
to replace the “weakest” member by a more accurate. The researcher thus 
should know their accuracies. In dynamic problems, devices with 
appropriate dynamic characteristics should be used.   

- Exclusion of the undesired influence by suitable arrangement of the test 
(for example, making all measurements at constant temperature). 

- Elimination of the undesired influence by recalculation of the measured 
data using correction factors (for temperature, e.g.). 

- Permanent balancing of the experiment (e.g. the use of Wheatstone bridge 
circuit). 

- Randomisation of the experiments, i.e. the use of random combinations of 
the values of individual input variables in the sequential series of tests. 

- Use of sufficiently high number of digits, especially if the measured values 
are processed further (see below).  

Random errors. These errors are caused by random influences that cannot be 
controlled. Their magnitude varies from one test to another. They can be revealed 
by repetition of the tests, and the repetition is also used to reduce their influence. 
This improvement can be achieved by the methods of mathematical statistics, for 
example by determining confidence interval that contains the pertinent value with 
high probability. For more, see the next chapter and Chapters 7 and 8). 

REMARK. Several words can be said here on the optimal number of digits used 
in the processing of measured values. We say that a number has n significant 
digits if its absolute error does not exceed half of the order of the n-th digit. If the 
input has n significant digits, not more than n digits will be significant in the final 
result. More digits do not increase the accuracy of the result. If the result should 
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have n significant digits, all intermediate calculations must have (at least) n + 1 
digits; the result is then rounded to n digits. In multiplying and dividing, the 
individual factors are rounded so as to have (at least) one digit more than the factor 
with the lowest number of significant digits (i.e. with the largest relative error). For 
more, see for example [7]. 
 
References to Chapter 3 

1.  Pechoč, V.: Evaluation of measurement and computing methods in chemical 
engineering. (In Czech: Vyhodnocování měření a početní metody v chemickém 
inženýrství.) SNTL, Praha, 1981. 226 p. 

2.  Bernard, J.: Technical experiment (In Czech: Technický experiment). ČVUT, 
Praha, 1999. 74 p. 

3.  Handbook of measuring technology for machinery and energetics. (In Czech: 
Příručka měřicí techniky pro strojírenství a energetiku.) SNTL, Praha, 1965. 
928 p. 

4.  Jenčík, J., and Kuhn, L.: Technical measurements in mechanical engineering. 
(In Czech: Technická měření ve strojnictví.) SNTL, Praha, 1982. 584 p. 

5.  Taylor, J. R.: An Introduction to Error Analysis: The Study of Uncertainties in 
Physical Measurements. University Science Books, Herndon, 1997. 327 p. 

6.  Kupka, K.: Statistical quality control.  (In Czech:  Statistické řízení jakosti.) 
Trilobyte, Pardubice, 1997. 191 p. 

7.  Nekvinda, M., Šrubař, J., and Vild, J.: Introduction to numerical mathematics. 
(In Czech: Úvod do numerické matematiky.) SNTL, Praha, 1976. 288 p. 
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4.  Basics of Probability and Statistics  
     for Experimental Research  

The values of many quantities, as well as occurrence of various events, are 
accompanied by uncertainty. This is due to factors that we cannot control, and call 
them therefore random. For better work with them we use the concept of 
probability and statistical methods. The corresponding procedures can help in 
solving many problems. As computers can do all laborious work, the only thing a 
user of probabilistic methods needs is some understanding of the basic concepts. 
This chapter offers a brief overview of principal terms, such as random quantity, 
probability, population, sample, average, mean, variance, standard deviation, 
coefficient of variation, probability density, distribution function, quantile, critical 
value, confidence interval and testing of hypotheses. Important probability 
distributions are also shown. Details can be found in statistical literature, for 
example [1 − 4].   

Probability is a quantitative measure of possibility that a random event occurs. 
The simplest definition of probability P is based on numerous occurrence of an 
event or repetition of a trial: 

P ≈ n / N                          (4.1) 

N is the total number of trials (assumed very high, N → ∞) and n is the number of 
trials with certain outcome, for example a tossed coin with the eagle on the top, the 
number of days with the maximum temperature higher than 20°C, or the number of 
defective components in a batch. Probability is a dimensionless quantity that can 
attain values between 0 and 1; zero denotes the impossible event and 1 a sure 
event. Random variable is a variable, which can attain various values with certain 
probabilities. Random quantities are discrete or continuous. Examples of a 
discrete random quantity are the number of fatalities in traffic accidents or the 
number of loading cycles of a machine till failure. Continuous random quantity 
can attain any value (in some interval), for example strength of a material, wind 
velocity, temperature, length, weight…, time to failure, duration of a repair, or 
probability of failure. Some examples are depicted in Fig. 4.1. 
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Figure 4.1.  Examples of random quantities [5]. 

 
Random quantities can be described by probability distribution  or by single 
numbers, called parameters, if they are related to the population (= the set of all 
possible elements or values of the investigated quantity), or characteristics, if they 
are calculated from a sample of limited size. Parameters are denoted by Greek 
letters and characteristics by Latin letters. 
 

Description by parameters  

The main parameters (or characteristics) of random quantities are given below, 
with the formulae for calculation from samples of limited size. 

Mean µµµµ (or average valuex ) characterises the position of the quantity on 
numerical axis; it corresponds to its centroid,  
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xj is j-th value; n – size of the sample.  

Variance σσσσ2222 (or s2) – characterises the dispersion of the quantity, and is calculated 
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Standard deviation σσσσ (or s) is defined as the square root of variance, 
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n
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It has the same dimension as the investigated variable x and therefore it is used for 
the characterization of dispersion more often than variance. 

Coefficient of variation v characterizes the relative dispersion, compared to the 
mean value,  

    
x

s
v =                         (4.5) 

It can be used for comparison of random variability of various quantities. 

A disadvantage of the average value x  is its sensitivity to extreme values; addition 
of a very high or low value can cause its significant change. Less sensitive (i.e. 
robust) characteristic of the “mean” of a series of values is the median m. This is 
the value in the middle of the series of data ordered from minimum to maximum; 
for example m = 4 for the series 2, 6, 1, 8, 10, 4, 3.  
 
Description by probability distribution 

More comprehensive information is obtained from probability distribution, which 
informs how a random variable is distributed along the numerical axis. For discrete 
quantities, probability function p(x) is used (Fig. 4.2), which expresses the 
probabilities that the random variable x attains the individual values x*, 

             p(x*) = P(x = x*)                         (4.6) 
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Figure 4.2.  Binomial distribution. An example; the parameter p = 0.23; n = 10 [5]. 

Probability density f(x) is used for continuous quantities and shows where this 
quantity appears more or less often (Fig. 4.3). Mathematically, it expresses the 
probability that the variable x will lie within an infinitesimally narrow interval 
between x* and x* + dx.   

Distribution function F(x) is used for discrete as well as continuous quantities 
(Fig. 4.3), and expresses the probability that the random variable x attains values 
smaller or equal x*,  

    F(x*) = P(x ≤≤≤≤ x*)                       (4.7) 

Both functions are related mutually as   
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1
.)()(         (4.8)            

Figure 3 shows two possibilities for depicting these functions: by histograms or by 
analytical expressions. Histogram is obtained by dividing the range of all possible 
values into several intervals, counting the number of values in each interval and 
plotting rectangles of heights proportional to these numbers. To make the results 
more general, the frequencies of occurrence in individual intervals are divided by 
the total number of all events or values. This gives relative frequencies and 
relative cumulative frequencies, which approximately correspond to probability 
density and distribution function, respectively. Determination of these 
characteristics from empirical values will be explained in detail in Chapter 5. 
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Figure 4.3. Probability density f(x) and distribution function F(x) of a continuous quantity 
[5]. The histograms show relative frequency (nj ) and relative cumulative frequency (nc,j ). 

Probability of some event (e.g. snow height x lower than xα) can be determined as 

the corresponding area below the curve f(x) from −∞ to xα, or − directly − as the 

value F(xα) of the distribution function. 
 
NOTE: Probability is non-dimensional, but probability density has dimension, 
equal the reciprocal of the investigated quantity, such as m−1, MPa−1 or K−1. For 
example, the length L of a component is distributed so that F(L ≤ 2.00 m) = 0.45 

and  f(L = 3.00 m) = 0.026 m−1.   

Shape of a probability distribution is quickly characterised by the following two 
numbers:  skewness and kurtosis. Skewness α (coefficient of asymmetry) informs 

whether the distribution is symmetrical (α = 0) or elongated towards right (α > 0) 

or left (α < 0). Kurtosis ε informs whether the distribution is sharper (ε > 0) or 
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blunter (ε < 0) than normal distribution (ε = 0). Both quantities are shown in Figure 

4 and their definitions can be found in statistical textbooks, e.g. [1 − 4].  

 
Figure 4.4.  Skewness α and kurtosis ε  of probability distribution. 

Very important are also the following two quantities. 

Quantile xα is such value of the random quantity x, that the probability of x being 

smaller or equal to xα is only α, 

    P(x ≤≤≤≤ xα) = α                        (4.9) 

Quantiles are inverse to the values of distribution function. In Fig. 3, xα is the α-

quantile, which corresponds to the probability F(xα),  

    xα = F – 1(α)           (4.10) 

Quantiles are used for the determination of the “guaranteed” or “safe” minimum 
value of some quantity, such as the strength or time to failure. 

Critical value xββββ is such value of the random quantity x, that the probability of it 

being exceeded is only β, 

    P(x > xβ) = β                       (4.11)  

Note that β in this case does not denote an exponent! 

Critical values are used for the determination of the maximum expectable value of 
some quantity, such as wind velocity or maximum height of snow in some area. 
They are also used for hypotheses testing, for example whether two samples come 
from the same population. Probability β is complementary to α, that is β = 1 – α, 
and  
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    xβ = x1 − α  ,    xα = x1 - β              (4.12) 

More about the basic probability definitions and rules can be found in [1 – 4]. 
 
Important probability distributions 

Several distributions are very important. For discontinuous quantities it is binomial 
and  

Poisson´s distributions. The main distributions for continuous quantities are 
normal, log-normal, Weibull and exponential. For some purposes also uniform 

distribution, chi-square (χ2) and Student´s t-distribution are used. The brief 
descriptions follow; more details can be found in comprehensive literature, such as 
[1 – 4]. 

Binomial distribution (Fig. 4.2) pertains to the probability of occurrence of x 
positive outcomes in n trials if this probability in each trial equals p. An example is 
the number x of faulty items in a sample of size n, if their proportion in the 
population is p. The probability function is 

        xnx pp
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n
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= )1()(           (4.13) 

and the mean value is µ = np. This distribution is discrete and has only one 
parameter p, which can be determined from the total number m of positive 
outcomes in n trials as p = m/n; n should be very high.  

Poisson distribution is similar to a binomial distribution, but more suitable for 
rare events with low probabilities p. The probability function, giving the 
probability of occurrence of x positive outcomes in n trials is 

         
!

)(
x

xp
ex λλ −

=           (4.14) 

λ is the distribution parameter. (λ corresponds to the average occurrence of x and, 
in fact, to the product np of binomial distribution.)   

Normal distribution , called also Gauss distribution, resembles symmetrical bell-
shaped curve (Figures 4.3 and 4.5). It is used very often for continuous variables, 
especially if the variations are caused by many random influences and the variance 
is not too big. The probability density is 
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with the mean µ and standard deviation σ as parameters. There is no closed-form 
expression for the distribution function F(x); it must be calculated as the integral of 
the probability density, cf. Eq. (4.8). In practice, various approximate formulae are 
used for calculation of F; see, for example [6]. 

 

 

 
Figure 4.5. Standard normal distribution (µ = 0, σ = 1). 

 
Standard normal distribution  corresponds to normal distribution with parameters 
µ = 0 and σ = 1 (Fig. 4.5). The expression for probability density is usually written 
as 

         ( )2exp
2

1
)( 2uuf −=

π
          (4.16) 

u is the standardised variable, which is related to the variable x of the normal 
distribution as 

u = (x – µ)/σ           (4.17) 

It expresses the distance of x from the mean µ as the multiple of standard deviation. 
It is useful to remember that 68.27% of all values of normal distribution lie within 

the interval µ ± σ,  95.45% within µ ± 2σ,  and 99.73% within µ ± 3σ. 
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Log-normal distribution  is asymmetrical (elongated towards right, similar to 
Weibull distribution with b = 2 in Fig. 4.6) and appears if the logarithm of random 
variable has normal distribution.  

Weibull distribution (Fig. 6) has the distribution function 

F(x) = 1 – exp { – [(x – x0)/a]b}               (4.18) 

with three parameters: scale parameter a, shape parameter b, and threshold 
parameter x0, which corresponds to the minimum possible value of x. The 
probability density f(x) can be obtained as the derivative of distribution function. 
Weibull distribution is very flexible thanks to the shape parameter b (Fig. 4.6). It is 
often used for approximation of strength or time to failure. It belongs to the family 
of extreme values distributions [7], and appears if failure of an object is caused 
by its weakest part. Determination of parameters of this very important distribution 
from empirical data will be explained in Chapter 5. 

 

       

Figure 4.6. Weibull distribution for various values of shape parameter b [5]. 
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In addition to flexibility, the Weibull distribution has a special advantage in the 
analysis of reliability. The shape parameter b in Equation (4.18) is related to the 
character of failures and informs generally about the period in the life of the object. 
The values b < 1 are typical of the period of early failures, while b > 1 pertains to 
the period of aging. The value b ≈ 1 corresponds to useful life with failures from 
many various reasons.   

Exponential distribution  is a special case of Weibull distribution (4.18) for shape 
parameter b = 1 (see also Fig. 4.6) , with the distribution function  

F(t) = 1 – exp[–(t/T0)]          (4.19) 

It is used, for example, for the times t between failures caused by many various 
reasons, e.g. in complex systems consisting of many parts. This distribution has 
only one parameter, T0, which corresponds to the mean µ and has the same value as 

the standard deviation σ. (Note: in this case of time, the symbol t was used instead 
of x; the difference is only formal. Moreover, the minimum possible value x0 is 
often assumed 0.) 

The following four distributions are important especially for the determination of 
confidence intervals, for statistical tests and for the Monte Carlo simulations, as it 
will be shown later.  

Uniform distribution  has constant probability density, f = const, in the definition 
interval <a; b>, so that it looks like a rectangle. The mean value corresponds to the 
average of both boundaries, µ = (a + b)/2, and the variance is σ2 = (b – a)2/12.  

Chi-square distribution (χχχχ2) is the distribution of the sum of n random quantities, 
each defined as the square of standard normal variable. An important parameter is 
the number of degrees of freedom, equal in this case n. For more, see [1 – 4].  

t – distribution , called also Student distribution, arises from a ratio of standard 
normal distribution and chi-square distribution. It looks similar to a standard 
normal distribution (Fig. 4.5), but it is lower and wider, especially for lower 
numbers of degrees of freedom; see [1 – 4]. 

F–distribution  corresponds to the ratio of two chi-square distributions, and it is 
used for comparison of two variances. This distribution depends on the number of 
degrees of freedom of each variable [1 - 4].       
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Further information can be obtained from Wikipedia or the quoted references. The 
values of distribution functions and quantiles of the above distributions can be 
found via special tables or statistical or universal programs, including Excel. 

Now, two important probabilistic concepts will be explained. 

Confidence interval. A consequence of random variability of many quantities is 
that every measurement and the following calculations give a different result 

depending on the specimen used. Therefore, the average x  = Σxj/n is usually 
determined from several values to obtain a more definite information. This, 
however, does not say how far it is from the actual mean µ. For this reason, 
confidence interval is often determined, which contains (with high probability) the 
actual value µ. For example, the α-confidence interval for the mean is  

n

s
tx

n

s
tx nn 1,1, −− +<<− αα µ           (4.20)  

x  and s are the average and standard deviation of the sample of n values and tα, n – 1  

is  the  α – critical value of two-sided  t–distribution for n – 1 degrees of freedom. 

The probability that the true mean µ will lie inside the interval (4.20), is 1 – α, and 

α that it will lay outside it. (A practical application will be shown later.) Confidence 
intervals can also be determined for other quantities. For more see [1 - 4]. 
  
REMARK: Also one-sided critical values exist. Such a value (α´) corresponds to 

the probability that µ will be either higher or lower than the pertinent critical value. 

α´ is related to α as α´ = α/2. When using statistical tables or computer tools one 
must be aware how the pertinent quantity was defined.   

Testing of hypotheses. Often one must decide which of two procedures or 
products is better, or whether a true difference exists between two groups of 
measured quantities. Such decision can be based on the comparison of the values of 
a characteristic parameter, for example the average value. However, the individual 
values usually vary, so that also a difference can exist between the calculated 
parameters. If this difference is big, the decision is easy. In the opposite case one 
must take into account that a part of the variability of individual values is due to 
random reasons. For a reliable decision, statistical tests are used, which can reveal 
whether the differences between the characteristics of compared samples are only 
random, or if they reflect a real difference between both populations (e.g. types of 



Jaroslav Menčík: Introduction to Experimental Analysis 

 

30 

 

products). These tests consist of several steps. In the first step, the so-called null 
hypothesis is formulated: “there is no difference between both populations”. (The 
alternative hypothesis is “significant difference exists between the populations”.) 
In the second step, a test criterion is calculated from statistical characteristics of 
both samples; the form of this criterion depends on the kind of the problem and can 
be found in statistical literature [1 − 4] or computer software. If the null hypothesis 
is valid, the test criterion has certain distribution. In the third step, the calculated 
value of the criterion is compared with the critical value of this distribution. If the 
calculated value is higher than the low-probability critical value, an event has 
happened, which was expected only with very low probability α (e.g. 5% or 1%), 
and we conclude that the difference is not random – the null hypothesis is rejected 
on the significance level α. If the calculated value of the criterion is lower than the 
critical value, we usually conclude that there is no substantial difference between 
both populations. We also say that the difference between the considered cases is 
not statistically significant. From this point of view it is important what probability 
α we consider as significant; this is a matter of our choice.  

REMARK: In this test, the probability α exists that our conclusion “Both 
populations differ”, based on the rejection of the null hypothesis, is wrong, and no 
actual difference between them exists. This is so-called error of the first kind. If the 
null hypothesis was not rejected, an opposite risk exists that, in fact, both 
populations differ (= error of the second kind). The probability of this wrong 
conclusion is β. Higher confidence in correctly rejecting the null hypothesis also 
means higher risk of accepting the alternative hypothesis, and usually a 
compromise must be found.  

Tests of hypotheses are explained in detail in literature, e. g. [1 – 4], and are 
available in various statistical or universal computer programs. Also Excel offers 
several tests: for the difference between the mean values or between the variances 
of two populations. Applications will be shown in Chapter 8. 

Order statistics 
A frequent problem in experimental analysis is that we have a series of 
experimental values (e.g. strength or time to failure) and want to find the 
parameters of the probability distribution, or a certain quantile or the value of 
distribution function. In some cases it is simple; for example the parameters of a 
normal distribution are the mean and standard deviation. Sometimes, it is not so 
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straightforward, e.g. with Weibull three-parameter distribution, or if the histogram 
of the measured values has a more complex shape. Fortunately, in such cases it is 
possible to assign the values of the distribution function to the measured values in 
the following simple way. First, the measured values are rank-ordered from the 
minimal (j = 1) to the maximal (j = n); j is the rank number and n is the total 
number of measured values. The corresponding values of the distribution function 
are calculated as 

Fj = j / (n + 1)          (4.21) 

The explanation of formula (4.21) is simple. If we have, say, 100 values of the time 
to failure t, and order them from the minimal to maximal, then the probability F 
that t will be smaller or equal to the lowest of 100 values, t1, is approximately 
1:100. The probability of t ≤ t2 is 2/100, etc.; generally Fj = j/n. In Equation (4.21), 
1 was added to the denominator because of mathematical correctness. The 
probability F that t will be smaller or equal tn must be smaller than 1, because if 
more measurements would be done, also values higher than the above value tn can 
appear.  

REMARK: Also other formulae exist for the calculation of empirical Fj values, for 
example Fj = (j – ½)/n. However, none can be recommended unequivocally, 
especially when considering the fact that bigger errors in the determination of 
distribution parameters can arise due to small amount of randomly varying 
empirical data included into the sample, than due to the formula used for Fj. 
 
Nonparametric methods  

Statistical tests and procedures usually assume a certain probability distribution of 
the investigated quantity, and work with its parameters. Nevertheless, also 
nonparametric or distribution-free methods exist [8], which do not require any 
assumption on the distribution nor the knowledge of its parameters. Distribution-
free methods can be used also in cases where any information on the distribution is 
missing. On the other hand, they usually need a larger size n of the sample to 
achieve the same power of the information or test. 

The most important nonparametric methods applicable in experimental research 
are: (1) determination of quantiles, (2) tests of goodness-of-fit, used to check 
whether the sample has a certain distribution, (3) tests to check whether two 
samples are drawn from the same population, and (4) tests of correlation of two 
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variables. They usually work with rank-ordered values. In the next paragraph the 
first method will be explained, which is used very often. The other methods will be 
described later in this book. 

Quantiles. In the previous paragraph, the assignment of the Fj values of a 
distribution function to the individual rank-ordered values yj was explained. The 
finding of α–quantile of y is the opposite problem: it is such yα value of the data 

series, which corresponds to the value α of distribution function F. If the exact 

value F = α is not available, it can be found from the neighbouring lower and 
higher values of F by interpolation. The quantile is found also by interpolation 
from the neighbouring values of y.  

 

Acknowledgment. Parts of this chapter were previously published in Chapter 2 of 
Ref. [5]. 
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5.  Determination of Characteristics   
of Investigated Quantities  

 
Measured values often vary for random reasons and therefore are usually described 
by some characteristic values or by probability distribution. This chapter explains 
construction of histograms and finding of parameters of probability distribution. 
Attention is paid to flexible Weibull distribution, illustrated on a practical example.  

