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I ntroduction to Experimental Analysis

This book brings a review of basic methods for design and evaluation of
experiments. It shows the principal steps and explains the causes of dispersion and
errors of the measured values, as well as statistical methods for their evaluation. It
is shown how the measured values can be described by simple characteristics or
probability distributions. Then, characterisation of relations between investigated
guantities is described, including fitting of the data by regression functions. It is
explained how confidence intervals can be created, which contain the true values of
the parameters, and how many tests are necessary for obtaining the results with the
demanded accuracy or for the verification of a certain hypothesis. One chapter is
devoted to the theory of similarity and dimensional analysis, which help one to
reduce the extent of experiments and make the results more general. Other chapters
explain the analysis of variance, design of experiments, and experimental finding
of a maximum or minimum. These procedures facilitate finding of the most
important factors and optimum parameters. Sensitivity analysis shows how
variations of the input quantities cause deviations of the investigated quantity from
the optimum or nominal value. The last chapter is devoted to the efficient tools for
the study of random influences, such as the Monte Carlo simulation technique. The
use of the described methods is illustrated on examples and the individual chapters
are supplemented by references.

The pdf version is freely accessible on http://hdl.handle.net/10195/66961.
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There is nothing more practical in the world than good theory.
Ludwig Boltzmann

Measure everything measurable, and the not measurable make
to be measurable.
Galileo Galilei
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1. Introduction

The main purpose of research is to obtain information on the investigated object.
Often, also, it is necessary to find optimum composition of a compound or
optimum parameters of a process, a component or another object. The demanded
information can be obtained by theoretical activity, by observation and by
experiment. Theoretical activity means work with abstract models. In
observation, our attitude is passive; we just observe what is happening and record
characteristic phenomena and values of variables, without intervening into the
investigated object or changing the conditions during the observation. In some
cases, observation is the only possibility for obtaining information. Examples are
the study of properties of stars or human society, or the development of new kinds
of medicine that could cure, but also kitxperiment is a purposeful activity,
which should bring deeper insight and more information. It is a series of activities
enabling systematic observation with controlled action on the investigated real
object or a model of the real object. Timodel can be physical (built from real
materials) or computer (simulation). Observation and experiment enable collecting
of input data and verification of a hypothesis on the investigated object.

Experiments are very important for providing information. Historically, various
methods have been developed, which make experimenting and the evaluation of
results more systematic and efficient. Every year, many students and other people
become engaged in experimental research and must learn how to do it. And still
valid is the experience made by Pascal: “Only at the end of work we know how we
should have started”. This book wants to mitigate this problem by presenting a
brief review of the basic methods and approaches.

The author has spent many years in applied research. Later, at the University of
Pardubice, he gave lectures on research methods for students from various
countries and branches of science and engineering. With this extensive experience
he decided to prepare a concise book for students and other people who wish to
have some insight as to how experiments can be effectively organised and
evaluated — regardless their professional orientation. Therefore, he has placed
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emphasis on explaining the basic terms and universal procedures useful for various
branches of research. In order to enable practicing the described methods for
readers without special tools, the examples shown in the book can be solved with
the help of “omnipresent” Excel.

This book on experimental analysis is divided into fourteen chapters. This first
chapter introduces the topic and the arrangement of the book. The second chapter
outlines the principal steps of experimental research. Chapter 3 identifies what
kinds of errors can appear in an experiment or measurement, and shows also ways
for their avoidance or reduction. The following chapter explains the basic terms of
probability and statistical methods usual in experimental analysis — just to help
those who are not familiar with these important tools. Chapter 5 indicates the
determination of important characteristics of an investigated quantity, such as the
average, a histogram, or the parameters of probability distribution. Chapter 6 is
devoted to various characteristics of relationships between two or more quantities.
Chapter 7 explains the fitting of empirical data by regression functions and
determination of their parameters. The applications are shown on specific
examples. Chapter 8 is devoted to the determination of the repetition of
experiments and measurements needed for obtaining results with demanded
accuracy. It explains the confidence intervals and also the statistical tests for
proving whether the difference between two procedures is significant or not.
Chapter 9 presents the principles of the similarity theory and dimensional analysis.
They both are very powerful tools that can reduce the extent of necessary
experiments and make the results more general. Chapter 10 explains the principles
of the analysis of variance, which can reveal the significance of various factors.
The following chapter 11 is devoted to the design of experiments (DOE), which
aims at fast and efficient revelation of the most influential factors and finding the
best parameters of a structure or conditions of a process. Chapter 12 shows
experimental procedures for finding a maximum or minimum of a certain function.
Chapter 13 (Sensitivity analysis) shows how the variations of input variables
contribute to the deviations of the output quantity from its hominal or optimum
value. The last chapter (14) is devoted to very efficient tools for the investigation
of the behaviour of random quantities, namely the simulation method Monte Carlo
and Latin Hypercube Sampling. The individual chapters are complemented with
references.
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2. Principal Steps of Experimental
Research

Every experimental research consists of the following stages: preparation,
realisation of experiments and measurements, evaluation of results, formulation of
conclusions, and publication of results. The individual stages will be described here
in detail.

1) Preparation

The preparation of experiments consists of the following steps:

Familiarisation with the problem and its general analysis, formulation of the
object and task of the investigation.

Selection of suitable kinds of experiments and measuring methods with respect
to available possibilities, including equipment, finance and time.

Choice of characteristic physical and other quantities describing the behaviour
and important properties of the investigated object or phenomenon. Sometimes
it is obvious from the beginning, what quantities will be used. Sometimes not,
especially when studying something quite new. In some cases, we must even
create a new quantity. Do not worry; remember Galileo Galilei: “Measure
everything measurable, and the unmeasurable make to be measurable!” For
example, who would imagine (a hundred years ago) that the quantity of
information could be measured!

Preparation of the plan of the experiments and measurements, including their
extent (choice of the range and number of the levels of the measured quantities,
and the number of experiments and tests).

Preparation of devices and necessary equipment, obtaining of specimens.

The detailed plan of all experiments, including the time schedule, must be recorded
in advance.
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2) Realisation of experiments, observations and measur ements

The experiments are carried out according to the prepared plan. However, research
is always accompanied by some uncertainty, and often the initial plan and time

schedule must be modified with respect to the achieved results. Sometimes,
therefore, the experiments are done in two or even more stages [1], as depicted in
Fig. 2.1. The experiments in the first stage are of limited extent and serve for better
determination of the extent and conditions of the remaining experiments.

Stages of experiment. | Introductory | Preliminary Final
research ——» | study experiments | experiment
Analysis P
Synthesis / /
Experiment,
data acquisition
Data evaluation / B
y Formulation of ‘/ ‘/ v
conclusions

Figure 2.1. Sages of experimental research.

All experiments should be described in a research or operational log-book. Such
records contain the following information: date and time of the tests, the list of
used devices (including their types, series numbers and arrangement), the list of
participating persons (including their role), and the description of the experiments,
results and any associated comments or remarks regarding the observations. If
possible, the records are done using a computer or laptop, but they can also be
written by hand. Sometimes, pre-printed forms are used. Photos and sketches are
useful. The experimenter can also use a video- or tape recorder, and comment there
on his or her observations. All this should be done with care, because sometimes it
is not possible to repeat the measurements or observations if the original data were
lost. In general, the experiments and the results should be described in sufficiently
explanatory manner to enable them to be repeated.

10
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3) Evaluation of results

The processing of the obtained data includes their sorting, creation of tables and
diagrams, analysis of the results and proposal and verification of the relationships
among the investigated quantities, including the determination of constants in
regression functions, construction of confidence intervals and testing of various
hypotheses about the investigated phenomena.

4) Formulation of conclusions

The evaluated results serve for the formulation of conclusions and for the
preparation of a plan of further works. Then, a report can be written. Often, the
results are published in a form of a presentation or poster at a conference or a paper
in a journal.

5) Publication of results

Publishing is very important especially in the scientific community (universities,
research institutions), but the reports, prepared in a readable form, are important for
development departments as well. When preparing the information on our research
for publication, it is useful to adhere to certain well-proven rules. A scientific paper
is usually arranged in the following manner:

1. Introduction, a brief formulation of the task of the work.

2. A review of the state of knowledge on the topic, e.g. a review of relevant
publications (books, papers in journals and conference proceedings, research
reports).

3. A detailed description of the used methods, devices and procedures.

4. Description of the experiments and measurements.

5. Evaluation and analysis of the results.

6. Conclusions.

7. List of references.

Sometimes, acknowledgment is placed at the end of paper (before the references).
Here, the author can express thanks for help, for the support from a grant project or
other sources, and also for the permission to publish some results or parts of other
authors” works; in such cases one must always cite properly the source. If we want
to take over a full figure or data from another paper or a book, we should also get

11
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the permission of the copyright owner (and mention it in the acknowledgment).
And - our text must be free of any plagiarism.

As regards the details of preparation of a paper for publication in a scientific
journal, the author should always consult the guidelines for the arrangement of
papers in that journal, including the style of references, page or word limitation,
form of the abstract and number of figures allowed; various journals use various
styles. Often, Instructions for Contributors are given at the pertinent web pages of
the relevant journal.

An example -Proposal of experiments

In any investigation several possibilities usually exist as how to obtain the required
information. The investigator has to decide which method to use with respect to his
or her experience, the money and time available for this research, the equipment
that is available “in house” or can be purchased or hired, and the requirements on
the results with respect to their importance and accuracy. The diversity of
possibilities of experimental research can be demonstrated on a simple problem
ascertaining the technical condition of a combustion engine. The relevant
information can be obtained from: 1) Power characteristics (power and torque as
functions of RPM measured by motor brake), or 2) Compression pressure and the
tightness of combustion chamber, or 3) Noise and vibrations of the engine or its
parts, 4) Consumption of fuel and lubricants, 5) Condition of lubricants (chemical
composition, content of metallic particles), 6) Composition of exhaust gasses or
other exhalations (CO, NOx...), 7) The power necessary to rotate the idle engine,
which characterises the mechanical losses, 8) Wear of the cylinders (measured
directly or from the metal particles in the oil)... Any of these possibilities can yield
less or more relevant information, and the choice is the matter of the investigator.

The reader is encouraged to propose further methods.

M odels and simulation

A frequent task in research is creation of a suitable model of the studied process or
object, or a model of the influence of the important factors on a certain property or
phenomenon. On the other hand, the properties or phenomena are often
investigated by means of an appropriate model or by simulation. For better
understanding, some terms from this area will be explained here.

12
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A mode is a simplified object or a system, which can help in the analysis of a
problem, usually at lower cost and in shorter time. It represents a system or its part
and can be created in physical form (e.g. from metal or wood) or in mathematical
form suitable for demonstrating its behavioBimulation involves subjecting the
model to various inputs or conditions and observing how it behaves. It can deal
with physical models subjected to the actual environment, or with mathematical
models subjected to mathematical disturbance functions that simulate the expected
conditions.

A model can be descriptive or predictivedéscriptive model helps to understand
a real-world object, system or phenomenon (e.g. a cutaway model of an engine). A
predictive modd helps to understand and predict its performance.

Models can be classified as static or dynamic, deterministic or probabilistic, and
iconic or analogue or symbolic. Propertiesstdtic models do not change with

time, whiledynamic models consider time-varying effect®eter ministic models

are used if the outcome of the investigated event occurs with certainty.
Probabilistic models are necessary if these events or values occur with some
probability. | conic model looks like a real thing (for example a scale model of an
aircraft for wind tunnel tests)Analogue models are those that behave like real
systems; however, such a model does not need to look like the real system it
represents. There are many analogies between physical phenomena; well-known is
the membrane analogy for study of the twist of bars via the response of inflated
membrane of similar shap&ymbolic models are abstractions of the important
gquantifiable components of a certain system. A mathematical equation expressing
the dependence of the output parameters on the input parameters is a symbolic
model. One can distinguish betwe#neoretical models, which are based on
universally accepted laws of nature, amchpirical models, which are the
approximate mathematical representations based on experimental data. Both kinds
of models are often denoted as mathematical models

In mathematical modelling the parts of the system are represented by idealised
elements, which have the essential characteristics of the real components and
whose behaviour can be described by mathematical equations. Only the simplest
models can be studied by classical analytic methods. Computers have greatly
expanded the use @hathematical modelling. The numerical methods and the
ease with which they can test many specific states of the model have firmly

13
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establisheccomputer modelling andsimulation as powerful tools in research or
design. The ability to simulate the operation of a system via a mathematical model
is a great advantage in providing information, at lower cost and in shorter time than
if experimentation with real objects were used. Moreover, there are situations in
which experimentation is impossible because of cost, safety, or time. For example,
airline pilots train on flight simulators and nuclear power plant operators learn from
reactor simulators.

More about organisation of experiments can be found in literature, for example [1 —
4].

Before we start explaining the individual methods of experimental analysis, let us
make this serious topic less serious: Tibor Dévényi [5] likened scientific activity to
the work of a four-stroke engine: 1. Intake (= study of the literature), 2.
Compression (= making experiments, measurements and analysis of the results), 3.
Ignition and combustion (= getting an idea, evaluation of the results), 4. Exhaust (=
publication of the results). The similarity is obvious. However, this does not mean
that our publications might be as harmful as exhaust gasses.

Referencesto Chapter 2

1. Bernard, J.: Technical experiment (In Czech: Technicky experint&tT,
Praha, 1999. 74 p.

2. Montgomery, D. C.: Design and analysis of experiments. Wiley, New York,
2012 (8th edition). 730 p.

3. Krop&, O.. Methods of experimental research. (In Czech: Metody
experimentalniho vyzkumu.)WUT, Praha, 1979. 139 p.

4. Dieter, G. E.: Engineering design. 2nd Edition. McGraw-Hill, New York, 1991.
721 p.

5. Dévényi, T.: Career of Dr. Géza Ezésez or scientists and rodents. (In Hungarian:
Dr. Ezésez Géza karrierje avagy Tudoésok és ragcsélok.) Gondolat, Budapest,
1975. 206 p.
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3. Errors and Variance of Measured
Values

Accurate values of the investigated quantities are known only seldom. Generally,
three kinds of values can be distinguished [1, 2]:

- actual,
- measured,
- used in the following calculations.

The measured values often differ from the accurate ones due to various errors
appearing in the measurement. The reasons for the errors will be discussed in the
next paragraphs. However, even if the measurement is accurate, the measured
values can less or more vary even if the tests or measurements are repeated under
the same conditions. One reason is inherent variability of the measured quantity or
phenomenon. For example, the strength of a brittle material varies from one tested
piece to another, the reason being different size of material defects responsible for
the strength and fracture of the individual samples. Also the conditions of the
individual tests can slightly vary, for example the temperature or humidity of the
environment; sometimes the measurement is influenced by vibrations or other
factors. And, finally, the values used in various subsequent calculations can differ
from the measured ones because usually the average value or a certain quantile is
used instead of the individual values; examples are coefficient of thermal
expansion or nominal strength of a material.

Let us now look at the errors in measurements. Three kinds of errors can be
distinguished: gross, systematic and random [3 — 5].

A gross error appears as a value obviously out of the common range of other
values (Fig. 3.1). Gross errors arise due to inattention in reading the measured
values, by using a wrong range of the measuring device, or by a technical fault.
They can be revealed by repeating the measurement, by visual check of the plotted
series of data, or by statistical tests for extreme values, so-called outliers [6].

15
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Figure 3.1. Example of an outlier.

Systematic errors arise due to permanent influence of some hidden factors (for
example higher temperature or inaccuracy of the measuring device. They cause
permanent shift of the measured values, either positive or negative. They cannot be
revealed by repeating the experiment, but by the use of another method or
conditions of the experiment.

The main causes of systematic errors are:

1) imperfection of our senses (vision, hearing), bad mental condition of the
personnel (e.g. work under stress or in a hurry, tiredness, exhaustion),

2) inaccuracy of measuring devices and methods,

3) impossibility to arrange suitable conditions (temperature, pressure,
humidity, no parasitic vibrations),

4) the measurement itself can influence the measured quantity (examples: a
relatively heavy sensor attached to a light component changes its dynamic
characteristics, electric current can increase the temperature of a strain
gauge and thus also its resistance).

5) inappropriate method or approximation used in the data processing (e.g.
the regression function is used in a wider interval than from which its
constants were determined). Low numbers of the digits in calculations
(errors due to rounding can sum up in chained calculatiorsge at the
end of this chapter.

Systematic errors can be avoided in the following ways:

16
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- Mental well-being of the personnel, without stresses during the
experiments and measurements.

- Use of sufficiently accurate devices. A rule of thumb says that the common
error of the measuring device should be at least ten times smaller than the
acceptable error in the determination of the measured quantity. For
example, if the thickness of a certain component should be determined
with accuracy 0.01 mm, a gauge with accuracy not worse than 0.001 mm
must be used. Important devices must be calibrated from time to time.

- The individual members in the measuring chain “sensor - connecting
cables - amplifier - measuring device...” are arranged in series and their
errors and inaccuracies sum up. The most efficient way for improvement is
to replace the “weakest” member by a more accurate. The researcher thus
should know their accuracies. In dynamic problems, devices with
appropriate dynamic characteristics should be used.

- Exclusion of the undesired influence by suitable arrangement of the test
(for example, making all measurements at constant temperature).

- Elimination of the undesired influence by recalculation of the measured
data using correction factors (for temperature, e.g.).

- Permanent balancing of the experiment (e.g. the use of Wheatstone bridge
circuit).

- Randomisation of the experiments, i.e. the use of random combinations of
the values of individual input variables in the sequential series of tests.

- Use of sufficiently high number of digits, especially if the measured values
are processed further (see below).

Random errors. These errors are caused by random influences that cannot be
controlled. Their magnitude varies from one test to another. They can be revealed
by repetition of the tests, and the repetition is also used to reduce their influence.
This improvement can be achieved by the methods of mathematical statistics, for
example by determining confidence interval that contains the pertinent value with
high probability. For more, see the next chapter and Chapters 7 and 8).

REMARK. Several words can be said here ongbigmal number of digits used

in the processing of measured values. We say that a number hassignificant
digitsif its absolute error does not exceed half of the order ofi-thedigit. If the

input hasn significant digits, not more thamdigits will be significant in the final
result. More digits do not increase the accuracy of the result. If the result should

17
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haven significant digits, all intermediate calculations must have (at least)l

digits; the result is then rounded todigits. In multiplying and dividing, the
individual factors are rounded so as to have (at least) one digit more than the factor
with the lowest number of significant digits (i.e. with the largest relative error). For
more, see for example [7].

Referencesto Chapter 3

1. Pech¢, V.: Evaluation of measurement and computing methods in chemical
engineering. (In Czech: Vyhodnocovandieni a po&tni metody v chemickém
inZenyrstvi.) SNTL, Praha, 1981. 226 p.

2. Bernard, J.: Technical experiment (In Czech: Technicky experint&tT,
Praha, 1999. 74 p.

3. Handbook of measuring technology for machinery and energetics. (In Czech:
Prirucka metici techniky pro strojirenstvi a energetiku.) SNTL, Praha, 1965.
928 p.

4. Jen, J., and Kuhn, L.: Technical measurements in mechanical engineering.
(In Czech: Technicka &teni ve strojnictvi.) SNTL, Praha, 1982. 584 p.

5. Taylor, J. R.: An Introduction to Error Analysis: The Study of Uncertainties in
Physical Measurementsniversity Science Books, Herndon, 1997. 327 p.