Characteristic values 

The most important parameters are the mean µ and standard deviation σ. When 
empirical data are evaluated, they are replaced by the sample average x and 

sample standard deviation s, defined by formulae (4.2) and (4.4) in Chapter 4. 
Additional characteristics are the coefficient of asymmetry (skewness) and 
kurtosis, also mentioned there. The characteristic values are the only source of 
information on the position of the random quantity on the numerical axis and on its 
dispersion if the amount of empirical data is very small, less than about 15. 
Universal programs can, after a single command, calculate all characteristics and 
print a table with them. In Excel, for example, it is sufficient to give the commands 
Data analysis and Descriptive statistics. 

REMARK. Programs Data analysis and Solver (for solution of equations and 
search of extreme values) are installed in every Excel, but not always accessible. If 
they are not visible at the upper bar of the submenu Data, they must be activated as 
follows. After pressing the button File, we choose Options and Add-ins. Then, we 
mark Analysis ToolPak and press the command Go. In the following small menu 
we mark “Analysis ToolPak” and also “Solver Add-In” and press OK. That is all. 

Histogram  

The first idea about the probability distribution of the investigated quantity can be 
obtained from a histogram (Fig. 4.3 in Chapter 4 and Fig. 5.1 on the next page). 
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Figure 5.1. Histograms of a group of experimental data for various N. Examples of poor 
and good appearance.  

 
Histogram is constructed from all recorded values by dividing the range of all 
possible values into several intervals of the same width, counting the number of 
values (= frequency) in the individual intervals and plotting rectangles of heights 
proportional to these numbers [1, 2]. Histograms are created easily by universal 
programs such as Matlab, Mathcad, SPSS, Statistica, or Excel. With the last named 
it is ensured by the command Histogram from the menu Data Analysis; in this case 
also the number of intervals (bins) and their boundaries must be known in advance. 
Unfortunately, there is no universal formula for the determination of the number m 
of bins. In literature, two following empirical formulae are given most often: 

   m = INT(2 ln N)  ,   m = INT(2 √N)           (5.1) 
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N is the total number of all values and INT means the integer part of the 
expression. However, these formulae are suitable only for several tens of values. 
As universal computer programs create histograms instantly, it can be 
recommended (especially if the histogram, constructed from a low number of 
values, looks strange) to plot several variants of the histogram, with various 
numbers of bins and various coordinates of their borders, and to choose the best 
looking one, of a simple shape. Examples of histograms with appealing and poor 
appearance are shown in Figure 5.1. If a more complicated distribution can be 
expected (e.g. with two “hills”), at least several hundred values are necessary. 

In addition to the histograms that give frequencies ni in the individual bins (i), it is 
also possible to construct histograms with cumulative frequencies: each bin 
contains the number of all values from the left-end bin to the investigated j-th one: 
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              (5.2) 

If the numbers of values in the individual bins are divided by the total number of 
values N, relative frequencies fj and relative cumulative frequencies Fj,cum are 
obtained. These two quantities correspond approximately to the probability density 
f and distribution function F. 

Probability distribution 

It is advantageous if empirical data can be fitted by some of the standard 
probability distributions. Simple situation is with normal, lognormal, or 
exponential distribution. Normal (Gauss) distribution (Fig. 4.3 or 4.5 in Chapter 4) 
is described fully by the mean and standard deviation. Its use is therefore very easy. 
In practice, the parameters µ and σ are replaced by the sample average and 
standard deviation, defined in Chapter 3. Lognormal distribution works in similar 
manner with the logarithms of the measured values. Exponential distribution (Fig. 
4.6 in Chapter 4, case b = 1) has only one parameter, the mean; the standard 
deviation has the same value as the mean, so that it is sufficient to calculate the 
average of the measured values. (The calculated estimates can slightly differ.)  

Great flexibility in fitting various shapes of continuous probability distributions is 
offered by Weibull distribution (Fig. 4.6 in Chapter 4). 

   



Jaroslav Menčík: Introduction to Experimental Analysis 

 

36 

 

Weibull distribution 

General form of its distribution function (Fig. 5.2 here and Fig. 4.6 in Chapter 4) is 

        F(t) = 1 – exp{– [(t – t0)/a]b}                      (5.3) 

with parameters a, b, and t0. The scale parameter a is related to the values of t and 
ensures that the distribution is independent of the units of t (e.g. minutes or hours).  

           a.               b.   

        

Figure 5.2. Weibull distribution function F(t): (a) original coordinate system, (b) Weibull 
probabilistic paper with transformed coordinates [3]. 

The constant b is the shape parameter. Depending on its value, Weibull function 
can approximate various, even very different shapes (Fig. 4.6 in Chapter 4). 

Weibull distribution is suitable for the characterisation of time to failure or strength 
of brittle materials and became popular in reliability assessment. However, it can 
be used in many other cases as well. The constant t0 is the threshold value that 
corresponds to the minimum possible value and characterises the position of the 
distribution on the t-axis. (t is the usual symbol for time; for other quantities, other 
symbols may be used.) In this section, two methods for the determination of the 
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parameters will be explained. Both are based on the minimisation of the distances 
between the data points and the distribution function. The first method is based on 
fitting the transformed data by a straight line; the second does it directly via an 
optimisation program. Their applications will be explained here. 

Two-parameter Weibull distribution 

The strength or time to failure cannot attain negative values, and the threshold 
parameter is thus often assumed zero, t0 = 0. The distribution function (5.3) has 
only two parameters: 

      F(t) = 1 – exp[ –(t/a)b]            (5.4) 

Parameters a and b can be found easily, as the transformed data may be fitted by a 
straight line [3]. Double logarithmic transformation and rearrangement change 
Equation (5.4) to  

     ln t = ln a + (1/b) ln{ln[1/(1 – F)]}         (5.5) 

This corresponds to the equation of a straight line (Fig. 5.2b) 

        Y = A + BX           (5.6) 

     Y = ln t, X = ln{ln[1/(1 – F)]},   A = ln a, B = 1/b        (5.7) 

The regression constants A, B can be obtained by fitting the empirical data Y, X by 
a straight line. In the past, the measured values of t and F (see later) were plotted 
on a special diagram, called Weibull paper (Fig. 5.2b), and fitted by a straight line 
using a ruler and a guesstimate. In manufacturing it is still sometimes used for the 
determination of distribution parameters from the operation data. Today, however, 
many universal computer programs enable easy fitting of curves. For example, 
Excel, has the command Insert Trendline; then only the chart Y(X) is needed. This 
graph is constructed from the measured (and transformed) values tj and the 
corresponding values Fj of the empirical distribution function. The individual 
values Yj = ln tj are obtained by rank ordering of all n transformed values (e.g. 
times to failure) from the minimal value (j = 1) to maximal (j = n). The 
corresponding values of distribution function are calculated (see Chapter 4) as 

  Fj = j / (n + 1)                        (5.8) 

and then transformed to Xj values via Equation (5.7). A plot of the empirical data in 
the coordinate system X = ln{ln[1/(1 – F)]}, Y = ln t, enables a good visual check. 
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In the ideal case, if Equation (4) is valid, the data lie along a straight line. The 
regression constants A and B are then obtained by right-part mouse clicking on any 
point of the data series, then marking Insert Trendline in the menu and selecting 
Linear regression. We must also mark Show the equation and Coefficient of 
determination R2. A straight line and Equation (5.6) with the values of both 
constants A, B appear in the chart. The constant R2 characterises the quality of the 
fit; the closer it is to 1, the better. (Explanation is given in Chapter 7.)  Then, the 
constants in the original distribution function (5.4) are obtained from A and B by 
inverse transformations: 

 b = 1/B,  a = exp (A)           (5.9) 

Three-parameter Weibull distribution 

Two-parameter distribution is not always suitable. Sometimes, the transformed 
data do not lie on a straight line, or it is obvious that the distribution should have a 
threshold value t0 significantly higher than zero. In such case, a three-parameter 
function (5.3) is better. 

The parameters in this distribution can be found by the procedure for a two-
parameter function if t in Equation (5.4) is replaced by the expression t – t0; the 
constant t0 must be defined in advance. For various t0 values, the shape of empirical 
distribution varies. The best t0 value is such, for which the transformed data best 
resemble a straight line. Often, several trials are necessary. Fortunately, a 
straightforward procedure exists [3], described further. 

Direct determination of parameters 

The constants a, b, and t0 can be obtained in a simple way without any 
transformation. The solution of Equation (5.3) for t gives the formula for quantiles: 

         t = t0 + a{ln[1/(1 – F)]1/b}            (5.10) 

We shall now look for such constants a, b, and t0, which will minimize the sum of 
squared differences between the measured and calculated values of t, 

         Σ(tj,meas  – tj,calc)
2 = min !         (5.11) 

This is the principle of the so-called least-squares method. If a suitable solver is 
available for such minimization (one is present also in Excel), it is then sufficient 
to prepare one series of measured data, tj,meas, and another series of the values tj,calc,  
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calculated via Equation (5.10) for the same values of Fj using the parameters a, b, 
and t0. Solver’s command to minimize the expression (5.11) by changing a, b, and 
t0 will do the job. No transformation is necessary. 

NOTE. The variable F is considered independent here, because its values are 
deterministic, following from the number of values.  The variable t  (e.g. the time 
to failure or strength) exhibits random variability, and is thus considered as 
dependent variable. 

Example 1. 

Strength of an alloy was measured on ten specimens, with the results:  Smeas = 250 – 
201 – 232 – 281 – 297 – 211 – 276 – 302 – 315 – 265 MPa.  Find the parameters of 
three-parameter Weibull probability distribution and determine the “guaranteed” 
1% strength! 

Solution. All values are given in Table 1 below. The measured strengths were rank-
ordered from minimum to maximum (Sj,meas), and the corresponding values of 
distribution function were calculated as Fj = j/(N + 1). Then, the strengths Sj,calc 

were calculated for the same values Fj via Equation (5.10) for the constants a, b, S0, 
defined in advance. Also the sum of squared differences (SSD) between the 
measured and computed strengths was calculated. [The Excel function for this 
expression is SUMXMY2, which means: sum(x minus y)2; now x = Sj,meas  and y = 
Sj,calc.] The individual values are plotted in Figure 5.3: the rhombs represent the 
measured values, while the crosses correspond to the results of strength 
calculations for the (arbitrarily) chosen initial values a = 250 MPa, b = 2 and S0 = 0 
MPa. One can see that these crosses do not coincide with the measured strengths. 
The application of Solver (minimisation of the content of the cell containing 
SUMXMY2 by changing the values a, b, and S0) has given the following values: a = 
280.6 MPa, b = 6.659 and S0 = 0 MPa. These constants fit the measured data very 
well; see the solid thin curve extrapolated to the lower and higher probabilities. The 
guaranteed 1%-strength, S0.01, calculated via Equation (5.10) for F = 0.01, is 140.6 
MPa. (The reader is encouraged to solve this example for gaining practice.) 

In this example it was necessary to limit the threshold strength as S0 ≥ 0, because 
the first trial without any limitation has given negative value of strength S0, which 
is impossible. With this limitation Solver has immediately “recommended” the 
threshold value S0 = 0, so that the probability distribution has – in fact – only two 
parameters a, b. In some cases there can be rather big difference between the low- 
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Table 1.   
j Sj,meas Fj Sj,calc 

1 201.0 0.0909 197.2 

2 211.0 0.1818 216.2 
3 233.0 0.2727 232.9 
4 250.0 0.3636 246.5 
5 265.0 0.4545 258.4 
6 276.0 0.5455 269.6 
7 281.0 0.6364 280.7 
8 297.0 0.7273 292.3 
9 302.0 0.8182 305.4 

10 315.0 0.9091 322.7 

Figure 5.3. Measured and computed strengths (S) and distribution function F from Ex. 1.   

probability values predicted by two or three parameter Weibull function. The two-
parameter distribution with the assumed threshold value S0 = 0 would give lower 
allowable stress, which is safer. On the other hand, the size of cross-section of such 
component must be larger, and therefore more expensive. Sometimes, a 
compromise must be found between safety and economy.  

Estimation of distribution parameters from censored data 

In some cases the amount of experimental data is limited and only part of the 
results is known. For example, the time to fatigue failure or to the failure of 
complex objects varies, and when a group of such items is tested in order to obtain 
the characteristics of the lifetime distribution, these times could be impracticably 
long for some of the tested pieces. Therefore, the lifetime tests are sometimes 
terminated after some time ttest or after failure of a certain fraction of tested parts. 
We know exactly the times to failure of the failed parts, and know also that the 
lifetime of the remaining components would be longer (but not know how long 
they will be). Another case is if the measured quantity has some values beyond the 
range of the used measuring device; in this case we say that the data are censored. 
The situation is depicted in Figure 5.4. If the kind of probability distribution is 
known, its parameters can be estimated from the part of data for which the times to 
failure are known, if each of these rank-ordered values (tj) is assigned the 
corresponding value of distribution function Fj = j/(N+1). These issues are very 
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important in reliability testing, and various test schemes and procedures for the 
processing of results have been developed; cf. [4].            

 

Figure 5.4. Censored data from lifetime tests (a schematic). 

 
Q - Q plot 

A simple graphical tool for comparing two probability distributions is a quantile-
quantile plot, or Q–Q plot [5]. In this plot, the corresponding quantiles are plotted 
against each other. The coordinate xj of a point Pj in this plot corresponds to j-
quantile of one distribution and the coordinate yj corresponds to the same quantile 
of the other distribution. If the two compared distributions are similar, the points in 
the Q–Q diagram lie approximately on the line y = x (Fig. 5.5). The Q–Q plot 
informs whether the location, shape and skewness of the compared distributions are 
similar or different. These plots can be used to compare collections of two sets of 
data, or to compare an empirical distribution with a theoretical one. 

A quantile-quantile plot is created as follows. The compared quantities (the first is 

x and the second is y) are ordered from minimum to maximum, the corresponding 
values of distribution function F are calculated via Equation (5.7), and the couples 
of values of quantiles xj, yj for the same value Fj are plotted in coordinates x, y (Fig. 
5.5). This is easiest if both samples have the same number of values. Otherwise, the 
quantiles for the same probabilities must be recalculated by interpolation from the 
neighboring points.  

As an example, Figure 5 shows the Q-Q plot for 20 theoretical values of normal 
distribution (with the average µ = 5.0 and standard deviation σ = 1.0) compared 
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with 20 “empirical” values, generated in this example for the same parameters 
using the Monte Carlo method. One can see that the individual points lie 
(approximately) on a straight line.   

 
Figure 5.5.   Q – Q plot for normal distribution (parameters: µ = 5, σ = 1, n = 20).   
Horizontal axis – theoretical values, vertical axis – empirical values. 

 
Acknowledgment. A part of this chapter was published in Chapter 11 of Ref. [3]. 
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6.  Relationships of Two or More 
Quantities  

This chapter explains various quantities used for characterisation of relationships 
between two or more variables, such as covariance, correlation and coefficient of 
determination. It also shows the use of these quantities for the determination of 
constants in a regression function and evaluation of the quality of the fit. 
Autocorrelation shows whether the values in a series of data are correlated among 
themselves. Finally, obtaining of information by data mining is explained.  

Covariance and correlation 

One task of experimental research is to reveal whether a relationship exists 
between two or more quantities, how strong this relationship is, and preferably to 
describe it by a suitable mathematical expression. The strength of such 
relationships may range from non-existing over less or more strong to 
deterministic. Its strength can be characterised by the coefficient of covariance and 
correlation coefficient. For two variables, x, y, covariance cov(x,y) is defined as 

             
1

))((

−
−−

= ∑
n

yyxx
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�̅ and �� are the average values of both quantities and n is the number of pairs xj, yj.  

Covariance can be positive, if both quantities increase together, and negative, if 
one quantity grows while the other decreases. 

A drawback is that covariance coefficient can attain values from −∞ to +∞, 
depending also on the values of x, y. A better measure of the relationship is the 
coefficient of correlation rxy, defined as the covariance divided by standard 
deviations of both variables: 
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In fact, coefficient of correlation is covariance standardised with respect to the  
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dispersion of both quantities. Its values vary between 0 (no correlation) and 1 
(deterministic or functional relationship) for positive correlation. With negative 
correlation, rxy varies between 0 and −1 (Fig. 6.1). 

NOTE: Expressing of relationships by regression functions is given in Chapter 7. 

 
Figure 6.1.  Correlation positive (triangles ) and negative (rhombs ).  

 
An analogous nonparametric characteristic is Spearman´s rank correlation 
coefficient: 
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n is the number of pairs of values xj, yj of the quantities x, y. Each xj value is 
assigned the rank number pj, and y values are assigned the rank numbers qj (j = 1 
corresponds to the smallest values). Then, the differences of rank numbers for the 
individual pairs xj, yj are created as dj = pj − qj and used in Equation (6.3). 

Relatively high values of correlation coefficient, r = 0.8 and more, indicate 
functional relationship. Nevertheless, in a case of doubt, statistical test of 
significance is recommended (see Chapter 8).  

Caution: High degree of correlation does not necessarily imply causation. Another 
factor can exist, which influences both quantities (x, y) in a similar way.  Well 
known is the following humorous example. An investigation, made in several 
villages, has shown that there is a high correlation between the number of born 
babies and the number of storks at the villages. Does it mean that babies are 
brought by storks? No; the explanation is related to the size of the villages: in 
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larger villages more babies are born, but usually larger villages have more ponds, 
and thus also more storks. 

A very useful quantity is the coefficient of determination r2. It can be used for the 
characterisation of the quality of linear as well as nonlinear regression functions. 
Figure 6.2 shows a regression line, one value of y measured for certain value x, the 
corresponding value y(x) on the regression line, and the average values �̅, �� (or xave, 
yave) of a group of xj and yj. The distance of yj from the average �� is expressed as  

      yj – �� = (yj – yj,reg) +  (yj,reg – ��),  or     ∆tot = ∆res + ∆reg           (6.4) 

yj,reg is the corresponding value on the regression line; ∆tot means the total 

difference, ∆reg means the difference of the j-th value on the regression line and the 

mean, and ∆res is the residual difference, i.e. the distance of the j-th measured value  

 
Figure 6.2.  Coefficient of determination r2; residual component (ymeas – ycalc) and 
regression one (ycalc – yave) of the total difference ymeas – yave. Subscripts: meas - measured, 
calc - calculated, ave - average. 

and the corresponding value on the regression line. It is possible to prove that also 
the following relationship holds: 
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The summation is done for all n values. Equation (6.5) can be rewritten as  

    SStot = SSreg + SSres                         (6.6) 

SStot is the sum of squared total differences, SSreg is the sum of squared distances 
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between the points on the regression curve and the total average ��, and SSres is the  
sum of squared distances of the individual measured points from the corresponding 
points on the regression curve (i.e. the residual distances).  

Equation (6.6) can also be rewritten as 

           stot
2 = sreg

2 + sres
2                       (6.7) 

This expression was obtained by dividing Eq.(6.6) by n – 1. SS means sum of 
squared differences and s2 means variance; the subscripts have the same meaning 
as in the previous case; for example res corresponds to the residual variance of the 
individual measured values around the regression function. Coefficient of 
determination is defined as    

    r2 = SSreg/SStot = sreg
2/stot

2          (6.8) 

It expresses what fraction of the total variance is caused by the regression function. 
For deterministic relationship, r2 = 1. Equation (6.8) can be rewritten to the form 

 r2 = (SStot – SSres)/SStot = 1 – (SSres/SStot), or r2 = 1 – (sres
2/stot

2)         (6.9) 

REMARK: Coefficient of determination in Equation (6.8) or (6.9) can be 
expressed by means of the sums of squared differences or by means of standard 
deviations, because s2 = SS/(n – 1). 

Coefficient of determination in Eq. (6.8) was derived for linear relationship y(x). 
However, if it is calculated via Eq. (6.9) by means of residual variance, it can also 
be used for the characterisation of quality of nonlinear regression functions. From 
this it follows the importance of residual variance for the determination of 
parameters in regression functions (see the next chapter). 

When studying a relationship between two quantities, one should always make a 
plot of the measured values and only then evaluate the strength of the relationship. 
Figure 6.3 shows a group of values, which obviously indicates a nonlinear 
relationship. If we would – without knowing this fact – determine the coefficient of 
correlation for a linear relationship, we would obtain a very low value, informing 
that no linear correlation exists (r =  0.286; r2 = 0.0616). In contrast, the coefficient 
of determination for a quadratic regression function is r2 = 0.984 and r = 0.992, 
which means a very good fit. 

Revelation of correlations is the first step in the study of relationships between the 
investigated quantities. Generally, correlations can exist between two or more 



Jaroslav Menčík: Introduction to Experimental Analysis 

 

47 

 

 

Figure 6.3. Two approximations of the measured values – a good fit (quadratic function) 
and a poor fit (linear function). R2 = coefficient of determination. 

quantities, so-called multiple correlations. The correlations in experimental data 
are usually found by means of a suitable statistical program. In Excel, for example, 
the command CORREL, applied on a group of paired values xj and yj, gives the 
value of (linear) correlation coefficient, rxy. In this case, however, it is more 
efficient to make a chart of the y(x) data and plot there a regression function using 
the command Insert Trendline, as this gives a very instructive picture. It is also 
useful to demand (from the menu) that the coefficient of determination r2 is shown, 
which characterises the strength of the relationship.  

Multiple correlations will be illustrated here on thermal treatment of steel.  

Example. 

It was investigated how the hardness and strength of quenched steel are influenced 
by the temperature of the treatment and the dwell time under high temperature, and 
whether they are correlated. Eight samples were treated under various conditions, 
as shown in the upper part of Table 1. The table of multiple correlations below was 
created in Excel. The keys Data Analysis and Correlation were used, then the array 
containing the input data was written into the pertinent cell in the Correlation menu 
and a cell was marked in the worksheet for positioning the correlation table. After 
pressing OK, the correlation table appears. 

The correlation table indicates clearly which quantities are strongly correlated, and 
which not. For example, the coefficient of correlation between strength and 
hardness is very high, 0.980, while that between the dwell and hardness (–0.545) is 
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 TABLE 1.  Input data and the table of multiple correlations (below).   
  

Sample Temper. Time Hardness Strength 

A 800 10,3 475 212 
B 840 9,8 510 246 
C 920 9,6 540 285 
D 820 10 490 230 
E 870 9,7 520 255 
F 850 10,5 530 260 
G 900 9,4 550 295 
H 860 9,1 532 265 

   

low. The omission of the insignificant quantities means simplification of formulae 
and later calculations. High correlation of two quantities allows the use of any of 
them, which can sometimes simplify the work. For example, the determination of 
tensile strength is more demanding than the measurement of hardness. If the tests 
with simultaneous measurement of strength and hardness reveal high correlation, 
as above, it is possible to measure only the hardness and recalculate the strength 
from it using a suitable transformation formula, as shown in Figure 6.4.  

 
Figure 6.4.  Strength S as a function of hardness H (both in MPa):   S = 1.046 H – 286.33.    

Autocorrelation.  

Until now, we considered if two quantities are mutually correlated. However, it is 
also possible to investigate, if the values in one series of data are correlated among 
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themselves. An example is the daily average temperatures. The difference between 
two temperatures is smaller if it corresponds to two subsequent days than if the 
interval between them is several months. In this way it is possible to characterise a 
series of data by autocorrelation. The autocorrelation coefficient is obtained 
similarly as the correlation coefficient of two variables x and y (in Excel via the 
command CORREL). The only difference is that, instead of the quantity y, the 
values of x are used again, but shifted by 1, 2,… or n positions. This new series is 
denoted y´ and we speak about the autocorrelation of the first, second… or n-th 
order. For example, the table below corresponds to the first order autocorrelation.  

 y : y1        y2        y3        y4        y5         y6        y7        y8        y9   …. 
 y´:            y1         y2        y3        y4         y5   y6        y7        y8   …. 

Autocorrelation can be positive or negative. Both cases are shown in Figure 6.5. 

               

Figure 6.5. Autocorrelation: a) none (r = 0.03), b) positive (r = 0.78), c) negative (r = 

−0.59). Diagrams at left: time series; diagrams at right: autocorrelation; xj-1 = f(xj). 
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REMARK: Autocorrelation is used especially in the analysis of dynamic processes, 
time series and signal processing.  

More information on covariance and correlation can be found in books [1 – 5]. 

Data mining. In some branches, such as chemistry, biology, medicine or 
astronomy, but also in banking and business, big amounts of data exist. Today, 
powerful computers are able to process them. This has led to the development of a 
new branch called data mining. In contrast to traditional data analysis, where first a 
certain hypothesis is formulated, and then it is proved or rejected using data 
obtained from experiments or observation, data mining goes in the opposite way, It 
searches through the vast amount of existing data and tries to find some specific 
patterns in them, which may carry hidden and potentially useful information on 
some relations yet unknown. As the amount of analyzed data is huge (TB), suitable 
software is necessary. There are specialized programs for this purpose, such as 
STATISTICA Data Miner, SAS Enterprise Miner and SPSS Clementine.  

Examples of non-commercial software are Weka and Orange. More information on 
data mining can be found in [6]. 
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7.  Fitting of Empirical Data  

by Regression Functions   

This chapter shows how relationships among various quantities can be described 
by suitable regression functions. Typical functions are shown and the 
determination of regression constants is explained. As the input data exhibit 
variability for random reasons, the regression function does not give accurate 
values. The reliability of predictions can be increased if confidence band is created 
for the regression function or its values. 

It is useful to describe the empirical data by an analytical expression, for example  

         y  =  f(x) ,  or  w  =  f(x, y, z, …)          (7.1)  

depending on whether the investigated variable depends on one or several 
quantities. Such expression, regression function, provides concentrated 
information and facilitates further processing of the data. The steps in this curve 
fitting are: 1) proposal of a suitable form of the regression function f, and 2) 
determination of the best values of its constants. In some cases it is necessary: 3) to 
evaluate the quality of the fit, especially if the fit is not perfect or if it is necessary 
to decide, which of the several possible approximations is the best.  

Proposal of regression function 

The first idea can be obtained from a chart with all measured values y(x). A picture 
says more than thousand words! The possible shape of the regression function of 
several independent variables, w  =  f(x, y, z, …), can first be assessed from the 
plots w = f(x; y = const, z = const), w = f(y; x = const, z = const)…, corresponding 
to the cuts through it. Figure 7.1 shows shapes of various functions and can thus 
help with the choice of the regression function. Before proposing this function, it is 
useful to think for a while about the general nature of the investigated 
phenomenon. Generally, the regression function can increase or decrease 
monotonically, it can have a power-law character or can grow in an exponential or 
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logarithmic manner, it can decrease as a hyperbola or an exponential function with 
negative exponent, or it can have a maximum or minimum. It can approach 
asymptotically to a certain value for very high values of the independent variable. 
The solution of some problems leads to periodical functions (sin, cos…). 
Sometimes, the approximation is sought in the form of a series (e.g. polynomial, 
Fourier with trigonometric terms or Prony series with exponential terms). The 
knowledge of analytical solution of related problems can often help in the proposal 
of the regression function. Shapes of several simple functions are shown in Fig. 
7.1; see also [1, 2]. In some cases, functions typical for probability distributions 
(either probability density or distribution function) can be useful, for example 
normal distribution or Weibull distribution (see Figures 4.7 and 4.8 in Chapter 4). 
Two examples, a function with several exponential terms and a cosine function are 
given later in this chapter. 
 

Determination of regression constants 

Some universal programs (including Excel) offer several regression functions for 
fitting empirical data and can determine the parameters using their own algorithms. 
In such case it is sufficient to create the chart for the measured values x and y. 
Then, after a right-click on the data series, a pop-up menu appears and a suitable 
function can be selected, e.g. linear, polynomial, power-law, exponential or 
logarithmic. The application with Excel was described in Chapter 5. It is important 
to demand (from the menu) that also the expression for the regression function is 
shown in the chart, as well as the coefficient of determination r2, characterising the 
quality of the fit (the detailed explanation of r2 was given in Chapter 6). This is 
useful especially if various regression functions should be compared. 

If a regression function is to be proposed, various criteria are considered. One such 
criterion is that the calculations done with this function should be relatively simple. 
Functions easy to work with are polynomials, such as y = a + bx + cx2 + dx3 + … 
Also universal programs for curve fitting offer this and several other functions. 
Fortunately, polynomials can be used for more complicated functions also, if the 
original data are transformed in a suitable way. The Table 1 on the page following 
Figure 7.1 with typical forms of analytical curves, shows several functions that can 
easily be transformed to polynomial form.  
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Figure 7.1.  Shapes of various functions for fitting of empirical data. Various curves at the 
individual functions correspond to various values of regression constants. 
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Table 1. Transformation of various functions to polynomial form [1]. 

Original function Transformation  Transformed function 
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Table 1 shows transformation formulae and transformed functions. However, such 
transformations change the character of the dispersion of the individual data points 
around the regression function. The classical determination of regression constants 
is based on the least squares method (see further), which gives the most accurate 
results if this dispersion is constant, independent of the values of the independent 
variable (= homoscedasticity). If the transformation has changed the dispersion 
significantly, transformed data y should be multiplied by appropriate weights. For 
more, the reader is referred to literature, e.g. [3]. 

The distribution of the measured values sometimes does not correspond to any of 
the predefined functions and it is better to propose one´s own expression (7.1). 
Figure 1 can help in search for a suitable expression; some of them are available in 
universal programs for curve fitting, such as Excel. The regression constants 
should be such that the distances between the individual measured values and the 
corresponding calculated values are minimal. For this purpose, usually the least 
squares method is used [4 – 6], which minimizes the sum of squared differences 
between the measured and calculated values of y: 

         SSres = Σ(yj,meas  – yj,calc)
2  = min !                     (7.2) 
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The subscript res means residual, meas – measured, and calc – calculated. The 
summation is done over all n values of y(xj). Solvers in universal programs enable 
this minimisation. An example was shown in Chapter 5 (Example 1); two other 
applications will be presented later in this chapter. These solvers have a big 
advantage: no transformation of regression function is necessary (and thus also no 
change of the character of dispersion).    
 
Evaluation of the fit quality 

Sometimes the visual evaluation is sufficient to give an unambiguous answer as to 
the fit quality. Also, a very simple quantity for such evaluation exists, the 
coefficient of determination r2, explained in Chapter 6.  The closer r2 to 1, the 
better the fit. In a case of doubt, it is possible to make statistical test of significance 
of r, as explained in Chapter 8. 

For more detailed characterisation, so-called residuals are suitable. They are 
defined as the differences between the measured and calculated values,  

     ∆j = yj,meas – yj,calc            (7.3) 

plotted as a function of the independent variable x. The differences between two 
curves are then more visible. This is useful especially if both curves, plotted in the 
original scales, overlap (see Figure 7.2a, b). Additional information follows from 
their distribution. Fit 2, with randomly dispersed positive and negative values is 
more suitable than Fit 1 with systematic gradual change of residuals from positive 
values to negative with increasing x.  

Sometimes, relative (or standardised) residuals are used,  

     ∆j,rel = (yj,meas – yj, calc)/yj,calc                       (7.4) 

which do not depend on the scale of y. 

The differences between the measured values and those on the regression curve 
(7.1) can serve to three purposes: 1) their squares are used in the criterion in 
equation (7.2) for optimisation, 2) they can be used for verification whether the 
distribution of the individual points around the regression curve is normal (this is 
the condition for the use of the least squares method), and 3) they serve for the 
determination of confidence band around the regression curve. This band can be 
used for more reliable predictions than those based only on the regression function.   
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Figure 7.2. a) Measured data fitted by two functions, b) Residuals; fit 2 is better than fit 1.   

Now, two methods for the determination of regression constants will be discussed 
in more detail: analytical and numerical. 
 
Analytical determination of regression constants 

A minimum of a function is usually found by the least squares method. This 
method is based on making partial derivatives of the sum (7.2) with respect to the 
individual regression constants, and putting each derivative equal zero [4 – 6]. For 
example, for linear regression 

             y = a + bx            (7.5) 

Equation (7.2) changes to (with SSres replaced by the symbol S): 

             SSres = S = Σ(a + bxj  – yj,meas)
2          (7.6) 

The partial derivatives ∂S/∂a and ∂S/∂b are   
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      ∂S/∂a = 2Σ(a + bxj  – yj,meas)  ,  ∂S/∂b = 2Σ(a + bxj  – yj,meas) xj          (7.7)  

Putting both expressions equal zero generates a system of two linear equations for 
two unknowns a and b. The solution gives  

� = 	
�∑����	∑��∑��

�∑��
	�∑���

   ,   
 = 	

∑��	�∑��
�

         (7.8) 

Similar procedure can be used for other regression functions and leads, generally, 
to a system of n linear equations for n unknown regression constants. Simpler, 
however, is the use of a suitable computer solver, explained in Chapter 5 and in the 
next paragraph. 

Computer-supported determination of regression constants 

Today, universal computer programs (including Excel, Matlab or Mathcad) contain 
solvers which can find the minimum of an expression. This makes the 
determination of regression constants very easy. It is only necessary to prepare one 
series of measured data yj,meas and a series of the yj,calc values, calculated via 
Equation (7.1) for the same values xj using the pertinent parameters, for example a, 
b in Equation (7.5). Solver, after the command to minimize the expression (7.2) or 
(7.5) by changing a and b, will find their best values by using its own algorithms. 
For these calculations, the cells for the regression constants (a, b) must be prepared 
in the worksheet in advance, as well as the cell containing the expression (7.1). The 
search for the best values of regression constants starts with assigning the initial 
values to the regression constants. Then, Solver is asked to find such values of the 
constants, for which the content of the cell with formula (7.6) is minimum. This 
value (SSres) also characterises the quality of the fit (Chapter 6). This information is 
useful if the minimisation process is repeated. Examples are shown later.  

The determination of regression constants with Solver needs some practice. The 
quality of the calculated “best” values of regression constants sometimes depends 
on their initial values. In the worst case, the optimisation process does not converge 
and different initial values must be chosen. Moreover, Solver looks for the 
constants ensuring a minimum from the mathematical point of view, and can 
propose values that have no real sense. In some cases it is necessary to define the 
interval of acceptable values of the constants. (Caution: the optimisation algorithm 
seeks only the nearest extreme, and does not know that several extremes can exist.) 
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Sometimes, the optimisation process must be done in two or more steps, as the first 
optimisation could not give the accurate values. The constants obtained in the first 
process are then used as input values for the repeated process. It can always be 
recommended to repeat the optimisation; the comparison of the sum of squared 
differences (7.2) from the subsequent optimisation cycles informs whether the 
search for the minimum has ended. 

The determination of regression constants will be illustrated on two practical 
examples. 

Example 1. Load response of a viscoelastic material 

The time course of deformation of components from viscoelastic materials (for 
example plastics) under constant load resembles an exponential function. Often, 
however, simple exponential function is not sufficient. A better approximation may 
be a Prony series, which is a sum of several exponential functions, 

   y =  a0 + a1 exp(–t/τ1) + a2 exp(–t/τ2) + …          (7.9) 

a1, a2… are constants and τ1, τ2,… are so-called relaxation times, which are also 
unknown.  Figure 7.3 shows the time course of penetration of an indenter into 
polymethylmethacrylate (PMMA). The following regression function was used [7]: 

   y(t)  =  F K [A0 + cvt – ∑ Bj exp(– t /τj)]          (7.10) 

F is the load, K is a constant for the indenter geometry, and A0, cv, Bj and τj (j = 1, 
2, 3) are the regression constants, found by the least squares method. Figure 7.3 
shows two approximations, with three and six regression constants. For 
comparison, also relative residuals ∆rel in both cases are shown in the figures.  They 
are defined by Eq. (7.4) and do not depend on the scale of y. Residuals can help in 
distinguishing various approximations, especially if they look nearly identical in 
the common y(x) coordinates (see also Fig. 7.2). In the investigated case, the 
approximation with six constants is obviously better. 

Remark: Commercial computer programs for the finite element analysis of 
structures enable work with Prony series. 

Confidence band for predicted values    

Regression function usually serves for future prediction. However, if this function 
was created from data exhibiting large scatter, the predictions will not be very 
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Figure 7.3.  Indenter penetration into PMMA under constant load [7]. Measurements 

(dotted curves), fits for two models (thin solid curves), and relative residuals ∆rel (thin zig-
zag lines).  a) model S+KV (3 constants), b) Model S+D+2KV (6 constants).  The 
S+D+2KV model fits the measured data very well; the differences are visible only via the 
residuals.  h – depth, t – time. S - spring, D - dashpot, KV - Kelvin-Voigt body (spring and 
dashpot in parallel).   

 

reliable. Its reliability can be increased by creating confidence band for the 
individual points around the regression function. If one can assume that the 
distribution of the measured points yj around the regression function yreg(x) is 
normal and the corresponding residual variance (determined from many points) is 
constant, independent of x, it is possible to construct the boundaries of the 
confidence interval (see Fig. 7.4 in Example 2) as 
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    yU,L(x)  =  yreg(x) ± |uα| sres         (7.11) 

U and L denote the upper and lower boundary limit, respectively, uα is α-quantile 
of standard normal distribution, and sres is the residual standard deviation defined as 

          sres = √ [ SSres/ν ]          (7.12) 

SSres is the sum of squared differences between the experimental data points and the 

corresponding points on the regression curve, and ν is the number of degrees of 
freedom, equal to the number of measured values minus the number of regression 
constants (for example 2 in linear relationship). Probability that the predicted value 
will lie outside the limits (yU,L), is 2α. 
 
Example 2.  Fitting of the average daily temperatures during a year 

The outside temperatures vary during a day and also during a year. Nevertheless, 
these variations exhibit some regularity (day, night, summer, winter…). If this 
regularity is taken into account, the predictions of temperatures at certain time can 
be more accurate. For example, temperatures in the town Ústí were monitored 
during the year 2008. It appeared that the average daily temperatures can be 
described by the following cosine function:    

T  =  T0 + A cos [π(xj – x0)/186]           (7.13) 

xj is the rank-order number of the day, and T0, A and x0 are constants. (NOTE: 186 
days is the half-length of the analysed leap-year 2008). Figure 7.4 shows the 
individual temperatures and the regression function (7.13), found by the Solver in 
Excel. The regression constants were T0 = 10.86°C, A = –9.41°C, x0 = 14.17. The 

residual standard deviation was 3.236°C. 

Now, let us predict the average temperature on 23rd October. Determine also the 
confidence interval, which will contain the true average temperature with 
probability 90%. 

In Equation (7.13), 23rd October has the rank number x = 297, and the predicted 
temperature is  

T = 10.86 – 9.41 cos[π (297 – 14.17)/186] = 9.52°C 

Figure 7.4 also shows the confidence intervals for the temperatures (see further).  
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Figure 7.4. Average daily temperatures in town Ústí during the year 2008. Measured data, 

the fit and confidence band. T ave  − average daily temperatures. 

 
Construction of the confidence band. The confidence intervals for various 
characteristics will be explained in more detail in the next chapter. The confidence 
band for the temperatures can be constructed via Equation (7.10). With residual 
standard deviation sres = 3.236°C and 5% quantile of standard normal distribution 

(1.645), the half width of confidence interval is ∆ = sres×u0.05 = 3.236×1.645 = 5.32, 

and the lower and upper limits of the 90% confidence interval are: TL = 9.52 − 5.32 

= 4.20°C, TU = 9.52 + 5.32 = 14.84°C. The temperature 7.43°C, measured for this 
day (297), lies within the confidence limits; cf. Fig. 7.4. One also can see from this 
chart that a few temperatures during the year are out of the limits. This is 
understandable because the limits were constructed for confidence 90%; ten 
percent of all measured values may lie outside this confidence band. 
 
Multiple regression 

Often, one must express how the variable y depends on several input quantities x1, 
x2, …: 

    y = f(x1, x2, …)                       (7.13) 

The simplest case is linear relationship  

           y = a0 + a1x1 + a2x2 + a3x3 + …       (7.14) 



Jaroslav Menčík: Introduction to Experimental Analysis 

 

62 

 

The constants a0, a0,… can be obtained easily by multiple linear regression, 
available by universal computer programs. Here, the use of Excel´s function 
LINREGRESSION will be shown on an example.  

Example 3. Multiple linear regression. 

Let us have n = 10 values of strength y of an alloy measured for various content of 
Mg (x1) and the temperature of thermal treatment (x2); see the table below on the 
left. We shall assume that the strength depends on them as y = a0 + a1x1 + a2x2.  

        Input data 

    y x1(%)    x2(°C) 
         ----------------------------------- 

234  10.3     800      
256    9.8     840    
290    9.6     920    
248  10.0     820 
255    9.7     870 
260  10.5     850 
285    9.4     900 
250    9.1     860    
244    9.9     830 
270  10.2     890 

First, we create (by “click and drag”) an empty array (matrix) with five horizontal 
rows and the number of columns equal the number of regression constants; in this 
case 3. In the next step we open the Excel menu “Insert function”, find 
LINREGRESSION, insert the array of y values from the table into the upper 
window in this menu, insert the array containing all input values x1, x2 into the 
window below, and then we write the word TRUE into the two lowest windows 
and press simultaneously the keys CTRL, SHIFT, ENTER. That´s all. The table of 
results is given on the next page. The reader is encouraged to repeat the procedure. 

The individual horizontal rows in the table of results contain: row R1: regression 
constants arranged from left to right as a2, a1, a0; row R2: standard deviations of 
the individual regression constants, row R3: coefficient of determination r2 and the 
standard deviation of y, row R4: F-statistics and the number of degrees of freedom, 
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Table of results 

 

needed for testing whether the relationship among the dependent and independent 
variables is not only random, and row R5: the regression sum of squares SSreg and 
the residual sum of squares SSres, defined in Chapter 5. The three cells with #N/A 
do not contain any values. Detailed explanations can be found at the command 
LINREGRESSION in Excel menu. The coefficient of determination is r2 = 0.891 
(see R3), which is acceptable. The reader can calculate y for chosen values x1, x2 
and compare it with the table of input data. 

The regression function (see the constants in the first row of the above table) is  

y  =  –197.333 + 5.48951 x1 + 0.46907 x2  

The above facility for multiple linear regression can sometimes be used for finding 
constants in nonlinear regression also. For example, the product 

        y = a x1 x2 x3                        (7.15) 

can be changed by logarithmic transformation to the sum 

    z = b + u1 + u2 + u2         (7.16) 

z = log y, b = log a, u1 = log x1, u2 = log x2 and u3 = log x3. Similarly, it is possible 
to transform individual variables. For example, in equation y = a1 x1 + a2 x

3 + a3 

sin(cx) new variables can be defined as w = x3 and v = sin(cx). Note: The regression 
constant b must then be transformed back to the original system as a = 10b.  If the 
shape of the assumed expression does not allow multiple linear regression, the 
regression constants can be found by using a suitable solver, as described above. 

REMARK. The direct determination of parameters in Weibull distribution from 
measured values, described in Chapter 5, is nothing else than the determination of 
constants in a regression function. 