6. Kupka, K.: Statistical quality control. (In Czech: Statistitlzéni jakosti.)
Trilobyte, Pardubice, 1997. 191 p.

7. Nekvinda, M., SrulfaJ., and Vild, J.: Introduction to numerical mathematics.
(In Czech: Uvod do numerické matematiky.) SNTL, Praha, 1976. 288 p.
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4. Basics of Probability and Statistics
for Experimental Research

The values of many quantities, as well as occurrence of various events, are
accompanied by uncertainty. This is due to factors that we cannot control, and call
them therefore random. For better work with them we use the concept of
probability and statistical methods. The corresponding procedures can help in
solving many problems. As computers can do all laborious work, the only thing a
user of probabilistic methods needs is some understanding of the basic concepts.
This chapter offers a brief overview of principal terms, such as random quantity,
probability, population, sample, average, mean, variance, standard deviation,
coefficient of variation, probability density, distribution function, quantile, critical
value, confidence interval and testing of hypotheses. Important probability
distributions are also shown. Details can be found in statistical literature, for
example [1- 4].

Probability is a quantitative measure of possibility that a random event occurs.
The simplest definition of probabiliti? is based on numerous occurrence of an
event or repetition of a trial:

P=n/N (4.1)

N is the total number of trials (assumed very high, «) andn is the number of

trials with certain outcome, for example a tossed coin with the eagle on the top, the
number of days with the maximum temperature higher than 20°C, or the number of
defective components in a batch. Probability is a dimensionless quantity that can
attain values between 0 and 1; zero denotes the impossible event and 1 a sure
event.Random variableis a variable, which can attain various values with certain
probabilities. Random quantities adkscrete or continuous Examples of a
discrete random quantity are the number of fatalities in traffic accidents or the
number of loading cycles of a machine till failu@ontinuous random quantity

can attain any value (in some interval), for example strength of a material, wind
velocity, temperature, length, weight..., time to failure, duration of a repair, or
probability of failure. Some examples are depicted in Fig. 4.1.

19
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Figure4.1. Examples of random quantities [5].

Random quantities can be described dvgbability distribution or by single
numbers, callegparameters if they are related to thgopulation (= the set of all
possible elements or values of the investigated quantitgharacteristics, if they

are calculated from aample of limited size. Parameters are denoted by Greek
letters and characteristics by Latin letters.

Description by parameters

The main parameters (or characteristics) of random quantities are given below,
with the formulae for calculation from samples of limited size.

Mean u (or average valueX ) characterises the position of the quantity on
numerical axis; it corresponds to its centroid,

20
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,u=+.|2°xf(x)dx, x=z‘;]xj (4.2)

X; isj-th value; n — size of the sample.

Variance ¢ (or &) — characterises the dispersion of the quantity, and is calculated
as

ot = [Oew? (3ax & 2059 (4.3)
n-1

-0

Standard deviation g (or 9 is defined as the square root of variance,

o=Vo?, 5= 20 (4.4)

It has the same dimension as the investigated varedotel therefore it is used for
the characterization of dispersion more often than variance.

Coefficient of variation v characterizes the relative dispersion, compared to the
mean value,

V= (4.5)

x| »n

It can be used for comparison of random variability of various quantities.

A disadvantage of the average vakiés its sensitivity to extreme values; addition

of a very high or low value can cause its significant change. Less sensitive (i.e.
robust) characteristic of the “mean” of a series of values isnfdian m. This is

the value in the middle of the series of data ordered from minimum to maximum;
for example n¥ 4 for the series 2, 6, 1, 8, 10, 4, 3.

Description by probability distribution

More comprehensive information is obtained from probability distribution, which
informs how a random variable is distributed along the numerical axis. For discrete
quantities, probability function p(x) is used (Fig. 4.2), which expresses the
probabilities that the random variable x attains the individual valuyes x

) = Px =X) (4.6)

21
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Figure4.2. Binomial distribution. An example; the parameter p = 0.23; n =10 [5].

Probability density f(x) is used for continuous quantities and shows where this
quantity appears more or less often (Fig. 4.3). Mathematically, it expresses the
probability that the variable will lie within an infinitesimally narrow interval
between Xand X + dx

Distribution function F(x) is used for discrete as well as continuous quantities
(Fig. 4.3), and expresses the probability that the random variadti@ins values
smaller or equal

F(X) = PXx< X) (4.7)
Both functions are related mutually as
(3= dFfdx F(X =] f(axc O F(><)=;p(>§)- (4.8)

Figure 3 shows two possibilities for depicting these functions: by histograms or by
analytical expressionslistogram is obtained by dividing the range of all possible
values into several intervals, counting the number of values in each interval and
plotting rectangles of heights proportional to these numbers. To make the results
more general, the frequencies of occurrence in individual intervals are divided by
the total number of all events or values. This givestive frequencies and
relative cumulative frequencies, which approximately correspond to probability
density and distribution function, respectively. Determination of these
characteristics from empirical values will be explained in detail in Chapter 5.

22
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X

Figure 4.3. Probability density f(x) and distribution function F(x) of a continuous quantity
[5]. The histograms show relative frequency) @nd relative cumulative frequency. (n

Probability of some event (e.g. snow heighower thanx,) can be determined as
the corresponding area below the cuf@ from - to X,, or — directly — as the
value KX,) of the distribution function.

NOTE: Probability is non-dimensional, but probability density has dimension,
equal the reciprocal of the investigated quantity, such ashPa’ or K. For
example, the length of a component is distributed so thgt < 2.00 m) = 0.45
and {L =3.00 m) = 0.026 m.

Shapeof a probability distribution is quickly characterised by the following two
numbers: skewness and kurtoS&ewnessa (coefficient of asymmetry) informs
whether the distribution is symmetricat € 0) or elongated towards right & 0)

or left (a < 0). Kurtosis ¢ informs whether the distribution is sharper>0) or

23



Jaroslav Mencik: Introduction to Experimental Analysis

blunter ¢ < 0) than normal distributioreE 0). Both quantities are shown in Figure
4 and their definitions can be found in statistical textbooks, e.g4]1 -

Figure4.4. Skewnesg and kurtosise of probability distribution.

Very important are also the following two quantities.

Quantile X4 is such value of the random quantitythat the probability ok being
smaller or equal tois only a,

Pxsx)=a (4.9)
Quantiles are inverse to the values of distribution function. In Fig, &, the a-
quantile, which corresponds to the probability,

X = F Xa) (4.10)

Quantiles are used for the determination of the “guaranteed” or “safe” minimum
value of some quantity, such as the strength or time to failure.

Critical value xP is such value of the random quantiythat the probability of it
being exceeded is onf;

Px>x®) =p (4.11)
Note thatZin this case does not denote an exponent!

Critical values are used for the determination of the maximum expectable value of
some quantity, such as wind velocity or maximum height of snow in some area.
They are also used for hypotheses testing, for example whether two samples come
from the same population. Probabilfis complementary ta, that isf =1 —a,

and
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=x_g, %=xXP (4.12)

More about the basic probability definitions and rules can be found in [1 — 4].

Important probability distributions

Several distributions are very important. For discontinuous quantities it is binomial
and

Poisson’s distributions. The main distributions for continuous quantities are
normal, log-normal, Weibull and exponential. For some purposes also uniform
distribution, chi-square xf) and Student &-distribution are used. The brief
descriptions follow; more details can be found in comprehensive literature, such as
[1-4].

Binomial distribution (Fig. 4.2) pertains to the probability of occurrencexof
positive outcomes in trials if this probability in each trial equagts An example is
the numberx of faulty items in a sample of sizg if their proportion in the
population is p. The probability function is

P = [2] pa-p" (4.13)

and the mean value ig = np. This distribution is discrete and has only one
parameterp, which can be determined from the total numberof positive
outcomes in n trials as pra/n; nshould be very high.

Poisson distribution is similar to a binomial distribution, but more suitable for
rare events with low probabilitiep. The probability function, giving the
probability of occurrence of gositive outcomes in trials is

_ A/ 4.14
P9 = 2 (4.14)

A is the distribution parameterd Corresponds to the average occurrence afd,
in fact, to the produatp of binomial distribution.)

Normal distribution , called also Gauss distribution, resembles symmetrical bell-
shaped curve (Figures 4.3 and 4.5). It is used very often for continuous variables,
especially if the variations are caused by many random influences and the variance
is not too big. The probability density is
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f(x) =

1 _1(x-u 2 (4.15)
a«/ﬁex[{ 5( o ”

with the mearu and standard deviatiomas parameters. There is no closed-form
expression for the distribution functidix); it must be calculated as the integral of
the probability density, cf. Eq. (4.8). In practice, various approximate formulae are
used for calculation of Fsee, for example [6].

0,5
0,4
f(u)
0,2
0,1

0,0 LR L L DR LN RN BENND BN RN DN S |
4 3 -2 1 0 1 2 3u4

Figure 4.5. Standard normal distributiorg(= 0, o= 1).

Standard normal distribution corresponds to normal distribution with parameters

#=0ando= 1 (Fig. 4.5). The expression for probability density is usually written
as

1
f(u)=—== exp—-u?/2 (4.16)
©= - ext-17/2
u is the standardised variable, which is related to the vanablethe normal
distribution as
u=x-wlo (4.17)

It expresses the distancexdrom the meanu as the multiple of standard deviation.
It is useful to remember that 68.27% of all values of normal distribution lie within
the intervaly £ g, 95.45% withing + 20, and 99.73% withip/ + 30.
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Log-normal distribution is asymmetrical (elongated towards right, similar to
Weibull distribution withb = 2 in Fig. 4.6) and appears if the logarithm of random
variable has normal distribution.