 

a2 a1 a0
0,46907 5,489513 -197,333

0,065626 5,815328 96,55583
0,891138 6,640678 #N/A
28,65067 7 #N/A
2526,91 308,6903 #N/A
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Moving averages 

Sometimes we have no idea what function could be used for the approximation of 
the time course of some quantity expressed as time series. We just see plenty of 
data points. A trend can sometimes be revealed better if the original data are 
smoothened by replacing them by moving averages. Such average is calculated 
from p neighbouring data points; the number p is a matter of our choice. For 
example, the original series x1, x2, x3, x4, …xn is replaced (for a chosen number p = 
3) by the series y1 = (x1+x2+x3)/3, y2 = (x2+x3+x4)/3, y3 = (x3+x4+x5)/3,… yn-2 = (xn-

2+xn-1+xn)/3. This new series has only n – 2 terms, generally n – (p – 1), and is 
smoother than the original one. It can be recommended to use several 
approximations, for various p, and choose the best looking one.  Universal 
computer programs (including Excel) enable easy application of moving averages 
on empirical data. 
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8. Confidence Intervals, Testing of 
Hypotheses and the Amount of Data  

An important task at the initial stage of any research is finding the necessary extent 
of experiments. Experiments cost money (specimens and the related material, the 
devices and other equipment that must be purchased or hired), and they also need 
time and work capacity (plus corresponding personal expenses). Therefore, their 
extent should not be excessively large, but in proportion to the: 1) task of the 
research, 2) importance of the expected results, and 3) the demanded accuracy. All 
this should be clarified in advance. 

Information on the accuracy of a measured parameter is provided by the confidence 
interval for this parameter. The width of such interval depends on the number of 
measurements. Vice versa, the formula for the necessary number of values can be 
derived from the expression for the confidence interval. Similarly, the decision 
about a tested hypothesis is based on the value of the pertinent test criterion, which 
also depends on the number of measurements. This number, important for 
ascertaining or increasing the test power, can again be derived from the test 
criterion.    

In this chapter the formulae for confidence intervals and statistical tests will be 
shown, and also the numbers of measurements needed for ensuring the demanded 
accuracy of some characteristics (mean, standard deviation or other parameters), 
the number of values for a confidence interval for points on a regression line, and 
the amount of data for some statistical tests. Each section will start with the 
pertinent formulae, and the applications will be shown on examples. 

Confidence intervals and the necessary numbers of values  

Mean value 

The confidence interval for the mean µ  is [1 − 5]: 

   x − tα,ν s/√n   ≤  µ  ≤  x + tα,ν s/√n                              (8.1) 
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x is the average value (= Σxj/n), n is the number of measured values, s is the 

sample standard deviation, and tα,ν  is α-critical value of t-distribution for ν  = n – 1 
degrees of freedom. Half-width of the confidence interval,  

     ∆  =  tα,ν s/√n                           (8.2) 

expresses the uncertainty in the determination of the mean value and corresponds 
to the possible inaccuracy. This equation can be rewritten to express the number of 
values (or tests) necessary for ensuring that the true mean µ will differ from the 

averagex not more than ∆:  

     n  =  (tα,ν s/∆)2               (8.3) 

The probability that a larger difference can occur, is α. One can see that the 
necessary number of tests increases significantly with increasing dispersion of the 
individual values and with increasing demands for accuracy (i.e. with smaller 
allowable error ∆). It can be said roughly that the reduction of the inaccuracy to 
50% needs four-times more tests. Certain mitigating role is played by the fact that 
tα,ν   decreases with the increasing n, especially for small n. 

According to Equation (8.3) it would be possible, in principle, to achieve any 
accuracy, but for a high price. Therefore a compromise must often be made. It is 
reasonable to make only a few tests first in order to obtain an estimate of standard 
deviation s and to calculate a preliminary number n of the necessary tests via Eq. 
(8.3). If n is high, it is reasonable to make about half of the tests at the beginning, 
to calculate the improved estimate of s and n (using the corrected value of t), and 
then to make the remaining tests. 

Example 1.  

Diameters of machined shafts, measured on 10 pieces, were: D = 16.02 – 15.99 – 
16.03 – 16.00 – 15.98 – 16.04 – 16.00 – 16.01 – 16.01 – 15.99 mm. Calculate: a) 
the average value and standard deviation. Assume that the diameters have normal 
distribution, and calculate b) the 95% confidence interval for the mean value and 
also c) the interval, which will contain 95% of all diameters. 

Solution. 

a) The average value is D = (ΣDi)/n = 16.007 mm and standard deviation is s = 
0.01889 mm. 
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b) 5%–confidence interval for the mean, calculated by Eq. (1), is (for two-sided 
critical value t0,05; 10–1 = 2.2622): 

10

01889.0
2622.2007.16

10

01889.0
2622.2007.16 −− << Dµ    

  15.993 < µD < 16.020 mm, or µD ∈∈∈∈ (D ± ∆) = 16.007 ± 0.0135 mm  

If we want to increase the accuracy in the determination of the mean value of the 
diameter so that the actual mean differs from the calculated average D not more 
than ∆ = 0,005 mm, Equation (8.3) gives 

 n  =  (tα,ν s/∆)2 = (2.002465×0.01889/0.005)2 =  57.2   

2.0025 is the critical value of t-distribution tα,ν for significance level α = 5% and 

the number of degrees of freedom ν = n – 1 = 57. The standard deviation s = 
0.01889 mm as before was used, as no better estimate was available. Therefore, the 
improved mean value will be obtained as the average of not less than 58 values. 

c) The individual values can be expected (under assumption of normal distribution) 
to lie within the interval  D – uα/2×s < D < D + uα/2×s, where uα/2 is α/2 – critical 

value of standard normal distribution (corresponding to probability α/2 that the 

diameter will be larger than the upper limit of the confidence interval, and α/2 that 

it will be smaller than the lower limit). In our case, u0.025 ≈ 1.96, so that 16.007 – 

1.96×0.01889 < D < 16.007 + 1.96×0.01889; that is D ∈ (15.970; 16.044). The 
reliability of the prediction could be increased if tolerance interval is used instead 
of confidence interval; see later in this chapter.  

Variance    

The confidence interval for the variance σ2 of normal distribution is [1 − 5] 

    (n – 1)s2 /χ2
α/2,ν  ≤  σ2  ≤  (n – 1)s2 /χ2 

1 – α/2,ν            (8.4) 

χ2
α/2,ν  is α/2–critical value of chi-square distribution for ν  = n–1 degrees of 

freedom; χ2
1-α/2,ν  is (1–α/2)-critical value. (NOTE: α–critical value is identical 

with (1–α)-quantile.) The width of confidence interval depends on the number of 
values n. The number of measurements needed for obtaining the demanded width 
can be obtained using the relationship between the number of values and the 
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corresponding critical values of chi-square distribution. Universal programs with 
statistical functions (including Excel) are suitable for this task. 

Example 2.    

Calculate the 90% confidence interval for the standard deviation s from Example 1.  

Solution. Equation (4) gives the confidence limits for variance. The variance for 
standard deviation s = 0.01889 mm is s2 = 0.0003658 mm2. Further necessary 
values are: ν = n – 1 = 10 – 1 = 9, χ2

0,05(ν = 9)  = 19.9190, χ2
0,95(ν = 9)  = 3.3251. 

Lower (L) and upper (U) confidence limits for the variance are  

 s2(L) = 9×0.0003658/19.9190 = 0,0001612 mm2,  sL = 0.0126975 mm  

 s2(U) = 9×0.0003658/3.3251 = 0,0009901 mm2,    sU = 0.0314659 mm 

and the confidence limits for standard deviation, calculated as square roots of the 
variances, are sL = 0.0127 mm, sU = 0.0315 mm. (Note the large width of 
confidence interval for s, compared with the estimated value  s = 0.0189 mm !) 
 
Parameter of exponential distribution 

Exponential distribution plays a very important role, for example, in reliability. It is 
usual for the times between failures occurring from many reasons in complex 
electrical, mechanical and other objects or systems consisting of many elements. 
Probability of failure during interval (0; t) is 

R(t) = e – t/T
mean                          (8.5) 

t is the time and Tmean is the mean time to failure or between failures. In practice, 
the mean time is determined as the average of the measured times to failure, 

     Tmean  ≈  Tave = Σ tfj / n             (8.6) 

the summation is done for all n values tfj. However, the times to failure of 
individual elements vary, and Tave, calculated from Eq. (8.6), is only an estimate of 
the mean time. The knowledge of confidence limits for T0 is therefore needed. The 

lower (L) and upper (U) limit are given by the following formula [1 − 5]: 

   
UL ttTtt

rr
mean =≤≤=

− )()( 2/12/
22

22
νν αα χχ

           (8.7) 
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χ2
α/2(ν) is the α/2-critical value and χ2

1−α/2(ν) is the (1-α/2)–critical value of the 

chi-square distribution for ν degrees of freedom. The probability that the actual 

time to failure can be shorter than tL or longer than tU is α. The number of degrees 
of freedom depends on the arrangement of the tests. If they are terminated after 
failure of r pieces, it holds ν = 2r [6]. With increasing number r, the difference 
between the lower and upper critical values of chi-square distribution becomes 
smaller. Also the confidence interval for the mean time becomes narrower and the 
prediction of Tmean more accurate. In this way it is possible to determine in advance 
the number of failed specimens, at which the test may be terminated to achieve the 
demanded width of confidence interval for the mean time to failure.  

Example 3. 

Ten electrical components were tested to determine their times to failure and the 
failure rate. These tests can last very long for some components. Therefore, they 
are sometimes terminated after certain defined time. In this example, the duration 
of the tests was fixed as tT = 500 hours. During this time, only 6 components failed 
(r = 6), in times: 65 – 75 – 90 – 120 – 250 – 410 hours. Four components survived 
the test. It is necessary to estimate the mean time to failure and construct two-sided 
confidence intervals (for the confidence 90%).  

Solution. The mean value and standard deviation of times to failure of the 6 failed 
components were, respectively: 168.33 and 136.33 hours. It is thus possible to 
assume exponential distribution. 

The cumulated duration of the tests was [6]: 

tiitot ttt ×+=∑ = 4
6

1
 = 60 + 75 + 90 + 120 + 250 + 410 + 4×500 = 3010 hours 

The average time to failure is tave = ttot/r = 3010 / 6 = 501.67 h.  

The lower and upper confidence limit for tmean, with respect that the tests were 
terminated before the failure of all samples, are [6]:   

    
UL tt

r

r
tt

r

r
t avemeanave =≤≤

+
=

− )2(
2

)22(
2

2/12/
22

αα χχ
        (8.8) 

where χ2
α/2(2r+2) is α /2–critical value of chi-square distribution for 2r+2 degrees 
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of freedom, and χ2
α /2(2r) is α /2 – critical value of chi-square distribution for 2r 

degrees of freedom. In the investigated case, with r = 6 and α = 10%, the critical 

values are χ2
 0.05; 14 = 23.685 and χ2

 0.95; 12 = 5.226. Inserting them, together with tave 
= 501.67 h into (6.8) gives tL =  254.4 h and tU =  1152.1 h. The mean time to 
failure thus can be expected to lie within the interval tmean ∈ (254 h; 1152 h). 

This confidence interval, obtained from only six failures, is very wide. If it should 
be narrower (in order to get more accurate estimate), it is necessary to make a 
longer test so that more parts of the tested group fail, or to increase the number of 
tested parts; see [6] or Chapter 20 in [7].  

Values predicted by a regression line 

Regression line 

    y(x) = a + bx                         (8.9) 

is often used for prediction of y-values corresponding to certain values of x. 
However, the constants a, b are determined from measured values that exhibit 
some dispersion. If another series of measurements would be used, less or more 
different regression line would be obtained. The confidence interval for a point of 
the regression line (Figure 1) is [1−4, 8]: 
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where sres(x) is the residual standard deviation, defined as 
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All points of confidence limits form the confidence band, which is narrowest for x 
= x . The formula for x = x is identical with the formula (8.1) for the confidence 

interval for the mean. 

Similarly, the width of confidence interval at x decreases with the square root of 

1/n. The confidence band for the regression line can therefore by made narrower by 
using higher number of values for the determination of regression constants. The 
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Figure 8.1.  Confidence interval for a regression line. 

necessary number of values for ensuring the demanded accuracy can be found 
similarly to the case of the mean value. A modification of Equation (8.3) gives 

    n  =  (tα,ν sres/∆)2                        (8.12) 

Tolerance limits 

Sometimes we need to know the interval that will include P percent of the 
population. A very important case is if the population has (approximately) normal 
distribution. If the parameters µ, σ of the population are known, then P % of the 

population lies within the limits µ ± u1–P/2σ, where u1–P/2 is the (1–P/2)–critical 
value of standard normal distribution. 

Often, however, only sample characteristics x and s are known instead of µ and σ. 
In such case, it is impossible to determine the corresponding limits with certainty. 
We can only determine so-called tolerance limits, which will contain the fraction P 
of the population with a chosen probability γ. Two-sided tolerance limits (lower 
and upper) can be calculated via the formula [5, 9, 10] 

    xL, xU =  x ± ks                      (8.13) 

x and s are the average and standard deviation of the sample of size n, and k is a 

constant, depending on P, n and γ.  The coefficients k for selected values P, n and γ 
can be found in statistical tables, for example [9, 10]. 
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Example 4. 

In Example 1 the interval was calculated, which should contain 95% of all 
machined shafts: (15.970 mm; 16.044 mm). This interval was calculated under the 
assumption that D  = 16.007 mm and s = 0.01889 mm are parameters of the 
population. These values, however, were calculated from a sample of only n = 10 
pieces. More reliable interval will thus be obtained via the formula for the 
tolerance interval. For the fraction P = 0.95, reliability of the prediction γ = 0.90 
and n = 10 is k = 3.18; see [9, 10]. The interval containing 95% of all pieces is 

D ±  k × s  = 16.007 ± 3.18×0.01889 = 16.007 ± 0.060 = (15.947 mm; 16.067 mm)    

This is wider than the original interval. The difference between both intervals gets 
larger with larger standard deviation and smaller amount of empirical data, 
especially if n < 10.    
 
Testing of hypotheses 

Difference of two averages 

The test criterion depends on whether the variance of both samples is 
(approximately) the same or not. Here, only the case with different variances will 
be considered, which is more universal. In this case, the test characteristic is 

    

2

2

2

1

2

1

21

n

s

n

s

xx
t

+

−=
                     (8.14) 

and it will be compared with the critical value of t-distribution for the significance 
level α and ν degrees of freedom, defined as [8, 11] 
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Example 5.  

A modified procedure for preparation of a certain kind of plastic was proposed. 
The costs were lower, but also the measured strength was lower. It is necessary to 
verify whether the strength decrease is only random, or if it is statistically 
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significant. The characteristics of both samples are as follows: 

Sample 1: n1 = 31, x1 = 31.03, s1
2 = 1.41, s1 = 1.19 

Sample 2: n2 = 32, x2 = 29.87, s2
2 = 1.84, s2 = 1.36 

Insertion of these values into Equations (8.14) and (8.15) gives ν = 60.4 and t = 
3.615. This test characteristic t is larger than the critical value of t-distribution for 

significance level α = 0.05 and the number of degrees of freedom ν = 60, which is 
t0.05; 60 = 2.0003. The difference between both average values is significant (on level 
5%), which means that the way of preparation has influence of the strength.  
NOTE: The difference is statistically significant even on confidence level 0.001.   
 
Comparison of the accuracy of two measuring methods  

This test is based on the comparison of variances of both methods. The ratio of two 
variances has F-distribution. The test criterion, 

    F = s1
2 / s2

2                       (8.16) 

will be compared with the critical value of F-distribution for ν1 = n1 – 1 and ν2 = n2 

– 1 degrees of freedom, Fα (n1 – 1, n2 – 1). If F > Fα , the null hypothesis (no 
difference between both variances) is rejected. Otherwise we conclude that the 
difference is not significant.      

Test of significance of the coefficient of correlation of two quantities    

The correlation coefficient r (= √r2) is sometimes very high, for example 0.9 or 
more, and we can assume that the proposed functional relationship between both 
quantities is justified. Sometimes, however, the correlation coefficient is lower and 
we do not know whether the values of one quantity really depend on the values of 
the other quantity, or if they are correlated with it only loosely. Statistical test is 
then useful. Correlation coefficient r is statistically significant on significance level 
α, if 

       να ,21
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tα,ν is one-sided α-critical value of t-distribution for ν = n – 2 degrees of freedom; n 
is the number of pairs of values. If we want to be sure that the correlation 
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coefficient r is statistically significant (on level α), it follows from (17) that the 
number of the pairs must be 

            n  ≥  2 + (tα,ν )
2 (1 – r2)/r2                      (8.18) 

As tα,ν depends on n, several iterative steps are sometimes needed to obtain the 
right number of values n. 

Example 6.   

Correlation coefficient between strength and hardness of an alloy, determined from 
30 pairs of values, was r = 0.7. Is this value statistically significant? 

The test criterion (8.17) is  

    1867.5
7.01

2307.0
2

=
−

−  

One-sided critical value of t-distribution for ν = n – 2 = 30 – 2 = 28 degrees of 

freedom is t0.05,28 = 1.701 for confidence level 5%, and 2.763 for confidence level 
0.5%. The calculated value 5.1867 is much higher than the critical values. We can 
thus conclude that strong correlation exists between the strength and hardness of 
this material. 

Tests of goodness-of-fit. These tests are used to check whether the experimental 
data have certain probability distribution. Two kinds of tests are used most often: 
Kolmogorov-Smirnov and chi-square. With Kolmogorov-Smirnov test, the 
differences between the empirical distribution function and the reference one are 
calculated for all values of the empirical distribution, and the maximum difference 
is compared with the critical value, which can be found in special tables [9, 10]. If 
it is larger, we reject the null hypothesis and say that the empirical population does 
not correspond to the assumed distribution. Otherwise we accept the hypothesis. 
The following example illustrates the application of Kolmogorov-Smirnov test. 

Example 7.    

It is necessary to verify whether the batch of NaOH comes from the supply with 
the mean concentration µ = 42.3 and standard deviation σ = 1.5. The results of N = 
50 analyses were: 
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44.0 45.0 42.5 41.9 41.9 41.2 41.0 43.3 42.3 40.0 
42.2 43.6 44.4 40.2 41.5 42.7 45.0 43.0 43.2 41.1 
42.4 42.4 40.8 39.2 43.2 44.2 42.3 43.3 44.7 41.1 
41.9 42.7 41.4 44.4 43.0 40.1 42.0 39.7 42.9 42.7 
41.5 38.8 43.4 43.9 40.8 40.5 42.8 41.6 43.0 42.8 

The basic statistics are:  average concentration x = 42.27, standard deviation s = 

1.48, the minimum and maximum values: xmin = 38.8, xmax = 45.0.  

Solution. For Kolmogorov-Smirnov test the values of the empirical and theoretical 
distribution functions are needed. First, the measured concentrations (x) were rank-
ordered from minimum (x1) to maximum (xN) and the corresponding values of 
empirical distribution function were calculated as Fj,emp = j/(N+1). Then, the values 
of theoretical distribution function were calculated for the same quantiles xj, but 

under the assumption that they pertain to the normal distribution with parameters µ 

= 42.3 and σ = 1.5. (In Excel, the command NORMDIST(xj,µ,σ,TRUE) can be 

used.) Finally, the differences of both distribution functions, ∆j = |Fj,emp − Fj,theor|, 
were calculated. The table below shows a part of the complete table, and Figure 8.2 
shows both distribution functions. 

The maximum difference between the empirical and theoretical distribution 
function was ∆max = 0.05612 (for j = 28; see the table). This is much less than the 
critical value of the Kolmogorov-Smirnov criterion [10], which is D0.05(50) = 0.188 
for confidence level α = 0.05 and the number of values N = 50. Therefore we can 

accept the hypothesis that the parameters of the batch are µ = 42.3 and σ = 1.5.  

          j   xj    Fj,emp    Fj,theor     ∆j       .         

     1  38.8 0.01961 0.00982 0.00979  
     2  39.2 0.03922 0.01938 0.01983 
………………….. 
    28  42.7 0.54902 0.60514 0.05612 
………………….. 
    50  45.0 0.98039 0.96407 0.01632 
 

Figure 8.2. Kolmogorov-Smirnov test – comparison of empirical and theoretical 
distribution for 50 values. 
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Another goodness-of-fit test is chi-square test (χ2–test). This test is based on the 
idea that if the sample has the assumed distribution, the differences of empirical 
and assumed (theoretical) values have standard normal distribution and the sum of 
their squares has therefore chi-square distribution. The application is as follows. 
The data are divided into m intervals and the frequency of their occurrence in the 
individual bins is determined. Then, the theoretical frequencies are computed for 
the assumed distribution. The differences of both frequencies in the corresponding 
classes are calculated. The criterion is [11]:  

            ∑
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χ          (8.19) 

If the value χ2, calculated via Equation (8.19), is higher than the α-critical value of 

the χ2–distribution for (m–k–1) degrees of freedom, the hypothesis “the sample has 

the assumed distribution” is rejected on the level of significance 1–α. Otherwise, 
the hypothesis is accepted. REMARK: k is the number of parameters of the 
distribution function, calculated from the random sample. The condition for the use 
of chi-square test and the number m of intervals is that npj must be equal or higher 

than 5 (i.e.  npj ≥ 5) for every j. 

Example 8. 

The hypothesis from Example 7, “the 50 specimens come from the population with 

the parameters µ = 42.3 and σ = 1.50” will now be tested by the chi-square test. 
The input values are the same as in the previous example. 

Solution. The range of possible concentrations (38.0 − 45.0) was divided into 13 
subintervals of width 0.5 each, and the frequencies of occurrence in each were 
calculated, similarly to the above example. However, chi-square test may be used 
only if the number of values in every subinterval is equal or higher than 5. 
Therefore, new subintervals (7 altogether) were created by merging of some of 
them. The following table contains all data. Column 1 shows the concentrations, 
column 2 shows the corresponding “measured” numbers nj of specimens, column 3 
shows the theoretical probabilities pj of concentrations, calculated via the values of 
distribution function, column 4 shows the theoretical numbers of values npj for n = 

50, column 5 gives the differences nj − npj and column 6 shows the partial values Zj 

= (nj − npj)
2/npj  for the chi-square criterion.  
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       xj   nj     pj      npj      nj − npj     Zj        . 

38.51-40.50  7 0.1151    5.755       1.245 0.2693 
40.51-41.50  9 0.1818    9.090     −0.090 0.0009 

41.51-42.00  5 0.1238    6.190     −1.190 0.2288   

42.01-42.50  6 0.1323    6.615     −0.615 0.0572 
42.51-43.00  9 0.1266    6.330       2.670 1.1261 
43.01-43.50  5 0.1085    5.425     −0.425 0.0333   
43.51-45.00  9 0.1760    8.800       0.200 0.0045  

The resultant value of the criterion, given by Equation (8.19), is χ2 = 1.720. This is 

much lower than the critical value χ2
0.05(4) = 9.488, corresponding to confidence 

level α  = 0.05 and the number of degrees of freedom ν = m − p − 1 = 4; m is the 
number of subintervals (8.7) and p (=2) is the number of parameters of the 
investigated distribution [10, 11]. Therefore, we can consider the tested sample of 
50 specimens as being from the population with parameters µ = 42.3 and σ = 1.50; 
similarly to the conclusion from the Kolmogorov-Smirnov test. 
 
Bayesian methods 

This term denotes probabilistic methods, which enable combination of information 
on some  
event or quantity with previous information from measurement or experience. The 
use of additional information can increase reliability of our information, or reduce 
the extent of measurements needed for making conclusions on certain event. 

Bayesian methods are based on the so-called Bayes theorem [7, 12, 13]. Let us 
assume that an event (B) can occur if another event (A) has occured. The event A, 
however, could occur by several ways (A1, A2, … An), which are mutually 
exclusive. The probability of simultaneous occurence of both events Aj and B, is 
calculated as:  

    P(BAj) = P(Aj) × P(B|Aj)                      (8.20) 

P(Aj) is the probability of event Aj, and P(B|Aj) is (conditional) probability that 
event B can occur provided that event Aj has happened. The total probability of 
event B is 

         P(B) = Σ P(BAj)        (8.21) 
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the summation is done for all possible cases j = 1, 2, … n. Bayes theorem looks at 
the issue in the opposite way: „If event B has happened, what is the probability that 
it was as a consequence of (or after) event Aj?“ With the use of Eqs. (8.20, 8.21) 
and the fact that P(BAj) = P(AjB), this probability can be expressed as [7, 12, 13]: 

           P(Aj|B) = P(Aj) × P(B|Aj) / P(B)                    (8.22)   

the total probability P(B) in the denominator is calculated from individual 
probabilities via Eqs. (8.21) and (8.20). Equation (8.22) is the simplest form of 
Bayes theorem. Its use will be shown on the following example.  

Increasing the reliability of non-destructive testing. 

Welded components are tested for the occurrence of defects (cracks). The device 
used for non-destructive testing is not perfect. It classifies a defect correctly (as 
defect) only with probability 98%, while in 2% of all cases it does not recognise 
the crack and classifies the component as good. On the other hand, the device 
marks 96% of good parts as good, but 4% classifies erroneously as with a crack. 
According to long term inspection records, 3% of all tested components contain 
cracks. The questions are: If the tested part was classified as „wrong“ (i.e. with a 
defect), what is the probability that it is actually: a) wrong, b) good? And what 
about if the component was classified as „good“?  

Solution. Event A1: component contains a defect, A2: component is good. P(A1) = 
0.03; P(A2) = 0.97. Event B: component is classified as wrong. P(B|A1) = 0.98; 
P(B|A2) = 0.04. The fraction of tested components marked as wrong: P(B) = 
0.03×0.98 + 0.97×0.04 = 0.0682.   

Case 1a. Probability that the component marked as wrong is actually wrong, is 
P(A1|B) = P(A1)×P(B|A1)/P(B) = 0.03×0.98/0.0682 = 0.431 = 43.1%. Case 1b. 
Probability that the part marked as wrong, is actually good, is P(A2|B) = 
0.97×0.04/0.0682 = 0.569 = 56.9%. [Due to high proportion of good parts (98%), 
also the proportion of good, but rejected parts, is high. It may be useful to test the 
rejected parts once more, in order to reduce the total losses.]  

Event B’: component is classified as good.  P(B’|A1) = 0.02; P(B’|A2) = 0.96. The 
total fraction of components, denoted as good, is: P(B’) = 0.03×0.02 + 0.97×0.96 = 
0.9318.  

Case 2a. Probability that the component marked as good is actually wrong, is 
P(A1|B’) = 0.03×0.02/0.9318 = 0.00064 ≈ 0.06%. Case 2b. Probability that the 
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component marked as good is actually good, is P(A2|B’) = 0.99936 ≈ 99.94%. 
Similar approach can be used in medicine, for example in screening for cancer. 

Another example of combination of various kinds of information is the  

Improvement of the estimate of parameters of normal distribution 

Mean value µ and standard deviation σ of a population with normal distribution are 
usually unknown, so that they are replaced by their estimates m and s from a 
sample of size n. The estimate of the mean value can be refined via confidence 
interval (8.1). The estimate can be made more accurate if additional information is 
available, for example estimates of m0 and s0 from previous measurements or 
records. If the number n0 of these values is known, and if the assumption can be 
made that all samples (new and old) belong to the same population, the updated 
average mu can be calculated as the weighted average of both sample averages, 

   mu  =  (nm  +  n0m0) / nu    ;   nu  = n + n0         (8.23)   

nu is the updated number of values. The updated standard deviation is 
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Then, the updated confidence interval for µ can be calculated with m, s and n in 
(8.1) replaced by the updated values mu, su a nu. If n0 is unknown, the literature [14, 
15] recommends the formula: 

             n0  =  s2 / s0
2           (8.25) 

based on the idea that m0 a s0 carry information corresponding to a fictitious sample 
of certain size n0. The smaller the variance s0

2 compared to s2, the more important 
are the original results, and the larger is the size of the fictitious sample.   

More on Bayesian methods can be found in [7, 12 − 15] and in references quoted 
therein. 

Acknowledgment. Parts of this chapter were previously published in Chapter 22 of 
Ref. [7]. 
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9. Dimensional Analysis and Theory 

of Similarity  

Dimensional analysis and theory of similarity are powerful tools that significantly 
increase the efficiency of experimental research. Theory of similarity is very useful 
for effective creation of models and work with them. This is especially important if 
large structures should be studied or if experimentation with real objects or systems 
is impossible or very difficult. Dimensional analysis and the use of dimensionless 
variables simplify the experiments, can spare a lot of experimental work and make 
the results more general. This chapter defines various kinds of similarity, gives 
examples of dimensionless quantities and shows how they can be created. This is 
illustrated on practical problems. Also limitations of the principle of similarity are 
shown.     

Dimensional analysis  

Every physical quantity is described by a numerical value accompanied by a unit. 
The numerical value says how many times the considered quantity is larger than its 
unit. An example of length is 5.3 m, example of force is 25 N, of time is 15.6 ms. 
In addition to the fundamental units (meter, kilogram, second…), defined in the 
Système International (SI), also various derived units are used, as well as prefixes 
(µ, m, k, M…) denoting the order. 

Every equation, describing a physical phenomenon, must be dimensionally 
homogeneous: its left side must have the same dimension as the right side. The 
check of this homogeneity should always be done before the first use of a newly 
derived formula. Such check also helps in formulating a correct relationship among 
the variables. Consider, for example, a formula for the deflection y of an elastic 
beam loaded by a force F. It is known from mechanics of materials that y will be 
directly proportional to F and indirectly proportional to the bending stiffness of the 
beam, defined as E×J, where E is the Young modulus of the material and J is the 
moment of inertia of the cross section. The deflection will also be proportional to 
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some power S of the beam length L. Now, imagine that we do not know the 
exponent S. In such case we could write the basic form of the formula: 

    y = C×F×LS/(E×J)                        (9.1) 

C is a non-dimensional constant. Replacement of the individual quantities in Eq. 
(9.1) by their units gives  

          m = 1 × N × mS/(Nm−2 × m4)  

The dimension of the right side must be the same as that of the left side, i.e. meter, 
or, generally, m1. The product of all terms containing m is mS×m2×m−4 = mS+2−4 = 

mS−2. Comparison of the exponents on the left and right side of the equation gives 1 

= S − 2. From this it follows S = 3, so that y = C×F×L3/(EJ), a formula well known 
from mechanics. 

If one side of an equation is created by a sum of several terms, then they all must 
have the same dimension. For example, vertical movement y of a body falling in 
gravitational field is described as 

y = y0 + v0t + ½ gt2           (9.2)  

t is time, y0 and v0 are the position and velocity of the body at t = 0, and g is the 
acceleration of gravity. The dimensional homogeneity demands that the individual 
quantities cannot exist in the physical equation independently, but only in groups 
of the same dimension. If Equation (9.2) is divided by one of the terms, for 
example y0, it changes to non-dimensional form 

    y/y0 = 1 + v0t/y0 + ½ gt2/y0                      (9.3)    

with normalised quantities y/y0, v0t/y0 and gt2/y0. 

Nearly every physical equation can be transformed to non-dimensional form. The 
use of normalised quantities has many advantages. Physical equations, expressed 
by means of non-dimensional variables, are more general than if they are expressed 
by dimensional quantities. The relative displacement, y/y0, does not depend simply 
on v0, t and y0, but only on their certain combinations, shown in Eq. (9.3). 
Dimensionless quantities thus enable one to combine the results of experiments 
made with specimens of various initial velocity and position, the only condition 
being their proper combination. (In the above case of a beam, combination of its 
size and material play a role.) Therefore, more data and a wider range of 
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parameters can be used for the formulation of a certain law (see Figure 9.2 later). 
The results expressed in non-dimensional form are also more universal, valid for 
the whole class of similar objects, with similar geometry or physical properties. 
Moreover – and this is very important – the use of non-dimensional quantities can 
spare experimental work, because 

The relationship of N quantities, whose dimensions can be expressed by means 
of D basic dimensions, may usually be replaced by a relationship of only  

P  = N – D                        (9.4) 

dimensionless parameters Π.Π.Π.Π.  

According to this, so-called Buckingham theorem [1 – 4], the determination of 
fewer regression constants needs fewer experiments. The reduction of experimental 
work is significant especially if the investigated relationship contains many 
quantities and if the number of variables, N, is closer to the number of basic 
dimensions, D. This can be illustrated on the previous example of falling body. 
Equation (9.2) represents relationship of 5 quantities: y, y0, v0, g and t; that is N = 5. 
These quantities can be expressed by means of two basic dimensions: meter and 
second; thus D = 2. According to Eq. (9.4), the number of non-dimensional 
parameters should be P = N − D = 5 – 2 = 3. And really, Equation (9.3) is the 
relationship of 3 dimensionless parameters: y/y0, v0t/y0 and gt2/y0. The 
determination of the necessary number of experiments will be discussed in Chapter 
11. Nevertheless, an idea can be obtained from a simple example. If the influence 
of six factors should be investigated, with each on two levels (low and high), the 
number of necessary experiments would be 26 = 64. If the number of dimensionless 
factors would be only 4, the number of necessary experiments drops to 24 = 16, i.e. 
to 25%! 

Similarity  

The use of non-dimensional quantities is also of prime importance in the study of 
behaviour of real objects by means of models. For example, building of a new large 
ship, a bridge, or a chemical reactor is accompanied with many uncertainties, and 
the potential losses due to wrong design would be very high. Therefore, usually a 
smaller model is built first and tested. However, if the model should adequately 
reflect the behaviour of the actual structure, similarity between them must exist. 
There are various kinds of similarity, for example: 
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Geometric similarity, which means identity of shape, equality of corresponding 
angles, and a constant proportionality between the corresponding dimensions (so-
called scale factor). The following relation holds: 

     Model dimension = Scale factor × Dimension of the real object 

For example, a model of a building, made in the scale 1:20, has all dimensions 20x 
smaller than the real building.  

Static similarity means that the relative deformations of a model under constant 
stress is in the same proportion as the corresponding deformations of the object. 

Kinematic similarity is based on the ratio of the time proportionality between 
corresponding events in the model and the object. 

Dynamic similarity exists if the forces acting at corresponding times and locations 
in the model and object are in a fixed ratio. 

Thermal similarity means that the temperature profiles in the model and the 
prototype must be geometrically similar at corresponding times. 

Chemical similarity means that the rate of a chemical reaction in the model is 
proportional to the rate of the same reaction at the corresponding time and location 
in the object. 

The theory of similarity  works with so-called similarity numbers . Those, who 
have attended a college course of physics, know, for example, the Reynolds 
number (Re), which helps in assessing whether a flow of a liquid will be laminar or 
turbulent. More examples will be given at the end of this chapter. The similarity 
numbers are dimensionless; in fact, every non-dimensional quantity can serve as a 
similarity number. 

Dimensionless variables can be created in various ways. The simplest case is the 
ratio of some quantity to its characteristic value, for example x/x0 or ∆x/x0 for 
distance or displacement. Well known in mechanics are: strain, defined as relative 
elongation (ε = ∆L/L), Poisson number µ (the ratio of relative shortening in 
transverse direction to the relative elongation in the direction of stress action), or 
coefficient of friction f, defined as the ratio of the force, needed to slide a body 
along another body, and the normal force pressing both bodies together. Another 
example is relative position of a point in a body, for example 

           ξ = (x – xmin)/(xmax – xmin)           (9.5) 
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x, xmax and xmin represent the coordinates. Similarly it is possible to express time. 
Non-dimensional temperature, θ = (T – T∞)/(T0 – T∞), is used for universal 
description of processes of heat transfer (T0 is the initial temperature and T∞ is the 
final temperature).  In this case also the position of the investigated place and the 
time can be in non-dimensional form. Illustration of this approach follows. 

Example. Determination of elastic modulus of thin coatings by instrumented 
indentation.  

Modulus of elasticity E of various materials can be determined (among other 
methods) by instrumented indentation. An indenter is pressed into the specimen, 
and its displacement is measured during loading and unloading as the function of 
load. The elastic modulus is then determined by special processing of the measured 
data [5, 6]. The determination of elastic modulus of a coating, deposited on a 
substrate, is more complex. The response of the coated sample to indenter 
penetration, and thus the E value, obtained in a test, depends on the modulus of the 
coating (Ec) and the substrate (Es), on the coating thickness (t) and on the depth h 
of indenter penetration into the specimen. The apparent E value gradually changes 
from the value of the coating (for “zero” indenter penetration) to the substrate 
modulus for very large depths of penetration  (Fig. 9.1).  Note that silicon (Si) has  

      

Figure 9.1. Measurement of elastic modulus of coated samples [8]. The coating of TbTe/Fe 
was deposited on (a) silicone substrate and (b) glass substrate. Dotted horizontal lines 
correspond to the substrate moduli (Si, glass).  
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higher modulus of elasticity than the coating, while glass has lower modulus.   

The genuine value of the coating modulus Ec can be obtained by fitting several 
apparent E-values, measured for various depths, by certain function Φ and 

extrapolating them to zero depth of penetration. This non-dimensional function Φ 
can be defined as [7]  

   Φ (h/hc) = [E(h/t) – Es] / [Ec – Es]           (9.6) 

The importance of non-dimensional notation is demonstrated in Figure 9.2. This 
diagram shows the values measured on 25 specimens with various coating 
materials and thicknesses 

 

 

 

 

 

 

 

 

Figure 9.2. Measurement of elastic modulus of coated samples; after [7]. The apparent 
values, measured for 25 various coatings, substrates and depths, are plotted in 
standardised coordinates. a – contact radius, t – film thickness, s – substrate, f – film 

(coating), E´– reduced modulus = E/(1 – µ2). 

and various substrates and depths of indenter penetration [7].  One can see that all 
values plotted in standardised coordinates lie approximately on the curve, based on 
the theoretical solution of the contact [9].  

Dimensionless must also be the arguments in mathematical functions of type sin, 
cos, ln or exp. Otherwise any change of the units would change the numerical value 
of the result. Non-dimensional are also the arguments in continuous probability 

distributions. For example, normal distribution uses the argument {½[(x – µ)/σ]2}, 

where µ and σ are the mean value and standard deviation, respectively. However, 
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the term in square brackets is nothing else than standardised variable, which 
expresses the distance of x from the mean value µ as the multiple of standard 

deviation σ. Similarly, the arguments in Weibull or exponential distribution are 
dimensionless. (NOTE: Non–dimensional quantities are used more often than we 
realise!)  

A table at the end of this chapter shows examples of dimensionless quantities from 
various branches of physics – as inspiration for creation of parameters in other 
cases.  

The following paragraphs, based on the works [1, 2], explain a formal procedure 
for creation of non-dimensional parameters and give further advice.    

Creation of non-dimensional parameters 

The steps are shown on the above case of movement of a body in gravitational 
field. 

1. All quantities and their dimensions are written down: 

y(m), y0(m), v0 (m×s– 1), t(s), g(m×s– 2);   N = 5, D = 2  

     basic dimensions in this case are m and s. 

2. Non-dimensional parameters (Π) will be assumed in general form: 

Π  =  yx1 × y0
x2 × v0

x3 × tx4 × gx5 

3. The left and right side will be expressed by means of dimensions of the 
participating quantities: 

1 = [m]0 × [s]0 = [m]x1 × [m]x2 × [m×s– 1]x3 × [s]x4 × [m×s– 2]x5  

4. The equality of both sides demands the equality of the exponents at the same 
bases. We shall here use the arrangement usual for systems of equations: 

meter:  x1  +  x2  +    x3            x5   =  0   (a)   

second:       – x3 + x4 – 2x5   =  0   (b)   
------------------------------------------------------------------------------. 

These are two linear equations with 5 unknowns. If 5 equations were available 
instead of two (see above), the unknown values x1,… x5 would be obtained directly 
by solving the system of five equations. In our case there are 3 more unknowns 
than the equations for their determination; N – D = 5 – 2 = 3. We thus can propose 
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3 exponents and calculate the remaining two. Such choice can be done three-times. 
In this example, we shall propose the values of x1, x3 and x5, and want that they are 
as simple as possible. Therefore, one of these chosen constants will always be 
equal 1, and the remaining will be 0. It is reasonable if one of these exponents 
pertains to the variable of our interest.  

Choice 1. x1 = 1; x3 = 0; x5 = 0.   
Inserting these constants into (b) gives x4 = 0. Inserting x1, x3 and x5 into (a) gives 
x2 = – 1. The first non-dimensional parameter thus is Π 1 = y1 × y0

–1 × v0
0 × t0 × g0 = 

y/y0. 

Choice 2. x1 = 0; x3 = 1; x5 = 0.   
Inserting them into (a, b) and solving this system in similar way as above gives x4 = 
1 and x2 = – 1. The second parameter is Π 2 = y0 × y0

–1 × v0
1 × t1 × g0 = v0t/y0. 

Choice 3. x1 = 0; x3 = 0; x5 = 1.   
Inserting them into (a, b) and solving this system gives x4 = 2 and x2 = – 1. The 
third parameter is Π 3 = y0 × y0

–1 × v0
0 × t2 × g1 = gt2/y0.  The reader is encouraged to 

repeat the solutions. 

Thus, the movement of the falling body can be expressed as  

Φ( Π1, Π2, Π3) = Φ (y/y0, v0t/y0, gt2/y0) = 0, or y/y0 = f(v0t/y0, gt2/y0)  

These choices would be suitable if t could be changed easily and y measured. It is 
also possible to choose other parameters. For example, if we could easily change y 
and measure the duration t of the fall, we could first define x4, x1 and x5 (similarly 
as above), find x2, x3  and obtain Π1 = v0 t/y0, Π2 = y/y0, Π3 = y0 g/v0

2. 

Further advice 

1) Sometimes the form of the non-dimensional parameters does not correspond to 
our intentions or experimental possibilities. Generally, it is possible to create new 
parameters (or similarity numbers) by making a product or ratio of the original 
ones, or to change them by making their reciprocal or some power. As they are 
dimensionless, the new parameters obtained by such transformations will be 
dimensionless, too.   
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2) If several quantities of the same dimension appear in one problem, it is also 
possible to create non-dimensional parameters directly as their ratios. This can 
reduce the number of arguments, which must be determined by solution of the 
system of equations such as those given under point 4 above. This will be 
illustrated on an example of the deflection y of a beam with rectangular cross 
section (w × h) and length L loaded by a point force P. The modulus of elasticity is 
E. The variables and their dimensions are: y(m), w(m), h(m), L(m), P(N), E(Nm–2); 
that is 6 variables with 2 dimensions. The number of non-dimensional parameters 
needed for the description of the problem is P = N – D = 6 – 2 = 4. We can 
immediately create three parameters Π1 = y/h, Π2 = b/h and Π3 = L/h. Two 
quantities remain (P and E), which must be contained in the fourth parameter. With 
respect to their dimensions and the condition of non-dimensionality also one 
geometric quantity must be included in Π4, for example h or its power. We obtain 

this parameter as Π4 = P/(Eh2). The studied relationship can thus be written in the 
following non-dimensional form: 

     y/h = f [P/(Eh2), L/h, w/h]                       (9.7) 

One should remember that for the study of relative deflection y/h are important not 
the individual quantities L or P, etc., but their ratios.  

3) In some problems always non-dimensional quantities appear. Examples are 
coefficient of friction, Poisson´s number µ for lateral contraction, or angle ϕ (rad). 
These quantities automatically become arguments in the dimensionless 
relationships.     