Weibull distribution (Fig. 6) has the distribution function
F() =1 —exp { - [k - x%)/a]’} (4.18)

with three parameters: scale parametershape parametds, and threshold
parameterx,, which corresponds to the minimum possible valuexofThe
probability densityf(x) can be obtained as the derivative of distribution function.
Weibull distribution isvery flexible thanks to the shape paramétéfig. 4.6). It is
often used for approximation of strength or time to failure. It belongs to the family
of extreme values distributions[7], and appears if failure of an object is caused
by its weakest part. Determination of parameters of this very important distribution
from empirical data will be explained in Chapter 5.

1,0 1

0,6 -

04

Figure 4.6. Weibull distribution for various values of shape parameter b [5].
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In addition to flexibility, the Weibull distribution has a special advantage in the
analysis of reliability. The shape paramdtein Equation (4.18) is related to the
character of failures and informs generally about the period in the life of the object.
The valued < 1 are typical of the period of early failures, while 1 pertains to

the period of aging. The value= 1 corresponds to useful life with failures from
many various reasons.

Exponential distribution is a special case of Weibull distribution (4.18) for shape
parameter b = 1 (see also Fig. 4.6) , with the distribution function

F(t) = 1 — exp[(To)] (4.19)

It is used, for example, for the timé®etween failures caused by many various
reasons, e.g. in complex systems consisting of many parts. This distribution has
only one parametefy, which corresponds to the meamnd has the same value as

the standard deviatiogr (Note: in this case of time, the symlibalas used instead

of x; the difference is only formal. Moreover, the minimum possible vajue

often assumed 0.)

The following four distributions are important especially for the determination of
confidence intervals, for statistical tests and for the Monte Carlo simulations, as it
will be shown later.

Uniform distribution has constant probability densifys const in the definition
interval <a; b>, so that it looks like a rectangle. The mean value corresponds to the
average of both boundarigs= (a + b)/2, and the variance dé = (b — a)/12.

Chi-square distribution (¥°) is the distribution of the sum ofrandom quantities,
each defined as the square of standard normal variable. An important parameter is
the number of degrees of freedom, equal in this case n. For more, see [1 — 4].

t — distribution, called also Student distribution, arises from a ratio of standard
normal distribution and chi-square distribution. It looks similar to a standard
normal distribution (Fig. 4.5), but it is lower and wider, especially for lower
numbers of degrees of freedom; see [1 — 4].

F—distribution corresponds to the ratio of two chi-square distributions, and it is
used for comparison of two variances. This distribution depends on the number of
degrees of freedom of each variable [1 - 4].
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Further information can be obtained from Wikipedia or the quoted references. The
values of distribution functions and quantiles of the above distributions can be
found via special tables or statistical or universal programs, including Excel.

Now, two important probabilistic concepts will be explained.

Confidence interval A consequence of random variability of many quantities is
that every measurement and the following calculations give a different result
depending on the specimen used. Therefore, the averagex/n is usually
determined from several values to obtain a more definite information. This,
however, does not say how far it is from the actual mgafor this reason,
confidence interval is often determined, which contains (with high probability) the
actual valueu. For example, the-confidence interval for the mean is

- S S
X_ta,n—l ﬁ a,n—lﬁ

x ands are the average and standard deviation of the sampleadfies and, -1

is the a — critical value of two-sided—distribution forn — 1 degrees of freedom.
The probability that the true meanwill lie inside the interval (4.20), is 1 & and

a that it will lay outside it. (A practical application will be shown later.) Confidence
intervals can also be determined for other quantities. For more see [1 - 4].

< U< X+t (4.20)

REMARK: Also one-sided critical values exist. Such a valoi§ €orresponds to
the probability thags will be either higher or lower than the pertinent critical value.
a is related tox asad = a/2. When using statistical tables or computer tools one
must be aware how the pertinent quantity was defined.

Testing of hypotheses Often one must decide which of two procedures or
products is better, or whether a true difference exists between two groups of
measured quantities. Such decision can be based on the comparison of the values of
a characteristic parameter, for example the average value. However, the individual
values usually vary, so that also a difference can exist between the calculated
parameters. If this difference is big, the decision is easy. In the opposite case one
must take into account that a part of the variability of individual values is due to
random reasons. For a reliable decision, statistical tests are used, which can reveal
whether the differences between the characteristics of compared samples are only
random, or if they reflect a real difference between both populations (e.g. types of
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products). These tests consist of several steps. In the first step, the songkhlled
hypothesis is formulated: “there is no difference between both populations”. (The
alternative hypothesis is “significant difference exists between the populations”.)

In the second step, a test criterion is calculated from statistical characteristics of
both samples; the form of this criterion depends on the kind of the problem and can
be found in statistical literature FL4] or computer software. If the null hypothesis

is valid, the test criterion has certain distribution. In the third step, the calculated
value of the criterion is compared with ttetical value of this distribution. If the
calculated value is higher than the low-probability critical value, an event has
happened, which was expected only with very low probahitite.g. 5% or 1%),

and we conclude that the difference is not random — the null hypothesis is rejected
on the significance levet. If the calculated value of the criterion is lower than the
critical value, we usually conclude that there is no substantial difference between
both populations. We also say that the difference between the considered cases is
not statistically significant. From this point of view it is important what probability

a we consider as significant; this is a matter of our choice.

REMARK: In this test, the probabilityg exists that our conclusion “Both
populations differ”, based on the rejection of the null hypothesis, is wrong, and no
actual difference between them exists. This is so-called error of the first kind. If the
null hypothesis was not rejected, an opposite risk exists that, in fact, both
populations differ (= error of the second kind). The probability of this wrong
conclusion isB. Higher confidence in correctly rejecting the null hypothesis also
means higher risk of accepting the alternative hypothesis, and usually a
compromise must be found.

Tests of hypotheses are explained in detail in literature, e. g. [L — 4], and are
available in various statistical or universal computer programs. Also Excel offers
several tests: for the difference between the mean values or between the variances
of two populations. Applications will be shown in Chapter 8.

Order statistics

A frequent problem in experimental analysis is that we have a series of

experimental values (e.g. strength or time to failure) and want to find the

parameters of the probability distribution, or a certain quantile or the value of

distribution function. In some cases it is simple; for example the parameters of a
normal distribution are the mean and standard deviation. Sometimes, it is not so
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straightforward, e.g. with Weibull three-parameter distribution, or if the histogram

of the measured values has a more complex shape. Fortunately, in such cases it is
possible to assign the values of the distribution function to the measured values in
the following simple way. First, the measured values are rank-ordered from the
minimal ( = 1) to the maximalj(= n); j is the rank number andl is the total
number of measured values. The corresponding values of the distribution function
are calculated as

Fi=j/(n+1) (4.21)

The explanation of formula (4.21) is simple. If we have, say, 100 values of the time
to failuret, and order them from the minimal to maximal, then the probalbility
thatt will be smaller or equal to the lowest of 100 valugsjs approximately
1:100. The probability of < t, is 2/100, etc.; generally, = j/n. In Equation (4.21),

1 was added to the denominator because of mathematical correctness. The
probability F thatt will be smaller or equat, must be smaller than 1, because if
more measurements would be done, also values higher than the abowug catue
appear.

REMARK: Also other formulae exist for the calculation of empiri€avalues, for
exampleF; = ( — %2)h. However, none can be recommended unequivocally,
especially when considering the fact that bigger errors in the determination of
distribution parameters can arise due to small amount of randomly varying
empirical data included into the sample, than due to the formula used for F

Nonparametric methods

Statistical tests and procedures usually assume a certain probability distribution of
the investigated quantity, and work with its parameters. Nevertheless, also
nonparametric or distribution-free methods exist [8], which do not require any
assumption on the distribution nor the knowledge of its parameters. Distribution-
free methods can be used also in cases where any information on the distribution is
missing. On the other hand, they usually need a largernsaethe sample to
achieve the same power of the information or test.

The most important nonparametric methods applicable in experimental research
are: (1) determination of quantiles, (2) tests of goodness-of-fit, used to check
whether the sample has a certain distribution, (3) tests to check whether two
samples are drawn from the same population, and (4) tests of correlation of two
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variables. They usually work with rank-ordered values. In the next paragraph the
first method will be explained, which is used very often. The other methods will be
described later in this book.

Quantiles. In the previous paragraph, the assignment of Rhevalues of a
distribution function to the individual rank-ordered valygsvas explained. The
finding of a—quantile ofy is the opposite problem: it is sugh value of the data
series, which corresponds to the valmef distribution functionF. If the exact
value F = a is not available, it can be found from the neighbouring lower and
higher values of by interpolation. The quantile is found also by interpolation
from the neighbouring values pf

Acknowledgment. Parts of this chapter were previously published in Chapter 2 of
Ref. [5].
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5. Determination of Characteristics
of Investigated Quantities

Measured values often vary for random reasons and therefore are usually described
by some characteristic values or by probability distribution. This chapter explains
construction of histograms and finding of parameters of probability distribution.
Attention is paid to flexible Weibull distribution, illustrated on a practical example.

Characteristic values

The most important parameters are the mgand standard deviatioo. When
empirical data are evaluated, they are replaced by the sample avesge

sample standard deviati@) defined by formulae (4.2) and (4.4) in Chapter 4.
Additional characteristics are the coefficient of asymmetry (skewness) and
kurtosis, also mentioned there. The characteristic values are the only source of
information on the position of the random quantity on the numerical axis and on its
dispersion if the amount of empirical data is very small, less than about 15.
Universal programs can, after a single command, calculate all characteristics and
print a table with them. In Excel, for example, it is sufficient to give the commands
Data analysis and Descriptive statistics.

REMARK. Programs Data analysis and Solver (for solution of equations and
search of extreme values) are installed in every Excel, but not always accessible. If
they are not visible at the upper bar of the submenu Data, they must be activated as
follows. After pressing the button File, we choose Options and Add-ins. Then, we
mark Analysis ToolPak and press the command Go. In the following small menu
we mark “Analysis ToolPak” and also “Solver Add-In” and press OK. That is all.