4) When creating dimensionless parameters, one can use the existing knowledge on 
the investigated or similar problem. For example, we may know that deflection of 
an elastic beam is directly proportional to the load and indirectly to the modulus of 
elasticity. Sometimes, analytical solution is known for very small or very large 
values of certain variable. This can help in searching for proper form of the 
arguments. Sometimes it is known that some quantities must appear in certain 
combination. This combination can be considered as a new variable, which can 
enable reduction of the total number of variables. Consider, for example, force 
acting in the contact area of two bodies. If friction should be investigated, the force 
F (N) and contact area A (m2) can be replaced by contact pressure p = F/A (N/m2). 
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5) When preparing an experiment, it is necessary to include all quantities, which 
can play a role. Otherwise wrong and misleading results can be obtained. It is less 
dangerous to include a quantity, whose importance is uncertain (and, perhaps, it 
appears later that it may be omitted), than to omit a quantity, which could be found 
later as important. The use of dimensional analysis sometimes reveals serious 
shortcomings. For example, if some dimension appears only at one quantity, this 
quantity falls out and will not be included in any non-dimensional parameter. 
However, if this quantity is obviously necessary for the description of the 
investigated phenomenon (e.g. as dependent variable), it is necessary to add 
another quantity having the same dimension. This can be illustrated on a study of 
wear rate of a cutting tool. The quantities playing a role are: wear rate w (m/s), 
velocity of mutual sliding v (m/s) and the pressure in the contact area p (N/m2). The 
non-dimensional parameter could be searched in the form Π = wx1 xx2 px3. We can 
rewrite this expression by means of the dimensions of the individual quantities (m, 
s, N): 

      [m]0 [s]0 [N]0 = [m×s–1]x1 × [m×s–1]x2 × [N×m–2]x3            (9.8) 

The left side corresponds to nondimensional notation. It follows from the condition 
of equality of exponents at the same base, N0 = Nx3, that x3 = 0. But it is well 
known from experiments that the wear rate does depend on the contact pressure p, 
so that x3 cannot equal 0. It is thus necessary to include one further quantity, which 
would also have the dimension Nm– 2. This could be, for example, hardness H 
(Nm– 2), which characterises the resistance of the material. Now, the general form 
of the non-dimensional parameter is 

      Π = wx1 vx2 px3 H x4            (9.9) 

From this expression, we can easily formulate the appropriate relationship of 
dimensionless parameters as w/v = f(p/H), and perform a series of experiments in 
order to find the appropriate form of the function f. Nevertheless, as an exercise, 
we shall also find here the non-dimensional arguments by the formal procedure 
described above. 

Expressing the left and right side of Equation (9.9) by means of dimensions of the 
participating quantities gives:  

[m]0 [s]0 [N]0 = [m×s–1]x1 × [m×s–1]x2 × [N×m–2]x3 × [N×m–2]x4  
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The condition of equality of exponents on the left and right side leads to the 
following system of equations: 

m:    x1 + x2 – 2x3 – 2x4   =  0     
s: – x1 – x2         =  0 
N:       x3 +   x4      =  0 

These three equations are not sufficient for the determination of four exponents. 
Generally, one could choose one exponent and then obtain the remaining three by 
solving the system of 3 equations. Unfortunately, in our case this is not possible, as 
linear relationship exists among the equations. (The first equation can be obtained 
as the sum of the second one and twice of the third equation.) Thus, there must be 2 
dimensionless parameters, so that 2 exponents must be chosen, for example x1 and 
x3.  

Choice 1. x1 = 1; x3 = 0.   
This choice gives x2 = –1 and x4 = 0, so that Π1 = w/v 

Choice 2. x1 = 0; x3 = 1.   
This choice gives x2 = 0 and x4 = –1, so that Π2 = p/H 

We can thus investigate the relationship Π1= f(Π2), that is w/v = f(p/H), as above. 

 
Limitations of similarity principle 

The principle of similarity holds only under some conditions, and outside them it 
loses its validity [10]. A good example is the transition from elastic to elastic-
plastic deformations in components from ductile materials. If the stresses are lower 
than the yield strength, the deformations are elastic; linear relationship exists 
between stresses and strains, and the similarity principle may be used. However, 
the relationships in the elastic-plastic region are nonlinear and the situation must be 
solved for various loads individually. Another case is elastic contact of two bodies. 
If the stresses are low and the loaded area is large, the formulae for homogeneous 
isotropic elastic bodies are suitable. However, if the size of the loaded volume 
becomes smaller, comparable with the size of the crystalline grains and other 
components of the microstructure, the heterogeneity cannot be neglected. 
Examples are concrete and other composite materials tested by nanoindentation, 
but also a crystal of pearlite if the indent size is comparable with the thickness of 
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the ferrite and cementite lamellas. The nonhomogeneity is manifested by higher 
scatter of individual measured values. Fortunately, statistical analysis of hundreds 
of tests can reveal the properties of individual phases [11]. Here, the distribution of 
microstructural units becomes an additional parameter for the material 
characterization. The increasing hardness of metals with decreasing imprint size, 
known as indentation size effect, is partly caused by decreasing amount of 
dislocations that facilitate plastic flow. For very small depths of indentation, the 
surface roughness becomes important, as well. The measurements under very low 
loads can also be significantly influenced by adhesive forces, especially when 
testing very compliant materials, such as gels.  

Also other cases exist, where the principle of similarity does not hold. Well known 
is the strength dependence of brittle components on the size of loaded area or 
volume. Brittle fracture usually starts at a pre-existing weak point, e.g. a broken 
crystalline grain in ceramics or a tiny scratch on the glass surface. Smaller size of 
the loaded area or volume means a lower probability of occurrence of a larger 
defect. A smaller defect can act as a starting point only at higher stress level. 
Therefore, very small objects are stronger. For similar reasons, also the fatigue 
limit of metal components increases with their decreasing size.   

Generally, one must have in mind that sometimes the investigated quantity changes 
with the changes of a certain parameter relatively slowly, but at its certain level it 
can change very quickly. The relationship, describing some behaviour or process, 
is often valid only within certain range of parameters. If the pertinent process is 
described by means of non-dimensional quantities, the conditions for a transition 
from one mode to another are characterised by a critical value of some of these 
quantities. A well-known example is the change from laminar to turbulent flow at 
the critical value of Reynolds number. One must therefore always consider all 
possible influences, and reduce their number only after a thorough analysis. 

Examples of dimensionless quantities 

Material properties 

E1/E2, H1/H2 ratio of elastic moduli or hardnesses; subscripts denote the     
components,  
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E(x)/E0, H(x)/H0  ratios as above, subscript 0 denotes the characteristic     
value,  

H/Y, E/Y, E/H  ratio of hardness and yield strength or elastic modulus, 

σ/Y, σ/σu, Y/σu  ratio of stress to yield strength Y, ultimate strength (σu), 
surface stress… 

Geometry 

x/d x – distance, depth of indenter penetration, d – 
characteristic length of the specimen or material (contact 
radius, diameter of a crystal grain, pore or fibre, specimen 
length, width, height or diameter, coating thickness, size of 
plastic zone, distance of dislocations or other material 
defects, distance from the specimen edge…), 

∆l/L relative displacement, relative elongation (strain ε), ∆l – 
elongation, L – basic length, 

h/R, h/tc  ratio of indenter penetration h to the tip radius R or coating 
thickness tc,  

hc/h    ratio of the contact depth hc to indenter penetration h. 

Forces and stresses 

F/F0 ratio of load F and force of adhesion (F0 = Fad) or another 
characteristic force, 

σ/σm ratio of the stress σ to the nominal or mean stress or 

pressure σm.  

Time 

t/t0 t0 – characteristic time (time of load increase, relaxation 
time…). 

The reader can find more examples. 

Similarity numbers appearing often in physics and technology 

Important similarity numbers were given names of prominent scientists, and are 
denoted by the first two letters of the pertinent name. Some examples follow. 
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Archimedes Ar = gd3ρ´(ρ – ρ´)/η2 ;  ρ, ρ´ – density of liquid and the body, g – 

acceleration of gravity, d – characteristic dimension, η – dynamic 
viscosity  

Biot   Bi = αd/λ ; α – coefficient of heat transfer, d – characteristic 

dimension, λ – thermal conductivity of the body 

Deborah De = tr/t  ; tr – relaxation time, t – time    

Euler  Eu = ∆p / ru2  ; ∆p – pressure difference, ρ – density, u – 
characteristic velocity 

Fourier Fo = aτ/d2 ;   a – thermal diffusivity, τ – time, d – characteristic 
dimension 

Froude Fr = u2/gd  ; u – characteristic velocity, g – acceleration of gravity, 
d – characteristic dimension  

Galilei Ga = gd3/ν2  ;  g – acceleration of gravity, d – characteristic 

dimension, ν – kinematic viscosity 

Grashoff Gr = β∆Tgl3/ν ;  β – thermal expansion of the liquid, ∆Τ – 
temperature difference, g – acceleration of gravity, d – 
characteristic dimension, ν =η/ρ = kinematic viscosity 

Nusselt Nu = αd/λ  ;  α – coefficient of heat transfer, d – characteristic 

dimension, λ – coefficient of thermal conductivity of the 
surrounding medium  

Péclet  Pe = ud/a ;   u – velocity, d – characteristic dimension, a – thermal 
conductivity 

Prandtl  Pr =  ν/ a  ;  ν – kinematic viscosity, a  – thermal diffusivity 

Reynolds Re = udρ /η  = ud/ν ;   u – characteristic velocity, d – characteristic 

dimension, ρ – density of the liquid, η – dynamic viscosity, 

ν =η/ρ = kinematic viscosity 

Stanton St =   α/(λu) = Nu/(Re.Pr) ; α – coefficient of heat transfer, λ – 
thermal conductivity of the fluid, u – velocity of the fluid 

Stokes  Stk = ut /d ;  u – velocity, t – relaxation time, d – characteristic 
dimension 
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Weber We = ρu2d/σ ; ρ − density, u – velocity, d – characteristic 

dimension, σ – surface stress 
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With the help of physical theories, we try to find the way through the 

maze of observed facts and to understand the world. 

            Albert Einstein 

 

 

Physical laws should have mathematical beauty. 

            Paul Dirac 
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10. Analysis of Variance (ANOVA)  

A frequent problem in research is to evaluate the influence of various factors, to 
find, which factor has the strongest influence, which one has negligible influence, 
etc. If the influence of only two factors should be compared, t-test for the 
difference between means (Chapter 8) is suitable. Sometimes, however, it is 
necessary to evaluate the effect of three or more factors. For example, various raw 
materials, various technological procedures and various apparatuses can be used in 
the production of a chemical compound, and we want to know, which of these 
factors have stronger influence on the product. It would be possible to test 
separately the differences between the individual pairs of factors. However, more 
efficient is so-called analysis of variance (ANOVA), which well be briefly 
explained.   

If the results of a certain group of tests can be sorted according to one or more 
criteria, then also the total variability can be sorted with respect to these criteria. 
The basic idea of the analysis of variance is to decompose the total variance σtot

2 of 

the investigated quantity into the parts caused by the individual factors (σfj
2) and a 

residual part σres
2 caused by unidentified (random) influences:  

         σtot
2 = σf1

2 + σf2
2 + … + σres

2         (10.1) 

Comparison of the variances corresponding to the individual factors with the 
residual variance caused by random influences can reveal whether the former are 
really due to the effect of the pertinent factors, or if they are only random.  

The total variability of the results of experiments can be represented by the sum of 
squared differences between the individual observations and the total average of all 
values. The influence of the individual factors can be represented by the squared 
differences between the average effect of the pertinent factor and the total average. 
Then, residual variance remains, which is based on the squared differences 
between the individual observations and the averages for the individual factors. 
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(NOTE: the variance is obtained as the sum of squared differences divided by the 
number of degrees of freedom.) 

Analysis of variance is based on testing of hypotheses. It tests the null hypothesis: 
“there is no significant difference among the influences of individual factors”, 
which also means “all measured values come from the same population”, and tests 
it by comparing various variances. Sample variances have chi-square distribution, 
and the ratio of two quantities with chi-square distribution has F-distribution. 
Therefore, F-tests are used to check the influence of the individual factors. 

The procedure can be explained on a one-way analysis of variance [1]. The 
formulae for the necessary calculations are summarised in Table 1. 

TABLE 1.    

Source of variation     Sum of squares       Degrees       Average variance        F 
           of freedom 

Factor           Sfj = nΣ(yj. – y..)2      (p – 1) sfj
2 =Sfj/(p – 1)        sfj

2/sres
2  

Residual          Sres = Σ(yjk – yi.)
2      (N – p) sres

2 = Sres/(p – 1) 

Total            Stot = Σ(yjk – y..)2      (N – 1)  

The individual symbols have the following meaning: 

Stot – total sum of squared differences between the individual values and the total 
average. 
Sfj – sum of squared differences between the individual values and the average 
corresponding to the j-th investigated factor.  
Sres – residual sum of squared differences between the individual measured values 
and the average values of the groups corresponding to the individual factors. 
N – number of all tests (or observations) 
n – number of observations (or tests) for the individual factors 
p – number of factors 
sfj

2 – average variance of the factor j 
sres

2 – average residual variance 
yjk – k-th value of the j-th factor 
yj. – average of the values of j-th factor 
y.. – total average of all values 
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ν – number of degrees of freedom (equal the number of the values for the 
determination of the characteristic minus the number of the regression constants 
used in this determination).  

If no significant difference exists between the variances, the test criterion has F-
distribution. If the F-value, calculated from the measured data, is higher than the 
α–critical value of F-distribution, an event has happened that was expected only 

with very low probability α, and we conclude that the difference is not random – 

the null hypothesis is rejected on the significance level α. Otherwise we conclude 
that the difference among the individual factors is not substantial. The application 
will be illustrated on the following example. 

Example. It is necessary to find whether the kind of motor oil has influence on the 
fuel consumption. Three oil brands (A, B, C) were compared, each tested in five 
vehicles. The individual fuel consumptions and the average values (all given in 
l/100 km) were as follows: 

          Oil brand   Average consumption      Average 
_________________________________________________________________________________________________________ 

A:  7.7 8.1 7.1 7.6 8.0     yjA = 7.7 

B:  7.0 5.8 7.4 6.6 7.0     yjB = 6.8 

C:  7.6 8.5 8.2 8.0 7.7     yjC = 8.0 

The total average was y.. = 7.5 l/100 km. These values were inserted into the 
formulae of Table 1, together with p = 3, n = 5, N = pn = 3×5 = 15. The results are 
in Table 2 below. 

TABLE  2. 

Source of variation     Sum of squares   Deg. of freedom   Average variance         F 

Factor           Sf1 = 4.1853   3 − 1 = 2    s2f1 = 2.0927      9.5410 

Residual          Sres = 2.6320         15 − 3 = 12      sres
2 = 0.2193 

Total            Stot = 6.8173 15 − 1 = 14  

The value of the test criterion is F = sf1
2/sres

2 = 9.54. This is much more than the 
critical value of F-distribution for the reliability level α = 5% and degrees of 
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freedom ν1 = 3 – 1 = 2, ν2 = 15 – 3 = 12, which is F(0.05; 2; 12) = 3.885. The 

calculated value F = 9.54 is even higher than the critical value for level α = 1%: 
F(0.01; 2; 12) = 6.927. Therefore, we can be nearly sure that the kind of the oil has 
influence on the fuel consumption. (The reader can repeat the procedure.) 

The comparison of the calculated value with the critical value, corresponding to 
some level of confidence, is a classical approach, developed at the time when only 
tables of critical values of some distributions (e.g. F or t), corresponding to certain 
probabilities (e.g. 5%), were available. Today, universal programs (including 
Excel) can calculate the values of distribution functions of many distributions. And 
the distribution function gives the probabilities of non-exceeding. One can thus 
directly determine the probability that the differences among the individual factors 
are significant. For F = 9.54 this probability is 0.9967 ≈ 99.7%; therefore, the 

probability that the measured differences were only random, is α = 1 – 0.9967 = 

0.0033 ≈ 0.3% (see the Excel function F.DIST(F;ν1;ν2;TRUE) for F = 9.54, ν1 = 2, 

ν2 = 12). REMARK: α–quantile equals (1 – α)-critical value.         

Moreover, universal statistical programs enable direct application of the analysis of 
variance. Only the input data (e.g. the measured fuel consumptions for the oils A, 
B, C) must be known. The pertinent programs perform all necessary calculations 
(including the determination of the degrees of freedom) and give the resultant value 
of F and critical F-value for the chosen confidence level α, together with the 
probability P that the influence of the factor is insignificant. For example, Excel 
offers several kinds of the analysis of variance; they are available in the menu 
Data, submenu Data analysis. The above problem of three oils belongs to the 
category “Anova: One factor”. It is sufficient to write the measured oil 
consumptions into an array of 3 rows × 5 columns (3 oil brands and 5 tests for 
each), put this array into the pertinent input cell in the menu, mark the command 
“merge the rows”, and to demand the confidence level of the test. After pressing 
ENTER, the results are shown in two tables. The first table gives the number of 
values in the individual compared cases (i.e. in the rows), their sums, averages and 
variances. The second table gives all important values mentioned above; the sum of 
squares is denoted SS and average variances are denoted MS. The reader is 
encouraged to solve this example with the same input data and to compare the own 
results with those in this chapter – for better understanding and practice.   
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This was a simple problem, with only one factor, just for illustration. Analysis of 
variance can be used for various problems, with sorting according to two, three or 
even more factors. More can be found in textbooks on statistics, e.g. [1 – 5]. Brief 
explanations are also available via Help command in computer programs for 
statistical analysis.  
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The supreme judge of every physical theory is an experiment. 

            Lev Landau 

 

Chance serves those, who are prepared. 

            Louis Pasteur 
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11. Design of Experiments (DOE)  

Any experimental investigation starts with preliminary experiments to obtain better 
insight into the problem in question. Much of the work at this initial stage is mainly 
intuitive and aims at better defining the problem. As soon as the goals of the 
investigation have been defined, the next step is to reduce the large number of 
possible variables to the several most important ones. Statistical analysis is useful, 
because it can help in choosing from all possible models. As the experimentation 
moves into the optimisation stage, statistical design of experiments is again 
effective in finding the optimum parameters. This chapter shows how experiments 
can be organised efficiently so that the demanded information is obtained with 
minimum effort. Important terms, such as blocks, randomisation and Latin squares 
are explained, as well as the principal rules and tables for design of experiments. 
Their use is illustrated on examples.    

The variables, which play a role in the experiments, can be classified as 
quantitative, qualitative, or binary. Quantitative response, which is measured by a 
continuous scale, is the most common and easiest to work with in statistical 
analysis. Qualitative response, like glitter or odour, can be ranked on an ordinal 
scale, for example from 0 for the worst alternative to 10 for the best one. Binary 
response produces one of two values, e.g. pass or fail, go or no-go, men or women. 

Factors are experimental variables controlled by the investigator. An important 
part of planning an experimental program is the identification of the important 
variables that affect the response, and deciding how to exploit them in the 
experiments. The scientific model of the problem is examined for important 
variables. Previous experience is very useful. We often take the advantage of 
dimensional analysis in establishing the factors (see Chapter 9). 

Factors may be independent in the sense that the level of one factor is independent 
of the level of other factors. However, two or more factors may interact with one 
another. This means that the effect of one variable on the response depends on the 
levels of the other variables. 
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Random sampling  

In every experimental program using a large number of tests or measurements 
made on individual specimens it is important that any of the specimens involved in 
the experiment has the same chance of being selected for the given test. This, so-
called random sampling, can be achieved by randomisation. One way to 
randomize a batch of specimens is to assign a number to each specimen, put the 
numbered tags into a jar, mix them, and then withdraw them like in a lottery. 
(Today, computer-generated random numbers can be used instead.) In this way, 
bias caused by uncontrolled second-order variables is minimised (e.g. that due to 
subtle changes in the characteristics of the testing equipment or in the proficiency 
of the operator). If metal specimens are taken from large forgings, the possibility of 
the variation of properties with the position in the forging must be considered. If 
average properties of the entire forging should be determined, randomisation of the 
specimens positions will minimize the bias due to the position in the forging. In 
addition to the primary variables that are under control of the experimenter there 
are other variables which may not be under control. Examples are small differences 
in the way different operators run an experiment or carry out a test, or differences 
in humidity or other environmental factors. These effects can be reduced using 
blocking design, described further. 
 
Block design, Latin squares 

In order to increase the reliability of the conclusions, the experiment is often 
repeated several times. However, a frequent problem in these experiments is to 
maintain the identical conditions. Often, one batch of a homogeneous raw material 
is sufficient only for one series of tests and another batch must be used for another 
test series. The properties of individual batches often vary. If this fact is neglected 
and all measured values are evaluated together, the results will exhibit bigger 
variance due to the combination of the natural scatter and the differences of 
properties among the batches. This drawback can be reduced or eliminated if the 
experiments are designed so that the differences among the repetitions are 
separated from the differences due to various batches. (See the chapter Analysis of 
variance and [1 – 5].) The experiments are divided into groups with approximately 
the same conditions. 
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The word block denotes a set of conditions that creates a homogeneous entity 
(from the experimental point of view). A block can be raw material from one batch, 
compared with the materials from other batches. A block can also be experiments 
done in the same chemical reactor under the same thermal conditions, analyses 
made by the same technician, or samples taken from a continuous process during a 
short time. 

In order to avoid systematic errors that could be caused by the same order of 
procedures in every block, it is recommended to carry out the individual 
experiments in random order, as described in the previous section. We speak about 
randomized blocks. For example, if we want to study the influence of temperature 
on the result of a chemical reaction, and if this investigation should be based on the 
raw materials from four batches (B1, B2, B3, B4) and four temperatures (T1, T2, T3, 
T4) for every batch, the following random arrangement can be used: 

            . Batch       Order of temperatures in each batch  . 