Histogram

The first idea about the probability distribution of the investigated quantity can be
obtained from a histograntFig. 4.3 in Chapter 4 and Fig. 5.1 on the next page).
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Figure 5.1. Histograms of a group of experimental data for various N. Examples of poor
and good appearance.

Histogram is constructed from all recorded values by dividing the range of all
possible values into several intervals of the same width, counting the number of
values (= frequency) in the individual intervals and plotting rectangles of heights
proportional to these numbers [1, 2]. Histograms are created easily by universal
programs such as Matlab, Mathcad, SPSS, Statistica, or Excel. With the last named
it is ensured by the commaktistogramfrom the menwata Analysisin this case

also the number of intervals (bins) and their boundaries must be known in advance.
Unfortunately, there is no universal formula for the determination of the number

of bins. In literature, two following empirical formulae are given most often:

m=INT2InN , m=INT(2W) (5.1)
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N is the total number of all values and INT means the integer part of the
expression. However, these formulae are suitable only for several tens of values.
As universal computer programs create histograms instantly, it can be
recommended (especially if the histogram, constructed from a low number of
values, looks strange) to plot several variants of the histogram, with various
numbers of bins and various coordinates of their borders, and to choose the best
looking one, of a simple shape. Examples of histograms with appealing and poor
appearance are shown in Figure 5.1. If a more complicated distribution can be
expected (e.g. with two “hills”), at least several hundred values are necessary.

In addition to the histograms that give frequencida the individual binsi, it is
also possible to construct histograms wilmulative frequencies: each bin
contains the number of all values from the left-end bin to the investigtteaahe:

j
nj,cumzz‘ir\ (5-2)
i=

If the numbers of values in the individual bins are divided by the total number of
valuesN, relative frequencies f; andrelative cumulative frequencies Fjm are
obtained. These two quantities correspond approximately to the probability density
f and distribution functiof.

Probability distribution

It is advantageous if empirical data can be fitted by some of the standard
probability distributions. Simple situation is with normal, lognormal, or
exponential distribution. Normal (Gauss) distribution (Fig. 4.3 or 4.5 in Chapter 4)
is described fully by the mean and standard deviation. Its use is therefore very easy.
In practice, the parametegg and o are replaced by the sample average and
standard deviation, defined in Chapter 3. Lognormal distribution works in similar
manner with the logarithms of the measured values. Exponential distribution (Fig.
4.6 in Chapter 4, case = 1) has only one parameter, the mean; the standard
deviation has the same value as the mean, so that it is sufficient to calculate the
average of the measured values. (The calculated estimates can slightly differ.)

Great flexibility in fitting various shapes of continuous probability distributions is
offered by Weibull distribution (Fig. 4.6 in Chapter 4).
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Weibull distribution
General form of its distribution function (Fig. 5.2 here and Fig. 4.6 in Chapter 4) is

Rt) = 1 - exp{- [( - b)/a]’} (5.3)

with parameters, b, andt,. Thescale parameter a is related to the values band
ensures that the distribution is independent of the uniteodt minutes or hours).
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Figure 5.2. Weibull distribution function F(t): (a) original coordinate system, (b) Weibull
probabilistic paper with transformed coordinates [3].

The constanb is theshape parameter. Depending on its value, Weibull function
can approximate various, even very different shapes (Fig. 4.6 in Chapter 4).

Weibull distribution is suitable for the characterisation of time to failure or strength
of brittle materials and became popular in reliability assessment. However, it can
be used in many other cases as well. The congtastthethreshold value that
corresponds to the minimum possible value and characterises the position of the
distribution on the-axis. ( is the usual symbol for time; for other quantities, other
symbols may be used.) In this section, two methods for the determination of the
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parameters will be explained. Both are based on the minimisation of the distances
between the data points and the distribution function. The first method is based on
fitting the transformed data by a straight line; the second does it directly via an
optimisation program. Their applications will be explained here.

Two-parameter Weibull distribution

The strength or time to failure cannot attain negative values, and the threshold
parameter is thus often assumed zéye; 0. The distribution function (5.3) has
only two parameters:

Y = 1 - exp[ (a)] (5.4)

Parametera andb can be found easily, as the transformed data may be fitted by a
straight line [3]. Double logarithmic transformation and rearrangement change
Equation (5.4) to

Int =1In a + (1b) In{In[1/(1 - F)]} (5.5)

This corresponds to the equation of a straight line (Fig. 5.2b)
Y= A+ BX (5.6)
Y=Int X=In{ln[1/(1-PF]}, A=Ina,B=1b (5.7)

The regression constarisB can be obtained by fitting the empirical dataX by

a straight line. In the past, the measured valu¢santlF (see later) were plotted

on a special diagram, called Weibull paper (Fig. 5.2b), and fitted by a straight line
using a ruler and a guesstimate. In manufacturing it is still sometimes used for the
determination of distribution parameters from the operation data. Today, however,
many universal computer programs enable easy fitting of curves. For example,
Excel, has the commardsert Trendlinethen only the charY(X) is needed. This
graph is constructed from the measured (and transformed) velsesl the
corresponding value§; of the empirical distribution function. The individual
valuesY; = In t; are obtained by rank ordering of alltransformed values (e.g.
times to failure) from the minimal valug € 1) to maximal j( = n). The
corresponding values of distribution function are calculated (see Chapter 4) as

F=j/(n+1) (5.8)

and then transformed ¥ values via Equation (5.7). A plot of the empirical data in
the coordinate systeX = In{In[1/(1 —F)]}, Y = Int, enables a good visual check.
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In the ideal case, if Equation (4) is valid, the data lie along a straight line. The
regression constanfsandB are then obtained by right-part mouse clicking on any
point of the data series, then markimgert Trendline in the menu and selecting
Linear regression. We must also marikshow the equation and Coefficient of
determination R% A straight line and Equation (5.6) with the values of both
constantsA, B appear in the chart. The const®atcharacterises the quality of the

fit; the closer it is to 1, the better. (Explanation is given in Chapter 7.) Then, the
constants in the original distribution function (5.4) are obtained #oamdB by
inverse transformations:

b=1B, a=expf) (5.9)

Three-parameter Weibull distribution

Two-parameter distribution is not always suitable. Sometimes, the transformed
data do not lie on a straight line, or it is obvious that the distribution should have a
threshold valud, significantly higher than zero. In such case, a three-parameter
function (5.3) is better.

The parameters in this distribution can be found by the procedure for a two-
parameter function if in Equation (5.4) is replaced by the expresgient,; the
constant, must be defined in advance. For varigusaiues, the shape of empirical
distribution varies. The best value is such, for which the transformed data best
resemble a straight line. Often, several trials are necessary. Fortunately, a
straightforward procedure exists [3], described further.

Direct determination of parameters

The constantsa, b, andt, can be obtained in a simple way without any
transformation. The solution of Equation (5.3) foives the formula for quantiles:

t= to + a{n[1/(1 — B]*} (5.10)

We shall now look for such constamtsh, andty,, which will minimize the sum of
squared differences between the measured and calculated values of

z(tj,meas_ l'j,calc)z =min! (511)

This is the principle of the so-calléebst-squares method. If a suitable solver is
available for such minimization (one is present also in Excel), it is then sufficient
to prepare one series of measured datas and another series the valueg;cac,
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calculated via Equation (5.10) for the same valuds; oing the parametees b,
andt,. Solver's command to minimize the expression (5.11) by chamrgipgand
to will do the job. No transformation is necessary.

NOTE. The variableF is considered independent here, because its values are
deterministic, following from the number of values. The variable.g. the time

to failure or strength) exhibits random variability, and is thus considered as
dependent variable.

Example 1.

Strength of an alloy was measured on ten specimens, with the results: 250 —

201 — 232 - 281 — 297 — 211 - 276 — 302 — 315 — 265 MPa. Find the parameters of
three-parameter Weibull probability distribution and determine the “guaranteed”
1% strength!

Solution. All values are given in Table 1 below. The measured strengths were rank-
ordered from minimum to maximun§.ea), and the corresponding values of
distribution function were calculated & = j/(N + 1). Then, the strengttSca.

were calculated for the same valugsig Equation (5.10) for the constants a, &, S
defined in advance. Also the sum of squared differences (SSD) between the
measured and computed strengths was calculated. [The Excel function for this
expression iSUMXMY2, which means: sumfinusy)® now x = Smeasandy =

Scac] The individual values are plotted in Figure 5.3: the rhombs represent the
measured values, while the crosses correspond to the results of strength
calculations for the (arbitrarily) chosen initial values 250 MPa, b =2 an§, =0

MPa. One can see that these crosses do not coincide with the measured strengths.
The application of Solver (minimisation of the content of the cell containing
SUMXMY 2by changing the values b, andS;)) has given the following values:=a

280.6 MPap = 6.659 andy, = 0 MPa. These constants fit the measured data very
well; see the solid thin curve extrapolated to the lower and higher probabilities. The
guaranteed 1%-strengt®o;, calculated via Equation (5.10) fér= 0.01, is 140.6

MPa. (The reader is encouraged to solve this example for gaining practice.)

In this example it was necessary to limit the threshold strength=a$, because
the first trial without any limitation has given negative value of streBgtivhich

is impossible. With this limitation Solver has immediately “recommended” the
threshold value&s, = 0, so that the probability distribution has — in fact — only two
parameters a,.bn some cases there can be rather big difference between the low-
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Table 1.

j S,mea: Fi S,calc

1 201.0 0.0909 197.2 1 -

2 2110 01818 2162 1

3 233.0 0.2727 2329 T

4 250.0 0.3636 2465 (g |

5 265.0 0.4545 258.4 4

6 276.0 0.5455 269.6 04 1

7 281.0 0.6364 280.7 g5 |

8 297.0 0.7273 292.3

9 3020 08182 3054 O+——TFT—7————
0 100 200 300S (MPa) 500

10 315.0 0.9091 322.7

Figure 5.3. Measured and computed strengths (S) and distribution function F from Ex. 1.

probability values predicted by two or three parameter Weibull function. The two-
parameter distribution with the assumed threshold v&ue 0 would give lower
allowable stress, which is safer. On the other hand, the size of cross-section of such
component must be larger, and therefore more expensive. Sometimes, a
compromise must be found between safety and economy.