    B1  T1 T3 T4 T2 
    B2  T3 T1 T4 T2 
    B3  T4 T2 T3 T1 

    B4  T1 T4 T2 T3 

This arrangement resembles so-called Latin squares [1 – 5]. In such experiments, 
the same number of variants for every factor is used. An example of a Latin square 
“4 × 4” for three factors is below. The rows are assigned to the levels of the first 
factor, the columns are assigned to the second factor, and the letters A, B, C, D are 
assigned to the third factor. The creation of such system (rotation of the letters for 
the third factor) is obvious from the table. 

    Rows   C o l u m n s 

 .  1 2 3 4  . 

          1  A B C D 
          2  B C D A 
          3  C D A B 
          4  D A B C 
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Factorial experiments 

The necessary extent of experiments increases with the number of factors that play 
a role. If we want to determine whether the factor x has an influence on the 
quantity w, and how strong this influence is, we must make (at least) two 
experiments, i.e. for two values of x. If the influence of two factors should be 
revealed, we must make at least three or four experiments. This number will grow 
significantly with an increasing number of factors. The use of the rules for design 
of experiments, or DOE, can make the process more effective.  

DOE means creation of schemes with such combinations of input quantities, which 
generate the required information with minimum experimental effort. This can be 
illustrated for the case of three independent variables x, y, z and a dependent 
variable w. The independent quantities are usually called factors, and their 
individual values (levels) are denoted by subscripts, e.g. 1 for the lower level and 2 
for higher level if two levels are used. For example, the dependent variable 
corresponding to the experiment with the factor x on the lower level, with y on the 
upper level and with z on the upper level, is denoted w1,2,2. 

Also other notations are used to denote the arrangement of input quantities, for 
example –1 for lower level and +1 for upper level. If three levels are used, the 
subscript 0 is used for the intermediate level. Symbols + and – are also used and 
then arranged into tables for various numbers of factors (see at the end of this 
chapter). 

REMARK: The situation with three factors is used here for illustration, as it can be 
imagined easily in our “3-D” space. The described procedures can be extended for 
more factors.  

The simplest arrangement for three factors is depicted in Fig. 11.1. Four 
experiments are made, with the following combinations: w111, w211, w121, w112. The 
influence of x on w is obtained as the difference of values w211 – w111, the influence 
of y is obtained as w121 – w111, and the influence of z is w112 – w111. In these cases, 
always the influence of only one quantity is investigated, whereas the remaining 
quantities keep their original levels. If we want to obtain information on the 
variance, we must repeat the experiments at least twice; that is we have to make at 
least eight experiments. 
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Figure 11.1. Simple experiment with three independent factors (x, y, z), each on two levels. 

 
More information is obtained from a full factorial experiment. The quantity of 
our interest, w, is determined for all possible combinations of all factors and levels 
(Fig. 11.2). The necessary number of experiments is, generally, 

           nexp = (nlevels)
Nfactors         (11.1) 

if the number of levels nlevels is the same for every factor. For three factors (Nfactors = 
3), each at two levels, the number of experiments is nexp = 23 = 8, with the 
combinations w111, w211, w121, w112, w221, w212, w122, w222 (see Fig. 11.2 and also the 
table at the end of this chapter). If various numbers of levels are used for the 
individual factors, the number of experiments is 

    nexp = nlevel 1 × nlevel 2 × nlevel 3 × …        11.(2) 

where nlevel,j denotes the number of levels for the j-th factor.  

      
Figure 11.2.  Full factorial experiment with three independent factors.  
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An advantage of full factorial experiments is that always the results of all 
experiments are used for ascertaining the influence of any factor. This increases the 
accuracy of results. For example, the average influence of factor x in our case with 
three factors is obtained by summing its effects for various values of factors y and z 
and dividing by four (Fig. 11.2): 

Ux = [(w221–w121) + (w211–w111) + (w222–w122) + (w212–w112)] / 4        (11.3) 

The result can be rewritten: 

Ux = [(w221 + w211 + w222 + w212) – (w121 + w111 + w122 + w112)] /4        (11.4) 

The term in the first brackets is the sum of all results obtained with x on the upper 
level, and the term in the second brackets is the sum of all results obtained with x 
on the lower level. Equation (11.4) can also be rewritten as 

Ux = (w221 + w211 + w222 + w212 – w121 – w111 – w122 – w112) / 4         (11.5) 

Similarly the influences of y and z are obtained as:   

Uy = (w121 + w221 + w122 + w222 – w111 – w211 – w112 – w212) / 4         (11.6) 

Uz = (w122 + w222 + w112 + w212 – w121 – w221 – w111 – w211) / 4         (11.7) 

Another advantage of factorial experiments is the possibility of revealing 
interactions from the same experiments. Interaction means that the influence of a 
certain factor, say x, depends also of the values of factor y or z, or both. The 
situation is schematically depicted in Fig. 11.3 with curves for various values of z; 
the left illustration is without interaction, and the right one corresponds to the x–z 
interaction. If, in our experiment with three factors, the interaction among the 
factors x and z should be revealed, the solution is as follows:  

1) The effect of x at one level of z is subtracted from the effect of x at the second 
level of z: [(w212–w112) minus (w211– w111)].   

2) As the influence of y is not considered, similar effects must be added for the 
second level of y: [(w222–w122) minus (w221– w121)]. The result must again be 
divided by four: 

Uxz = [(w212–w112) – (w211– w111) + (w222–w122) – (w221– w121)] / 4      (11.8) 

Expression (11.8) can be rewritten as: 
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Uxz = (w212 + w222 + w111 + w121 – w211 – w221 – w112 – w122) / 4        (11.9) 

The effects of other interactions could be obtained in a similar way. 
       

  

   

 

  

 

Figure 11.3.  Experiments without interaction (a) and with interaction (b) of some factors. 
The individual curves correspond to various values of factor z. 

A practical illustration of design of experiments (DOE) follows. 

Example. It is necessary to reveal the cause of creation of surface cracks on steel 
springs during quenching. The three most influential factors were: temperature of 
steel before quenching (Ts), temperature of oil bath (To), and carbon content in the 
steel (C). 

For quantitative characterisation of their influence, a full factorial experiment was 
proposed, with each factor on two levels: 

Level  Ts (°C)     To (°C)       C (%) 
Low ( – ) 830        70  0.5 
High ( + ) 910      120  0.7   

The number of experiments is 23 = 8. The combinations of the levels and the 
corresponding numbers of cracks N found on the hardened springs are given in the 
table on the next page (cf. also Fig. 11. 2; x corresponds to Ts, y corresponds to To, 
and z corresponds to C; + corresponds to higher level and – corresponds to lower 
level): 
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Test No. Ts To C   Ts(°C)  To(°C)    C(%) N   
     1 – – – 830    70    0.5 67 
     2 + – – 910    70    0.5 79  
     3 – + – 830   120    0.5 59  
     4 + + – 830   120    0.5 90 
     5 – – + 830    70    0.7 61  
     6 + – + 910    70    0.7 75 
     7 – + + 830   120    0.7 52 
     8 + + + 910   120    0.7 87 

The average influences of steel temperature (Us), oil temperature (Uo) and carbon 
content (Uc), calculated via Equations (11.5) – (11.7), are: 

Us = (79+90+75+87–67–59–61–52)/4  = 23.0  

Uo = (59+90+52+87–67–79–61–75)/4  = 1.5 

Uc = (52+87+61+75–59–90–67–79)/4  = –5.0 

The steel temperature has the strongest influence; the influence of carbon content 
(in the range 0.5 ÷ 0.7 %) is small and the influence of oil temperature (in the range 
70°C ÷ 120°C) is negligible.  

The interaction of steel temperature and carbon content, following from Equation 
(11.9), is  

Usc = [(75+87+67+59)–(79+90+61+52)]/4 = 1.5   

i.e. also negligible. The other interactions can be found in a similar way. 

Very informative is a graphical representation (Figure 11.4). The horizontal axis 
represents the average of all values, i.e. (67+79+59+90+61+75+52+87)/8 = 71.25. 
The influence of steel temperature is depicted by two points at the left: one, giving 
the average number of cracks in the cases where the temperature was on the lower 
level, i.e. (59+67+52+61)/4 = 59.75, and the other, corresponding to the higher 
temperature, (90+79+87+75)/4 = 82.75. For better visibility they are connected by 
a straight line. NOTE: 82.75 – 59.75 = 23.0 = Us. Figure 11.4 also depicts the 
influence of oil temperature and carbon content.  
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Figure 11.4.  Influence of individual factors on the quality of springs. 

Sometimes it is necessary to investigate the influence of a higher number of 
factors. The following table gives the levels of individual factors for full-factorial 
experiments with two, three and four factors, each on two levels. Four tests are 
necessary for two factors (columns A,B), eight tests for three factors (A,B,C), and 
16 tests for four factors (A,B,C,D). The table can be easily extended for more 
factors if one looks how pluses and minuses vary at the individual factors, 
beginning from A.   

Test  A B C D  . 
   1 – – – – 
   2 + – – – 
   3 – + – – 
   4 + + – – 
   5 – – + – 
   6 + – + – 
   7 – + + – 
   8 + + + – 
   9 – – – + 
 10 + – – + 
 11 – + – + 
 12 + + – + 
 13 – – + + 
 14 + – + + 
 15 – + + + 
 16 + + + + 
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In industrial research, for example in optimisation of manufacturing conditions, 
more factors often play a role, and the number of experiments for a full-factorial 
experiment would be very high (e.g. 256 experiments for 8 factors, each on two 
levels). Here, reduced factorial experiments are often used, where some 
combinations of levels are omitted. For this purpose, special schemes (so-called 
orthogonal arrays) have been developed. This topic goes beyond the scope of this 
book and the reader is referred to the books on design of experiments, and robust 
design and the relevant methods developed by Genichi Taguchi and other authors 
[6 – 9]. For design of experiments (DOE) in general, an engineering handbook [10] 
and a comprehensive monograph [11] can be recommended. 
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12. Experimental Finding of Maximum 
or Minimum  

A usual problem in research is finding a maximum or minimum of some quantity, 
for example certain parameter of a machine or a chemical compound, efficiency, or 
costs. This chapter shows how an extreme of a function (maximum or minimum) 
can be found in cases when the analytical form of this function is not known and its 
values can be obtained only by experiments or by computer modelling for concrete 
values of the input quantities. An intuitive method of successive changes of the 
input values is explained first, then the method of the steepest gradient, and the 
simplex method, which is very efficient for cases with several independent 
variables. The procedures will be illustrated on an example of search for a 
maximum. Also the methods of simulated annealing or genetic algorithms are 
explained.  

A. Gradual changes of the individual variables  

The experimental search for a maximum of a function of one variable, y = f(x), is 
very easy (Figure 12.1). We start with two experiments, for values x0 and x1. If the 
value y(x1) was higher than y(x0), we make the next experiment with x changed in  

 

Figure 12.1.  Search for a maximum of a function of one independent variable. 
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the same direction; x2 = x1 + ∆x, where ∆x is a suitably chosen increment. In this 
way we proceed until y starts decreasing; the maximum lies approximately at the 
value of the preceding step or near it (Fig. 12.1). A more accurate position of the 
maximum can be found by making more experiments here. 

If we look for a minimum, we move in the opposite direction.  

With two independent variables we assume that the function z(x, y) can be 
approximated by a polynomial, at least in the vicinity of a chosen starting point x0, 
y0. Several experiments are made, in which only one variable, say, x, is changed, 
while y keeps its initial value. In this way we proceed in the direction of increasing 
z until z starts decreasing. The preceding step corresponded to the local maximum 
of z. Now, we move from this point in perpendicular direction and change only y 
and proceed until the local maximum of z is attained, and so on. The situation is 
depicted in Figure 12.2.  
 

 

 

 

 

 

 
 
Figure 12.2.  Experimental search for a maximum of a function of two independent 
variables x and y. 

 
If the approximate position of the maximum (or minimum) is roughly known, it is 
also possible to make several experiments around this point, for example 4 to 8 for 
two independent variables, and fit the obtained values by a response surface (Fig. 
13.1 in Chapter 13); a second order polynomial is often sufficient. The accurate 
position of its extreme can then be found using standard mathematical methods or a 
suitable solver. More on this topic can be found in Chapter 13 and in the literature, 
recommended there.  
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B. Gradient method  

This method tries to approach to the maximum (or minimum) in the fastest way, 
which is in the direction of the gradient to the response surface [1–3]. This gradient 
must be found first, as it will be shown here for two independent factors. Several 
experiments are made around a suitably chosen point x0, y0. The z (x, y) values can 
be fitted by a polynomial, for example 

  z = a0 + a1x + a2x
2 + a3x

3 + … + b1y + b2y
2 + …             (12.1) 

The gradient vector is obtained generally by means of partial derivatives, 

grad z = ∂z/∂x i + ∂z/∂y j + …                       (12.2) 

i and j  are the unit vectors in directions x and y, respectively. For the polynomial 
(12.1) the gradient is 

grad z = (a1 + 2a2x + 3a3x
2 + …) i + (b1 + 2b2y + …) j        (12.3) 

In a small vicinity of the point x0, y0, often a first-degree polynomial (tangential 
plane) is sufficient,  

z = a0 + a1x + b1y                       (12.4) 

with the gradient 

  grad z = a1 i + b1 j                            (12.5) 

Now, we proceed in this direction towards the local maximum, with steps 
proportional to a1 in direction x and simultaneously to b1 in direction y, until the 
values of z start decreasing. Again several experiments are made around this point, 
the direction of fastest growth is found, etc. The application of this approach for 
three and more variables is similar.  

C. Simplex method  

This is a simple method, in which the input variables approach to the optimum 
stepwise according to an algorithm proposed by Spendley et al. [4]. The knowledge 
of gradient is not necessary. In the first step, a simplex is created. This is a simple 
fictitious convex body with n + 1 vortices; this number is by one higher than the 
number n of input variables (for example, a triangle for two independent variables 
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and a tetrahedron for three input variables). The coordinates of the vortices 
correspond to the values of input parameters. For all these points, the output 
quantity z is calculated. In the next step, a new simplex is created by replacing the 
vortex with the worst value of z by a new one, whose coordinates are mirror-
symmetrical. (In a two-dimensional space, the new simplex is obtained by skipping 
the original one over the edge opposite to the worst vortex, Fig. 12.3a.) For this 
new point, the dependent variable is calculated. Now, the values of the dependent 
variable for all vortices of the new simplex are compared, and again the worst 
vortex is omitted and the new one is created in the same way. In this manner we 
proceed until the quantity of interest attains the extreme or acceptable value. The 
reaching of optimum is usually indicated by the oscillation of the simplex between 
two positions, or by the movement of the simplex bodies along the closed curve 
(Fig. 12.3b). 

REMARK: A thoughtful reader will notice the similarity between this method and 
Figure 1 for one independent variable.    

 a )  b ) 

Figure 12.3. Simplex method. a) Non-dimensional simplex 1-2-3 for two independent 
variables (x1, x2) and one optimisation step (creation of vortex 4); b) movement towards the 
optimum.  

The practical procedure is as follows [4, 5]. First, the coordinates xi,0  of the starting 
point (= the centroid of the simplex) are chosen, as well as the increments of 
individual variables ∆xi. (The first subscript denotes the variable; i = 1, 2,… n, 
where n is the number of independent variables; the second subscript denotes the 
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step.) Then, the coordinates of the individual n+1 vortices of the first simplex are 
calculated by means of the associated non-dimensional regular simplex as [4, 5]: 

       xi,1 = xi,0  +  zi ∆xi            (12.6) 

zi denotes the radius of the sphere inscribed (ri) or circumscribed (Ri) to the 
associated simplex. The centroid of this simplex is in the centre of the coordinate 
system, and the pertinent radii are calculated using the following matrix and 
formulae: 
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The column denotes the variable, and the row denotes the vortex number; the 
matrix has n columns and n + 1 rows. The response of the structure is then 
calculated for all n + 1 combinations of input values. The xi coordinate of the new, 
generally (j + 1)-st vortex, is then determined as 

   *
,

1
,1,

2
ji

n

i
jiji xx

n
x −∑=

=
+                     (12.8) 

The first subscript denotes the variable (x1, x2, …), the second subscript denotes the 
vortex numbers. xi,j

∗ is the coordinate of the point with the worst value of the 

optimisation criterion (y), and (Σ xi,j)/n is the average of the coordinates of all 
vortices (of the j-th simplex) except the worst one. In this way, all n coordinates of 
the new vortex are obtained. 

The procedure is best shown on an example. Let us have n = 2 independent 
variables, x1 and x2. (For example, x1 is the width of a cross section of a load 
carrying component, and x2 is its height). Let the coordinates of the starting point 
be x1,0 = 200 mm, x2,0 = 500 mm, and their increments in the optimisation steps let 
be ∆x1 = 20 mm, ∆x2 = 30 mm. (Generally, the individual variables can have 
different dimensions.) The non-dimensional matrix (12.7) in this case has n = 2 
columns and n + 1 = 3 rows:  
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The left (right) column expresses the non-dimensional coordinates for x1 (x2), the 
rows pertain to the first, second and third vortices. The rj and Rj values were 
calculated using the formulae at the right side of Equation (12.7). 

The coordinates of the three vortices of the first simplex are (with respect to Figure 
12.3a) as follows: the x1 value of the first vortex is x1,1 = x1,0 − 0.500×∆x1 = 200 − 

0.500×20 = 190 mm, the x1 value of the second vortex is x1,2 = x1,0 + 0.500×∆x1 = 

200 + 0.500×20 = 210 mm, and the third vortex is x1,3 = x1,0 + 0×∆x1 = 200 + 0×20 

= 200 mm. The corresponding values of x2 are: x2,1 = x2,0 − 0.289×∆x2 = 500 − 

0.289×30 = 491.33 mm, x2,2 = x2,0 − 0.289×∆x2 = 500 − 0.289×30 = 491.33 mm, 

and x2,3 = x2,0 + 0.578×∆x2 = 500 + 0.578×30 = 517.34 mm. All values are arranged 
in the table:       

    vortex        x1          x2 
       --------------------------------------. 
       1      190        491.3 
       2      210        491.3 
       3      200        517.3 

Now, if the worst value of the optimisation criterion belonged, e.g., to the vortex 
No. 3, then the coordinates of the new vortex (No. 4) would be x1,4 = 2(190 + 
210)/2 – 200 = 200 mm, and  x2,4 = 2(491.3 + 491.3)/2 – 517.3 = 465.3 mm. The 
new simplex is defined by the vortices 1, 3 and 4 [see also Fig. 33a; here the non-
dimensional coordinates of vortex 4 are 0 and –0.289 – (0.289 + 0.578) = –1.156. 
Then, the value of optimisation criterion (y) at this vortex is computed, the y values 
for the points 1, 2 and 4 are compared and the coordinates of the vortex 5 are 
calculated, and so on, until the optimisation criterion stops growing. 

The described simplex method has several advantages. The algorithm is very 
simple and the coordinates of the new vortex are calculated directly from those of 
the previous simplex. No gradients must be determined. One gets closer to the 
optimum in every step. The method is suitable also for higher number of variables. 
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As the construction of a new vortex is based not on the exact values of the 
dependent variable at the individual vortices, but on their comparison, there are no 
excessive demands on the accuracy of results in this stage of optimisation. If 
constraints exist for some of the variables, and the coordinates of a new vortex 
would move outside the allowable limits, it is possible to omit not the vortex with 
the worst value, but with the second (or third) worst one.  
 
D. Further methods 

Also other methods exist for finding the extreme of a function. They are more 
demanding and need a computer and a suitable program. Here, only two will be 
mentioned: simulated annealing and genetic algorithms. 

Simulated annealing. The methods, described here until now, tried to approach 
the maximum stepwise so that in each step the values of the independent variables 
were changed in the direction of the increase of the investigated quantity. A 
drawback is that this procedure can find only local maximum. Sometimes, more 
local extremes can exist, and the task usually is to find the global maximum. 

REMARK. The search for minimum is analogous. The term simulated annealing is 
used in analogy with heat treatment (annealing), in which slow controlled cooling 
of a hot body leads to the state with minimum internal energy and defects. 
Simulated annealing proceeds in steps. In contrast to the gradient methods, 
described before, this method enables random search in various directions, and 
accepts (with some probability) even worse solutions than current ones. Thanks to 
this approach one can (in the following steps) get out from the local minimum and 
consider also other possible solutions. Gradually the solution approaches to the 
global maximum (or minimum) in the investigated region.  

The method of simulated annealing needs a suitable computer program, such as 
Simulated Annealing Solver [6], which is a part of Global Optimization Toolbox 
within the universal computing tool Matlab. The details can be found at 
http://www.mathworks.com,. The first information on the method can be found, 
e.g., in Wikipedia and sources quoted there. 

Genetic algorithms solve optimisation problems by mimicking principles of 
biologic evolution. Such algorithm generates various solutions of the investigated 
problem. It works with so-called population, every member of which constitutes 
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one solution of the problem. The solution is usually represented by binary numbers, 
i.e. an array of 0 and 1, but also other representations are used, for example with 
matrices. At the beginning of optimisation process (the first generation) the 
population consists of totally random members. Then, several individuals are 
chosen from it, which are then modified by mutations and crossover. (Mutation 
means random change of a part of the individual, and crossover means mutual 
exchange of parts of several individuals.) In this way, a new population arises. 
After this creation of new generation, so-called fitness function is calculated for 
each individual, which characterises its ability and thus the quality of the solution. 
Further selection and modification is done with respect to the obtained value of the 
fitness function. This procedure is repeated, so that the quality in the population 
gets gradually better („upgrading“). The process is usually stopped on attaining a 
sufficient quality of solution, or after the elapse of certain time.  