Estimation of distribution parametersfrom censored data

In some cases the amount of experimental data is limited and only part of the
results is known. For example, the time to fatigue failure or to the failure of
complex objects varies, and when a group of such items is tested in order to obtain
the characteristics of the lifetime distribution, these times could be impracticably
long for some of the tested pieces. Therefore, the lifetime tests are sometimes
terminated after some tinmgg or after failure of a certain fraction of tested parts.
We know exactly the times to failure of the failed parts, and know also that the
lifetime of the remaining components would be longer (but not know how long
they will be). Another case is if the measured quantity has some values beyond the
range of the used measuring device; in this case we say that the data are censored.
The situation is depicted in Figure 5.4. If the kind of probability distribution is
known, its parameters can be estimated from the part of data for which the times to
failure are known, if each of these rank-ordered valugsis assigned the
corresponding value of distribution functiéf = j/(N+1). These issues are very
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important in reliability testing, and various test schemes and procedures for the
processing of results have been developed; cf. [4].

Les t

Figure 5.4. Censored data from lifetime tests (a schematic).

Q-Qplot

A simple graphical tool for comparing two probability distributions guantile-
quantile plot, or Q—Q plot [5]. In this plot, the corresponding quantiles are plotted
against each other. The coordinateof a pointP; in this plot corresponds e
quantile of one distribution and the coordingteorresponds to the same quantile

of the other distribution. If the two compared distributions are similar, the points in
the Q—-Q diagram lie approximately on the line= x (Fig. 5.5). The Q-Q plot
informs whether the location, shape and skewness of the compared distributions are
similar or different. These plots can be used to compare collections of two sets of
data, or to compare an empirical distribution with a theoretical one.

A quantile-quantile plot is created as follows. The compared quantities (the first is

x and the second 9 are ordered from minimum to maximum, the corresponding
values of distribution functiof are calculated via Equation (5.7), and the couples

of values of quantiles,»y; for the same valuk; are plotted in coordinatesy (Fig.

5.5). This is easiest if both samples have the same number of values. Otherwise, the
gquantiles for the same probabilities must be recalculated by interpolation from the
neighboring points.

As an example, Figure 5 shows the Q-Q plot for 20 theoretical values of normal
distribution (with the averagg = 5.0 and standard deviatian= 1.0) compared
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with 20 “empirical” values, generated in this example for the same parameters
using the Monte Carlo method. One can see that the individual points lie
(approximately) on a straight line.

9

1 y=11724x - 0,6461
R? = 0,9602 »

Xj, empirical
W s OO N ®

Figure 55. Q — Q plot for normal distribution (parameterg =5, o= 1, n = 20).
Horizontal axis — theoretical values, vertical axis — empirical values.
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6. Relationships of Two or More
Quantities

This chapter explains various quantities used for characterisation of relationships
between two or more variables, such as covariance, correlation and coefficient of
determination. It also shows the use of these quantities for the determination of
constants in a regression function and evaluation of the quality of the fit.
Autocorrelation shows whether the values in a series of data are correlated among
themselves. Finally, obtaining of information by data mining is explained.

Covariance and correlation

One task of experimental research is to reveal whether a relationship exists
between two or more quantities, how strong this relationship is, and preferably to
describe it by a suitable mathematical expression. The strength of such
relationships may range from non-existing over less or more strong to

deterministic. Its strength can be characterised by the coefficient of covariance and
correlation coefficient. For two variables,yx covariancecov(x,y) is defined as

SWZZ(%—?E)(.\/;—V) (6.1)
n-1
x andy are the average values of both quantities and n is the number of,pairs

Covariance can be positive, if both quantities increase together, and negative, if
one quantity grows while the other decreases.

A drawback is that covariance coefficient can attain values fremto +oo,
depending also on the values»>ofy. A better measure of the relationship is the
coefficient of correlation r,,, defined as the covariance divided by standard
deviations of both variables:

Sy (6.2)
Sy

In fact, coefficient of correlation is covariance standardised with respect to the

rxy =
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dispersion of both quantities. Its values vary between 0 (no correlation) and 1
(deterministic or functional relationship) for positive correlation. With negative
correlation, g, varies between 0 and {Fig. 6.1).

NOTE: Expressing of relationships by regression functions is given in Chapter 7.

7
y -~
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5 o - ) e
*Te_ o A
4 =1 “-.0‘_‘_‘.-‘ . »
3{ r,=09904 T wL
“'n g M
2 - ;‘ .""'.-a..o
3 et fy=-0.9927 e
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0 5 x 10
Figure 6.1. Correlation positive (triangles ) and negative (rhombs ).

An analogous nonparametric characteristic Sgearman’s rank correlation
coefficient

. 824 (6.3)

- n(n? -1

s

n is the number of pairs of values y, of the quantitie;, y. Eachx; value is
assigned the rank numbgy andy values are assigned the rank numlopi$ = 1
corresponds to the smallest values). Then, the differences of rank numbers for the
individual pairsx;, y; are created a$ = p — ¢ and used in Equation (6.3).

Relatively high values of correlation coefficient,= 0.8 and more, indicate
functional relationship. Nevertheless, in a case of doubt, statistical test of
significance is recommended (see Chapter 8).

Caution: High degree of correlation does not necessarily imply causation. Another
factor can exist, which influences both quantitiesyj in a similar way. Well
known is the following humorous example. An investigation, made in several
villages, has shown that there is a high correlation between the number of born
babies and the number of storks at the villages. Does it mean that babies are
brought by storks? No; the explanation is related to the size of the villages: in
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larger villages more babies are born, but usually larger villages have more ponds,
and thus also more storks.

A very useful quantity is theoefficient of determinationr?. It can be used for the
characterisation of the quality of linear as well as nonlinear regression functions.
Figure 6.2 shows a regression line, one valugrogasured for certain valuethe
corresponding valug()y) on the regression line, and the average vafu@gor Xaye,

Yave Of @ group of xand y. The distance ofyrom the average j expressed as

){—37 = (yl _yi,reg) + (yi,reg_ 3_’)1 or Ay =AFeS+Areg (6'4)

Yireg IS the corresponding value on the regression lidg; means the total
difference 4., means the difference of the j-th value on the regression line and the
mean, and}.sis the residual difference, i.e. the distance of the j-th measured value

Y
Y-neas. /|&Y Y
Yu.c N/ meas = cale
Ya.e Y:ac—Ya.e
A
Xave X

Figure 6.2. Coefficient of determination?r residual component {¥as — Yo and
regression one (y.— Yave Of the total difference yas— Yave Subscripts: meas - measured,
calc - calculated, ave - average.

and the corresponding value on the regression line. It is possible to prove that also
the following relationship holds:

Z(yj _Y)Z :Z(yj _yj.reg)2+2(yj,reg _y)z (65)
i i i
The summation is done for alvalues. Equation (6.5) can be rewritten as
S$t=SRgt S&s (6.6)

S&.: is the sum of squared total differencese3Sthe sum of squared distances
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between the points on the regression curve and the total averagdS&s is the
sum of squared distances of the individual measured points from the corresponding
points on the regression curve (i.e. the residual distances).

Equation (6.6) can also be rewritten as
B = Seg + e (6.7)

This expression was obtained by dividing Eg.(6.6)nby 1. SSmeans sum of
squared differences argl means variance; the subscripts have the same meaning
as in the previous case; for exampés corresponds to the residual variance of the
individual measured values around the regression function. Coefficient of
determination is defined as

I’ = SS¢SSt = Seg /St (6.8)

It expresses what fraction of the total variance is caused by the regression function.
For deterministic relationship? £ 1. Equation (6.8) can be rewritten to the form

= (SSi— SSY/SSH = 1 — 6SdSS), 012 = 1 — 6e2/S0d) (6.9)

REMARK: Coefficient of determination in Equation (6.8) or (6.9) can be
expressed by means of the sums of squared differences or by means of standard
deviations, becaus® = Sn — 1).

Coefficient of determination in Eq. (6.8) was derived for linear relationgip
However, if it is calculated via Eq. (6.9) by means of residual variance, it can also
be used for the characterisation of quality of nonlinear regression functions. From
this it follows the importance of residual variance for the determination of
parameters in regression functions (see the next chapter).

When studying a relationship between two quantities, one should always make a
plot of the measured values and only then evaluate the strength of the relationship.
Figure 6.3 shows a group of values, which obviously indicates a nonlinear
relationship. If we would — without knowing this fact — determine the coefficient of
correlation for a linear relationship, we would obtain a very low value, informing
that no linear correlation exists¥ 0.286;r> = 0.0616). In contrast, the coefficient

of determination for a quadratic regression function’is 0.984 and = 0.992,

which means a very good fit.

Revelation of correlations is the first step in the study of relationships between the
investigated quantities. Generally, correlations can exist between two or more
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8 - y =1.1119 + 0.4908(x - 4.0246)
Y - R2=0.984
6 +
1 y =0,2409x +2,1334
4 A RZ=0,0616
2
0 T L T T 1

Figure 6.3. Two approximations of the measured values — a good fit (quadratic function)
and a poor fit (linear function). &= coefficient of determination.

guantities, so-callechultiple correlations. The correlations in experimental data
are usually found by means of a suitable statistical program. In Excel, for example,
the commandCORREL applied on a group of paired valugsandy;, gives the
value of (linear) correlation coefficient,,. In this case, however, it is more
efficient to make a chart of thg€x) data and plot there a regression function using
the commandnsert Trendling as this gives a very instructive picture. It is also
useful to demand (from the menu) that the coefficient of determingtisrshown,
which characterises the strength of the relationship.