Optimisation via genetic algorithms can be done, for example, using the Genetic 
Algorithm Solver program [7], a part of Global Optimization Toolbox of Matlab. 
Details can again be found at http://www.mathworks.com or, generally, in 
Wikipedia and sources quoted there. 
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13.  Sensitivity Analysis  

Input quantities often vary or deviate from nominal values, which causes deviations 
of the investigated quantity from its nominal value. The task of sensitivity analysis 
is to show how these variations contribute to the deviations of the investigated 
quantity from its nominal or assumed value. This is important for the prediction of 
the response under real conditions, i.e. with some uncertainties or variations of 
input quantities. Sensitivity analysis can be made using analytical expressions or 
simulation probabilistic methods. In the former case the relationship between the 
output quantity z and input variables x1, x2, ... xn, so-called response function, 
should be known. The exact analytical expression,  

y = f(x1, x2, ... xn)          (13.1) 

is available only for simple problems. Often, the response must be found by 
experiments or by time-consuming numerical solution. In such cases, an 
approximate expression is used, obtained by regression-fitting the response for 
several combinations of input variables. 

The simplest form of a response function is a polynomial, for example 

    ....3
3

2
210 ++++= iiiiiii xaxaxaay         (13.2) 

 or 

    y y a x x b x xi i i i i i i= + − + − +0 0 0
2( ) ( ) ...., ,       (13.3) 

Equation (13.3) expresses the changes of y as a function of deviations of input 
variable xi from the nominal value xi,0. Subscript i denotes i-th variable, and yi 
corresponds to this variable. These regression functions represent the sections 
through the response surface (Fig. 13.1). In the vicinity of the design point (xi,0), 
polynomials up to the second order are often sufficient. 

Polynomial, or even a linear function can also be used for the approximation of 
other relationships (e.g. 1/x or √x) if suitable transformation is made. Solvers in 
universal programs enable easy determination of regression coefficients in complex 
functions by direct use of the least squares method, without transformations.   
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Figure 13.1.  Response surface for 2 independent variables, with cuts x1, x2 = const. 

Further comments to response functions can be found in Chapter 14. 

Sensitivity analysis depends on whether the deviations of individual quantities 
from their nominal values are considered as deterministic or random [2, 3].  
 

Deterministic deviations of input quantities 

The sensitivity of the response to the variations of individual variables is obtained 
from partial derivatives at the pertinent point, 

     ( )ii xyc ∂∂=           (13.4) 

The sensitivity coefficients ci correspond to the constants ai,1 in (13.2) and ai in 
(13.3). Further information is obtained from relative sensitivities, 
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y0  and xi,0 are the values corresponding to the design point. Coefficient cri expresses 
the relative change of y (in %, for example) caused by 1% deviation of xi from the 
nominal value xi,0. For linear approximation, cri = ai × (xi,0 /y0). 

Sensitivity analysis also reveals the input variables that have negligible or small 
influence on the variability of the output quantity y, and may be considered as 
constants in the more complex analysis with more input quantities. (Note that the 
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variance of the output depends on the variances of the input quantities xi and also 
on the sensitivities ci !)   

If the increments ∆xi are small, the response surface may be approximated by a 
linear expression 

   nnxaxaxaay ++++= ...22110                       (13.6) 

which represents a plane for two independent variables (n = 2) and a hyperplane for 
more input variables. The constants correspond to the sensitivity coefficients 
(except a0), and are obtained by fitting the n + 1 values of response by a multiple 
linear regression function. (Also Excel can be used for this purpose). The 

increments of y are calculated via the first derivatives. For y = f(x1, x2, …, xn), the 
infinitesimal increment of y is generally 

       dy = (∂y/∂x1)dx1 + (∂y/∂x2)dx2 + … + (∂y/∂xn)dxn          (13.7) 

∂y/∂xi expresses partial derivatives. In practical analysis, the differentials are 

replaced by small finite increments ∆, 

      ∆y = (∂y/∂x1)∆x1 + (∂y/∂x2)∆x2 + … + (∂y/∂xn)∆xn          (13.8) 

The application of sensitivity analysis can be illustrated on an example [1, 3] of a 
small flat spring for a measuring device (Fig. 13.2). We want to know the 
sensitivity of its compliance to the variations of its dimensions and elastic modulus 
of the material. This compliance is  

     C = y/F = 4L3/(Ewt3)                        (13.9) 

y is deflection, F − load, L − length, E − elastic modulus, w − spring width, t − 
spring thickness. The partial derivative of Equation (13.9) with respect to the first 
variable (x1 = L) is 

           ∂C/∂L = 3L2 × 4/(Ewt3) = [4L3/(Ewt3)] × 3/L = (3/L) × C     (13.10) 

and the increment of compliance due to an increment of the beam length ∆L is thus 

     ∆C = 3C (∆L/L)        (13.11) 
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Figure 13.2.  Spring for a measuring device [1]. 

The formulae for other variables are obtained in a similar way. The resultant 
expression, involving the changes of all variables, is 

    ∆C = C (3∆L/L – ∆E/E – ∆w/w – 3∆t/t)       (13.12) 

The relative sensitivity 

    ∆C/C = 3∆L/L –  ∆E/E – ∆w/w – 3∆t/t        (13.13) 

shows illustratively the influence of the individual quantities. If the spring will be 
longer by 1% than the nominal value, the compliance will be higher by 3%; if the 
elastic modulus E will be higher by 1%, the compliance will be lower by 1%, etc. 
The constants in the individual terms correspond to their exponents in Equation 
(13.9), and the signs depend on whether the quantity was in the numerator or 
denominator. 

Influence of random variations of input variables 

The combined influence of random variations of input quantities can be evaluated 
via the expression for the variance of a function of several random variables. For 
small variance,  
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sxi is the standard deviation of xi. The far right-hand term is nonzero if the variables 
are correlated. 

The response surface function for all factors can be written approximately as a 
polynomial: 
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        y y a x x b x x c x x x xi i i i i i i i i j j= + −∑ + −∑ + −∑ − +0 0 0
2

0 0( ) ( ) ( )( ) ..., , , ,      (13.15) 

the summation is done for all independent variables. The constants are obtained by 
regression fitting the points around the design point. For non-correlated variables 
and linear approximation (6) of y, Equation (13.14) becomes 
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The individual components, syi
2 = ai

2sxi
2, give the variances of y caused by random 

variations of i-th variable. The contribution of sxi
2 to the total variance sy

2 is larger 
for larger variance of the variable xi and for larger sensitivity (ai) of the output y to 
the changes of xi. Division of Eq. (13.16) by sy

2 gives the relative proportions of 
individual factors in the total variance, 
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The influence of variance of the individual input factors can be assessed by means 
of the ratio of the variation coefficient of the i-th variable and the variation 
coefficient of the output, corresponding to the variance of this variable only, 
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Sensitivity analysis using simulation methods 

The influence of random variability of input quantities can be assessed even 
without analytical expression for the response function – by means of the 
probabilistic simulation technique Monte Carlo, described in the next chapter. In 
this case, the sensitivity analysis consists of making m trials, the only random 
variable being xi, and then calculating the partial variance syi

2 of the obtained values 
y. Then, using the characteristics sxi, xi,0 and y0, and Equations (13.16) and (13.18), 
one can determine the ratios of variation coefficients vi or the sensitivity 
coefficients ai (= sy/sxi) and the coefficients of relative sensitivity [2]. 

The approximate value of the total variance is obtained by summing up the partial 
variances, 
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A more accurate value is obtained if all input variables, x1, x2, ... xn, are 
simultaneously considered as random quantities in the Monte Carlo simulations. 
Dividing Equation (13.19) by the total variance sy

2 gives the relative influence of 
individual factors, similarly to Eq. (13.17).  

Examples of applications of uncertainty analysis for the prediction of lifetime can 
be found, for example, in [4, 5] and in Chapter 19 of [1]. 

Acknowledgment. Parts of this chapter were previously published in Chapter 19 of 
Ref. [1].    
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14. Simulation Methods for Study of

Random Quantities and Influences

Today, a great part of research is made by computer simulations. Probabilistic 
simulation methods can be used to study the influence of random variability of 
various quantities on the properties of machines, on chemical or biological 
processes, on the load carrying capacity or reliability of a structure and in many 
other cases. A very powerful tool for study of random phenomena or processes is 
the Monte Carlo technique. In some cases, useful results can be obtained with less 
effort using the Latin Hypercube Sampling. 

Monte Carlo simulation method 

The Monte Carlo method is a simple computer technique based on performing 
numerous fictitious experiments with random numbers [1 - 3]. Its use is universal 
and does not need a special knowledge of probability theory. The only information 
one needs is the relationship between the output and input quantities,  

y = f(x) ,  or   y = f(x1, x2, x3, …)       (14.1) 

and the knowledge of probability distributions of the input variables. The method 
repeats trials with computer-generated random numbers processed by the relevant 
mathematical operations. In each ”trial“, the input variables x1, x2, …, xn are 
assigned random values, but such that their distributions correspond to the 
probability distribution of each variable. With these values, the output quantity y is 
calculated via Equation (14.1). From the results, a histogram can be constructed 
(Fig. 14.1), which corresponds to the distribution of y. 

The generated values can be used for the determination of the average value or of 
the probability that y will be lower or higher than a chosen value y*, or for the 
determination of values, which will be exceeded (or not achieved) with some 
probability (e.g. the time to failure, maximum expectable load or deformation). 

Various commercial computer programs exist for Monte Carlo simulations  [5 – 7], 
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Figure 14.1. Histogram obtained by the Monte Carlo simulation program Ant-Hill [4, 5]. 

but they can also be created. The base of such programs is a generator of random 
numbers. Actually, these numbers are not truly random, but created via a suitable 
algorithm. The principle of these generators is simple. For example, the so-called 
congruential generator gives random numbers with uniform distribution in the 
interval (0; 1) in the following way. One number is chosen as the base for the series 
of random numbers u (e.g. u0 = 0.5284163). Now, in the first step, this number is 
multiplied by some suitable number Q, for example 997. The product is 997 × 
0.5284163 = 526.8310511. The first random number u1 is then created as the part 
of the result, lying behind the decimal point; in our case, u1 = 0.8310511. In the 
second step, u1 is again multiplied by the same number Q, 997 × 0.8310511 = 
828.5579467, and the second random number is created as the decimal part of the 
result (i.e. u2 = 0.5579467). The reader is encouraged to make several steps in this 
way; for a check, u3 = 0.2728599. A long series of these numbers has 
approximately uniform distribution. Many other algorithms exist; e.g. one for 
normal distribution is based on central limit theorem. Generators of random 
numbers are also a part of universal computer programs, such as Matlab. The use 
of commercial generators is strongly recommended, as they have undergone 
thorough statistical testing to prove that they behave nearly as really random. Even 
Excel has its own generator, though with limited possibilities. 
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Creation of random numbers with specified distributions 

The commercial programs offer often-used distributions, for example uniform or 
normal. The random numbers, corresponding to other analytically defined 
distributions, can be generated via uniform distribution. The basic idea is that the 
distribution function F for any continuous random variable is also a random 
quantity, distributed uniformly in the interval (0; 1). Thus, if the distribution 
function of random quantity x is z = F(x), then the random numbers x can be 
obtained from the random numbers z with uniform distribution in the interval (0; 1) 
using the inverse formula (Fig. 14.2): 

     x  =  F–1 (z)                        (14.2) 

For example, the distribution function for exponential distribution is z = F(x) = 1 – 
exp(–x/x0), with the parameter x0. The inverse transformation for this distribution is 
x = – x0 ln(1 – z). 

 
 
 
 
 
 
 
 
 
 
 

Figure 14.2. Generation of random numbers x by inverse probabilistic transformation [4]. 

In some cases, the distribution of a random quantity x has a complex shape and can 
only be described by a histogram (obtained from measurements). This histogram is 
then used for the construction of distribution function F(x). This function can be 
approximated either by constant values of F in the individual subintervals of x or 
by interpolation within each class, 
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i = 1, 2, …, n denotes the interval. The formula at the right generates x 
corresponding to the probability F. The F values are generated as random numbers 
with a uniform distribution. 

A typical feature of the Monte Carlo method is that the characteristic values 
(average, quantiles, probabilities corresponding to certain values of y, etc.), 
obtained as a result of n trials, are never the same in two sets of simulations. The 
results are thus only approximate, but they are closer to the actual values for more 
trials. The number of simulation trials n, needed for achieving some accuracy of 
results, is given approximately by the formula 

             n  =   uα/2
2 (1 – P) / (Pδ2)           (14.4) 

P is the expected (estimated) probability of the investigated phenomenon, δ is the 

allowed relative error in the determination of P, and uα/2 is the α/2–critical value of 

standard normal variable for the probability α  that the actual value of P will lay 

outside the interval P ± δ. The necessary number of simulations significantly grows 
with decreasing probability. For example, if the assumed probability P = 0.01, the 
allowed relative error δ = 10% and confidence level α = 5% (with uα/2 = 1.96), then 
≈ 40,000 simulation trials are necessary. For P = 0.0001, it is as many as 4,000,000 
trials, etc. [Note: Equation (14.4) is based on the fact that the number of outcomes 
of an event of probability P in n repetitions has binomial distribution, and this 
distribution can be approximated for high n by normal distribution.] 

More complex cases, Response Surface Method  

The direct use of the Monte Carlo method is suitable for simple relationships y = 
f(x1, x2, …). Often, the response y must be obtained by numerical solution. If one 
such trial lasts minutes or more, then thousands of simulations would consume too 
much time. In these cases, more effective is the combination of the MC technique 
with the response surface method (RSM), mentioned in Chapter 13. The principle 
is that the “accurate” response is calculated only for selected values of input 
variables, the results are fitted by a simple regression function (response surface, 
Fig. 13.1 in Chapter 13), and the Monte Carlo trials are done with this function. 
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The relationship between the output quantity y (deformation, load-carrying 
capacity of a structure, amplitude of vibrations) and the input variables can often be 
fitted by a polynomial function: 

   y   =   a0  + ∑aixi  +  ∑bixi
2  + …  +  ∑cijxixj  + …       (14.5) 

This approximation is possible if the relationship between input and output has a 

similar character (e.g. y ∼ x3) or if the output quantity changes in the considered 

interval only little. If it differs from a polynomial significantly (e.g. y ∼ 1/x3 or y ∼ 
x1/2), equation (14.5) cannot give a good approximation in a wider interval. Several 
ways for improvement exist. Linear or polynomial function may be used for the 
approximation of other relationships if suitable transformations are made. For 
example, the relationship y = a/x3 can be expressed as y = az by introducing a new 
variable z = 1/x3; the relationship y = ax1/x2

2 can be converted to multiple linear 
regression Y = A0 + A1X1 + A2X2 using logarithmic transformations, etc. The fitting 
of response function can sometimes be improved by dividing the definition interval 
of input quantities into subintervals and using different regression functions for 
each.  

The quality of the fit can be evaluated by means of residual standard deviation sres. 
Also, the differences between the ”accurate“ values and those on the response 
surface can serve as a criterion. With good response surface, these differences are 
randomly positive and negative. (See also the residuals and Fig. 7.2 in Chapter 7.)   

Application of the Monte Carlo method for correlated quantities 

The application of Monte Carlo technique to problems with several input variables 
is simple if the individual input quantities are mutually independent (e.g. material 
properties and the geometry of a component). Sometimes, however, correlation 
between them exists (for example between mass density and Young’s modulus of 
concrete). A special case is autocorrelation, when the value of a random quantity at 
some point is related partly to the values at neighbouring points or in preceding 
times. Examples are the properties of soil at foundations or the temperature of a 
building structure: it varies during a day or from a day to day, but depends partly 
also on the season in the year. 

The omission of correlations can lead to errors. For example, a very low value of 
elastic modulus of concrete could be generated simultaneously with a very high 
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value of strength, but this does not correspond to reality. If correlations are 
respected, the calculations reflect the reality better and the predictions are more 
accurate. Sometimes, also, a quantity needed for the analysis is unavailable, but can 
be replaced by a correlated quantity. For example, if the direct measurement of the 
tensile strength of an existing massive steel structure is impossible, the information 
from hardness tests can sometimes be used. 

The strength of the relationship of two quantities is characterized by the correlation 
coefficient r, defined as 

     r = cov(xy) /(sxsy)                      (14.6) 

where cov(xy) is the covariance of x and y, and sx and sy are the standard 
deviations. The correlation coefficient r ranges from –1 to +1. For r = 0, no mutual 
relationship exists, whereas r = +1 or –1 corresponds to deterministic (functional) 
relationship. For r > 0, the x values grow with growing y, and decrease for r < 0. 
(NOTE: The correlation coefficient is equal to the square root of the coefficient of 
determination r2, explained in Chapter 6.) Three examples with the same mean 
values and standard deviations and different values of r are shown in Figure 14.3. 

 

Figure 14.3. Two correlated quantities x1 and x2 with the same means (µ1 = 100 and µ2 = 

700) and standard deviations (σ1 = 30 and σ2 = 150) and various correlation coefficients r 
[8, 9]. 

If two correlated random quantities x1 and x2 should be generated, and if the 
regression function x2,reg = f(x1) is known, as well as the coefficient of 
determination r2 of this approximation, the following procedure may be used [7, 8]. 
First, the random value of x1 is generated. Then, the corresponding value of x2 is 
generated as  
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    x2 = f(x1) + ∆x2 = f(x1) + us2,res = f(x1) + us2(1 – r2) ;       (14.7) 

s2,res is the sample residual standard deviation of x2 around the regression function f, 
and u is  

the random quantile of standard normal distribution (provided that the distribution 
of individual values x2 around f is normal). The right-hand part of Equation (14.7) 
uses the fact that the residual deviation s2,res of x2 can be expressed by means of the 
standard deviation s2 and the coefficient of determination r2 pertaining to the 
regression function x2 = f(x1).  

For more information on the Monte Carlo method, the books [1, 2] can be 
recommended. Many examples of practical applications can be found in [3]. 
Various commercial Monte Carlo programs for engineering applications exist, for 
example [5 – 7]; several others are mentioned in Chapter 26 of the book [4]. 

Latin Hypercube Sampling (LHS) 

The Monte Carlo technique has two disadvantages. First, it usually needs a very 
high number of simulations. If the output quantity must be obtained by time-
consuming numerical computations, the simulations can take a very long time. 
Also the response surface method is not always usable. Second, it can happen that 
the random numbers of distribution function F (which serve for the creation of 
random numbers with nonstandard distributions) are not distributed sufficiently 
uniformly in the definition interval (0; 1). Sometimes, more numbers are generated 
in one region than in others, and the generated quantity has thus a somewhat 
different distribution than demanded. This problem can appear especially if the 
output function depends on many input variables. 

A method called Latin Hypercube Sampling (shortly LHS) removes this drawback 
[10, 11]. The basic idea of LHS is similar to the generation of random numbers 
with nonstandard distribution via the inverse probabilistic transformation (14.2), as 
shown in Fig. 14.2 above. The difference is that LHS creates the values of F not by 
generating random numbers dispersed in chaotic way in the interval (0; 1), but by 
assigning them certain fix values. The interval (0; 1) is divided into several layers 
of the same width, and the x values are calculated via the inverse transformation 
(F–1) from the F values corresponding to the centre of each layer (Fig. 14.4). With 
reasonably high number of layers (tens or hundreds) the created quantity x will 
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approximately have the proper probability distribution. This approach is called 
Stratified Sampling. If the output quantity y depends on several input quantities, x1, 
x2, … xn, it is necessary that each quantity is assigned values of all layers, and that 
the quantities and layers of individual variables are randomly combined. This is 
done by random assigning the order numbers of layers to the individual input 
quantities.  

 

 

Figure 14.4. Latin Hypercube Sampling method (LHS) – principle [4]. 

  

The procedure is as follows. The definition interval of the distribution function F 
for each of m variables is divided into N layers. N, the same for all variables, also 
corresponds to the number of trials (= simulation experiments). In each trial, the 
order numbers of layers are assigned randomly to the individual variables (X1, X2,.., 
Xm). In this way, various layers of the individual variables are always randomly 
combined. In practice, this is achieved by means of random numbers and their 
rank-ordering. Then, each input variable is assigned the value corresponding to the 
centre of the pertinent layer of its distribution function. 

The application is illustrated on a case with four random quantities (X1, X2, X3, X4) 
and the definition interval of F divided into 5 layers (Fig. 14.5). Five layers are 
used here for simplicity; usually several tens of layers are used. In our case, Y will 
be calculated for five combinations of the four input quantities. Thus, 5 × 4 = 20 
random numbers with uniform distribution in interval (0; 1) are generated (see the 
table on the left part of Fig. 14.5). Then, the layer numbers for variable X1 (for 
example) for individual trials are assigned with respect to the order of random 
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values (for X1) ranked by size from the maximum to minimum. Here, layer No. 2 
(with the highest number 0.885) for the first trial, No. 3 for the second, No. 1 for 
the third trial, etc., corresponding to the numbers 0.382 – 0.885 – 0.863 – 0.032 – 
0.285 in the column for X1. Similar operations are done for each variable. Thus, in 
the first trial, variables X1, X2, X3 and X4 are assigned the values corresponding to 
the 3rd, 5th, 1st and 1st layer of their distribution functions, respectively. Inverse 
probabilistic transformation F –1 is then used for the determination X1 from F1,1, 
etc.; see the table on the right. Now, the investigated quantity Y = Y(X1, X2, X3, X4) 
is calculated 5-times. The obtained values Y1, Y2, Y3, Y4, Y5 can be used for the 
determination of statistical characteristics (mean, standard deviation…). 
 
Random numbers (RN)       Layer numbers for individual layers (LN) 
 

 

Figure 14.5.  LHS method – assignment of layers to individual variables and trials. 

 
Usually several tens or hundreds of trials are made, which enable construction of 
distribution function F(Y) and determination of the mean value, standard deviation, 
various quantiles and other characteristics. 

More on the LHS method can be found in [10, 11]. 

Acknowledgment. Parts of this chapter were previously published in Chapters 15 
and 16 of  the book [4].    
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