Multiple correlations will be illustrated here on thermal treatment of steel.

Example.

It was investigated how the hardness and strength of quenched steel are influenced
by the temperature of the treatment and the dwell time under high temperature, and
whether they are correlated. Eight samples were treated under various conditions,
as shown in the upper part of Table 1. The table of multiple correlations below was
created in Excel. The keyZata AnalysisandCorrelation were used, then the array
containing the input data was written into the pertinent cell in the Correlation menu
and a cell was marked in the worksheet for positioning the correlation table. After
pressing OK, the correlation table appears.

The correlation table indicates clearly which quantities are strongly correlated, and
which not. For example, the coefficient of correlation between strength and
hardness is very high, 0.980, while that between the dwell and hardfdsts) is
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TABLE 1. Input data and the table of multiple correlations (below).

Samplg Temper. Time Hardness Strength
A 800 10,3 475 212
B 840 9,8 510 246
C 920 9,6 540 285
D 820 10 490 230
E 870 9,7 520 255
F 850 10,5 530 260
G 900 94 550 295
H 860 9,1 532 265

Temper. Time Hardness Strength

Temper. 1

Time -0,581 1

Hardness 0,907 -0,545 1

Strength 0,951 -0,573 0,980 1

low. The omission of the insignificant quantities means simplification of formulae
and later calculations. High correlation of two quantities allows the use of any of
them, which can sometimes simplify the work. For example, the determination of
tensile strength is more demanding than the measurement of hardness. If the tests
with simultaneous measurement of strength and hardness reveal high correlation,
as above, it is possible to measure only the hardness and recalculate the strength
from it using a suitable transformation formula, as shown in Figure 6.4.

350

S
(MPa) |

250 +

200 - S = 1,0462H - 286,33
i86 R2 = 0,9625

100

460 480 500 520 H (MPa) 560
Figure 6.4. Strength S as a function of hardness H (both in MPa): S =1.046 H — 286.33.

Autocorrelation.

Until now, we considered if two quantities are mutually correlated. However, it is
also possible to investigate, if the values in one series of data are correlated among
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themselves. An example is the daily average temperatures. The difference between
two temperatures is smaller if it corresponds to two subsequent days than if the
interval between them is several months. In this way it is possible to characterise a
series of data by autocorrelation. The autocorrelation coefficient is obtained
similarly as the correlation coefficient of two variablesndy (in Excel via the
command CORREL). The only difference is that, instead of the quantitye
values ofx are used again, but shifted by 1, 2,..nguositions. This new series is
denotedy’ and we speak about the autocorrelation of the first, secondn-thor
order. For example, the table below corresponds to the first order autocorrelation.

y: Y1 ¥ ¥ Ya Ys Yo ¥ ¥ ¥

-

y: Y ¥ ¥ Ya Ys Y6 V4 ¥
Autocorrelation can be positive or negative. Both cases are shown in Figure 6.5.
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Negative autoc orrelation (r = -0.59)

Figure 6.5. Autocorrelation: a) none (r = 0.03), b) positive (r = 0.78), c) negative (r =
-0.59). Diagrams at left: time series; diagrams at right: autocorrelatiQp=»(x;).
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REMARK: Autocorrelation is used especially in the analysis of dynamic processes,
time series and signal processing.

More information on covariance and correlation can be found in books [1 — 5].

Data mining. In some branches, such as chemistry, biology, medicine or
astronomy, but also in banking and business, big amounts of data exist. Today,
powerful computers are able to process them. This has led to the development of a
new branch called data mining. In contrast to traditional data analysis, where first a
certain hypothesis is formulated, and then it is proved or rejected using data
obtained from experiments or observation, data mining goes in the opposite way, It
searches through the vast amount of existing data and tries to find some specific
patterns in them, which may carry hidden and potentially useful information on
some relations yet unknown. As the amount of analyzed data is huge (TB), suitable
software is necessary. There are specialized programs for this purpose, such as
STATISTICA Data Miner, SAS Enterprise Miner aB&SSClementine.

Examples of non-commercial software g¥ekaandOrange More information on
data mining can be found in [6].
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7. Fitting of Empirical Data
by Regression Functions

This chapter shows how relationships among various quantities can be described
by suitable regression functions. Typical functions are shown and the
determination of regression constants is explained. As the input data exhibit
variability for random reasons, the regression function does not give accurate
values. The reliability of predictions can be increased if confidence band is created
for the regression function or its values.

It is useful to describe the empirical data by an analytical expression, for example
y=1x), or w=1(xy,z..) (7.2)

depending on whether the investigated variable depends on one or several
quantities. Such expressionfegression function, provides concentrated
information and facilitates further processing of the data. The steps in this curve
fitting are: 1) proposal of a suitable form of the regression fundiiand 2)
determination of the best values of its constants. In some cases it is necessary: 3) to
evaluate the quality of the fit, especially if the fit is not perfect or if it is necessary
to decide, which of the several possible approximations is the best.

Proposal of regression function

The first idea can be obtained from a chart with all measured vdl)es ypicture

says mor e than thousand wor ds! The possible shape of the regression function of
several independent variables, = f(x, y, z, ...), can first be assessed from the
plotsw =f(x; y = const, z = con¥tw = f(y; X = const, z = cont.., corresponding

to the cuts through it. Figure 7.1 shows shapes of various functions and can thus
help with the choice of the regression function. Before proposing this function, it is
useful to think for a while about the general nature of the investigated
phenomenon. Generally, the regression function can increase or decrease
monotonically, it can have a power-law character or can grow in an exponential or
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logarithmic manner, it can decrease as a hyperbola or an exponential function with
negative exponent, or it can have a maximum or minimum. It can approach
asymptotically to a certain value for very high values of the independent variable.
The solution of some problems leads to periodical functions (sin, cos...).
Sometimes, the approximation is sought in the form of a series (e.g. polynomial,
Fourier with trigonometric terms or Prony series with exponential terms). The
knowledge of analytical solution of related problems can often help in the proposal
of the regression function. Shapes of several simple functions are shown in Fig.
7.1; see also [1, 2]. In some cases, functions typical for probability distributions
(either probability density or distribution function) can be useful, for example
normal distribution or Weibull distribution (see Figures 4.7 and 4.8 in Chapter 4).
Two examples, a function with several exponential terms and a cosine function are
given later in this chapter.

Determination of regression constants

Some universal programs (including Excel) offer several regression functions for
fitting empirical data and can determine the parameters using their own algorithms.
In such case it is sufficient to create the chart for the measured wahresby.

Then, after a right-click on the data series, a pop-up menu appears and a suitable
function can be selected, e.g. linear, polynomial, power-law, exponential or
logarithmic. The application with Excel was described in Chapter 5. It is important
to demand (from the menu) that also the expression for the regression function is
shown in the chart, as well as the coefficient of determinafiacharacterising the
quality of the fit (the detailed explanation Gfwas given in Chapter 6). This is
useful especially if various regression functions should be compared.

If a regression function is to be proposed, various criteria are considered. One such
criterion is that the calculations done with this function should be relatively simple.
Functions easy to work with are polynomials, sucly asa +bx + ¢ + dx + ...

Also universal programs for curve fitting offer this and several other functions.
Fortunately, polynomials can be used for more complicated functions also, if the
original data are transformed in a suitable way. The Table 1 on the page following
Figure 7.1 with typical forms of analytical curves, shows several functions that can
easily be transformed to polynomial form.
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Figure 7.1. Shapes of various functions for fitting of empirical data. Various curves at the
individual functions correspond to various values of regression constants.
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Table 1. Transformation of various functions to polynomial form [1].

Original function Transformation Transformed function
w=a+ 2+ Sy s K]l = a+ bt+ ct® + ...+ kt®
X X X X y

w=ae” y=Inw y =Ina + bx

w= exp( a+ bx + cx?) y=lnw y= a+ bx+ cx?
w=ax’ y=Inw y=Ina+Dbt

t=Inx

w= 1 y—l

T atbx+ o +. +kx° w y= ar bxt cx +...+kx’

. X" X"
W T a+bx+cx? .. +kxe y:Wn y= at bxt+ oX +...+ kx
W= In( at bx+cxt) y =expw) y= a+ bx+cx?

Table 1 shows transformation formulae and transformed functions. However, such
transformations change the character of the dispersion of the individual data points
around the regression function. The classical determination of regression constants
is based on the least squares method (see further), which gives the most accurate
results if this dispersion is constant, independent of the values of the independent
variable (= homoscedasticity). If the transformation has changed the dispersion
significantly, transformed datashould be multiplied by appropriate weights. For
more, the reader is referred to literature, e.g. [3].

The distribution of the measured values sometimes does not correspond to any of
the predefined functions and it is better to propose one’s own expression (7.1).
Figure 1 can help in search for a suitable expression; some of them are available in
universal programs for curve fitting, such as Excel. The regression constants
should be such that the distances between the individual measured values and the
corresponding calculated values are minimal. For this purpose, usuallgathe
squares method is used [4 — 6], which minimizes the sum of squared differences
between the measured and calculated valugs of

S%s: z(yj,meas_yj,calc)2 = min ! (72)
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The subscriptres means residualneas— measured, andalc — calculated. The
summation is done over allvalues ofy(x). Solvers in universal programs enable

this minimisation. An example was shown in Chapter 5 (Example 1); two other
applications will be presented later in this chapter. These solvers have a big
advantage: no transformation of regression function is necessary (and thus also no
change of the character of dispersion).

Evaluation of thefit quality

Sometimes the visual evaluation is sufficient to give an unambiguous answer as to
the fit quality. Also, a very simple quantity for such evaluation exists, the
coefficient of determination r?, explained in Chapter 6. The closéro 1, the

better the fit. In a case of doubt, it is possible to make statistical test of significance
of r, as explained in Chapter 8.

For more detailed characterisation, so-caltediduals are suitable. They are
defined as the differences between the measured and calculated values,

Aj = yJ,meas_ yj,calc (73)

plotted as a function of the independent variabl@he differences between two
curves are then more visible. This is useful especially if both curves, plotted in the
original scales, overlap (see Figure 7.2a, b). Additional information follows from
their distribution. Fit 2, with randomly dispersed positive and negative values is
more suitable than Fit 1 with systematic gradual change of residuals from positive
values to negative with increasing x

Sometimes, relative (or standardised) residuals are used,
Aj,rel = (yj,meas_ yj cak)/yj,calc (74)
which do not depend on the scale of y

The differences between the measured values and those on the regression curve
(7.1) can serve to three purposes: 1) their squares are used in the criterion in
equation (7.2) for optimisation, 2) they can be used for verification whether the
distribution of the individual points around the regression curve is normal (this is
the condition for the use of the least squares method), and 3) they serve for the
determination of confidence band around the regression curve. This band can be
used for more reliable predictions than those based only on the regression function.
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Figure 7.2. a) Measured data fitted by two functions, b) Residuals; fit 2 is better than fit 1.

Now, two methods for the determination of regression constants will be discussed
in more detail: analytical and numerical.

Analytical determination of regression constants

A minimum of a function is usually found by the least squares method. This
method is based on making partial derivatives of the sum (7.2) with respect to the
individual regression constants, and putting each derivative equal zero [4 — 6]. For
example, for linear regression

y=a + bx (7.5)
Equation (7.2) changes to (with,Q&placed by the symbol S):
SS=S =5(a+ bX — Y mead’ (7.6)

The partial derivatives$0da and &0b are
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dSPa = Z(a + bX —Yjmead , 050b = Z(a + bX —Yjmead X (7.7)

Putting both expressions equal zero generates a system of two linear equations for
two unknowns a and b. The solution gives

_ nXx;y;—Xx;Yyj q = Xyj—bYxj (7.8)

B anjZ—(ij)z ’ n

Similar procedure can be used for other regression functions and leads, generally,
to a system oh linear equations fon unknown regression constants. Simpler,
however, is the use of a suitable computer solver, explained in Chapter 5 and in the
next paragraph.

Computer-supported deter mination of regression constants

Today, universal computer programs (including Excel, Matlab or Mathcad) contain
solvers which can find the minimum of an expression. This makes the
determination of regression constants very easy. It is only necessary to prepare one
series of measured datgn..s and a series of thg ... values, calculated via
Equation (7.1) for the same valugsising the pertinent parameters, for exanaple

b in Equation (7.5)Solver, after the command to minimize the expression (7.2) or
(7.5) by changing andb, will find their best values by using its own algorithms.

For these calculations, the cells for the regression constargsnjust be prepared

in the worksheet in advance, as well as the cell containing the expression (7.1). The
search for the best values of regression constants starts with assigning the initial
values to the regression constants. Then, Solver is asked to find such values of the
constants, for which the content of the cell with formula (7.6) is minimum. This
value SS9 also characterises the quality of the fit (Chapter 6). This information is
useful if the minimisation process is repeated. Examples are shown later.

The determination of regression constants with Solver needs some practice. The
quality of the calculated “best” values of regression constants sometimes depends
on their initial values. In the worst case, the optimisation process does not converge
and different initial values must be chosen. Moreover, Solver looks for the
constants ensuring a minimum from the mathematical point of view, and can
propose values that have no real sense. In some cases it is necessary to define the
interval of acceptable values of the constants. (Caution: the optimisation algorithm
seeks only the nearest extreme, and does not know that several extremes can exist.)
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Sometimes, the optimisation process must be done in two or more steps, as the first
optimisation could not give the accurate values. The constants obtained in the first
process are then used as input values for the repeated process. It can always be
recommended to repeat the optimisation; the comparison of the sum of squared
differences (7.2) from the subsequent optimisation cycles informs whether the
search for the minimum has ended.

The determination of regression constants will be illustrated on two practical
examples.

Example 1. Load response of a viscoelastic material

The time course of deformation of components from viscoelastic materials (for
example plastics) under constant load resembles an exponential function. Often,
however, simple exponential function is not sufficient. A better approximation may
be a Prony series, which is a sum of several exponential functions,

y= g+ aexp(H/n) + aexp(-n) + ... (7.9)

a1, ... are constants and, n,... are so-called relaxation times, which are also
unknown. Figure 7.3 shows the time course of penetration of an indenter into
polymethylmethacrylate (PMMA). The following regression function was used [7]:

Y(t) = FK[Ao+ Gt — 3B exp(-t /7)] (7.10)

F is the loadK is a constant for the indenter geometry, anct,, B, andz (j = 1,

2, 3) are the regression constants, found by the least squares method. Figure 7.3
shows two approximations, with three and six regression constants. For
comparison, also relative residualg in both cases are shown in the figures. They

are defined by Eq. (7.4) and do not depend on the scgleRasiduals can help in
distinguishing various approximations, especially if they look nearly identical in
the commony(x) coordinates (see also Fig. 7.2). In the investigated case, the
approximation with six constants is obviously better.

Remark: Commercial computer programs for the finite element analysis of
structures enable work with Prony series.
Confidence band for predicted values

Regression function usually serves for future prediction. However, if this function
was created from data exhibiting large scatter, the predictions will not be very
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Figure 7.3. Indenter penetration into PMMA under constant load [7]. Measurements
(dotted curves), fits for two models (thin solid curves), and relative residia(shin zig-

zag lines). a) model S+KV (3 constants), b) Model S+D+2KV (6 constants). The
S+D+2KV model fits the measured data very well; the differences are visible only via the
residuals. h — depth, t —time. S - spring, D - dashpot, KV - Kelvin-Voigt body (spring and
dashpot in parallel).

reliable. Its reliability can be increased by creating confidence band for the
individual points around the regression function. If one can assume that the
distribution of the measured poinys around the regression functiongx) is
normal and the corresponding residual variance (determined from many points) is
constant, independent of, it is possible to construct the boundaries of the
confidence interval (see Fig. 7.4 in Example 2) as
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YuL(®) = YedX) £ Ul Ses (7.11)

U and L denote the upper and lower boundary limit, respectiugl, a-quantile
of standard normal distribution, angss the residual standard deviation defined as

fs= V[ SKIV] (7.12)

SS.sis the sum of squared differences between the experimental data points and the
corresponding points on the regression curve, laiglthe number of degrees of
freedom, equal to the number of measured values minus the number of regression
constants (for example 2 in linear relationship). Probability that the predicted value
will lie outside the limitsyy 1), is2a.

Example 2. Fitting of the average daily temperatures during a year

The outside temperatures vary during a day and also during a year. Nevertheless,
these variations exhibit some regularity (day, night, summer, winter...). If this
regularity is taken into account, the predictions of temperatures at certain time can
be more accurate. For example, temperatures in the town Usti were monitored
during the year 2008. It appeared that the average daily temperatures can be
described by the following cosine function:

T = To+ A cos f{x — %)/186] (7.13)

X; is the rank-order number of the day, didA andx, are constants. (NOTE: 186
days is the half-length of the analysed leap-year 2008). Figure 7.4 shows the
individual temperatures and the regression function (7.13), found by the Solver in
Excel. The regression constants wése= 10.86C, A = —-9.41TC, X, = 14.17. The
residual standard deviation was 3.236

Now, let us predict the average temperature df Q8tober. Determine also the
confidence interval, which will contain the true average temperature with
probability 90%.

In Equation (7.13), 23 October has the rank number 297, and the predicted
temperature is

T =10.86 — 9.41 cog(297 — 14.17)/186] = 9.52

Figure 7.4 also shows the confidence intervals for the temperatures (see further).

60



Jaroslav Mencik: Introduction to Experimental Analysis

Figure 7.4. Average daily temperatures in town Usti during the year 2008. Measured data,
the fit and confidence band. T aveaverage daily temperatures.

Construction of the confidence band. The confidence intervals for various
characteristics will be explained in more detail in the next chapter. The confidence
band for the temperatures can be constructed via Equation (7.10). With residual
standard deviation.g = 3.236C and 5% quantile of standard normal distribution
(1.645), the half width of confidence intervalds= SeXUgos= 3.236x1.645 = 5.32,

and the lower and upper limits of the 90% confidence interval are:9152 -5.32
=4.20C, Ty = 9.52 + 5.32 = 14.8€. The temperature 7.43; measured for this

day (297), lies within the confidence limits; cf. Fig. 7.4. One also can see from this
chart that a few temperatures during the year are out of the limits. This is
understandable because the limits were constructed for confidence 90%; ten
percent of all measured values may lie outside this confidence band.

Multiple regression

Often, one must express how the variabtiepends on several input quantitkgs
X2y wuen

y =fx, %, -..) (7.13)

The simplest case is linear relationship

Y=a9 + aXp + X, + agxz + ... (7.14)
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The constants,, ay,... can be obtained easily by multiple linear regression,
available by universal computer programs. Here, the use of Excel’s function
LINREGRESSIOMill be shown on an example.

Example 3. Multiple linear regression.

Let us haven = 10 values of strengthof an alloy measured for various content of
Mg (x1) and the temperature of thermal treatmesl; Gee the table below on the
left. We shall assume that the strength depends on them astyax; + aX;.

Input data
y  xa(%)  %(°C)

234 10.3 800
256 9.8 840
290 9.6 920
248 10.0 820
255 9.7 870
260 10.5 850
285 9.4 900
250 9.1 860
244 9.9 830
270 10.2 890

First, we create (by “click and drag”) an empty array (matrix) with five horizontal
rows and the number of columns equal the number of regression constants; in this
case 3. In the next step we open the Excel menu “Insert function”, find
LINREGRESSIONinsert the array ofy values from the table into the upper
window in this menu, insert the array containing all input vakies, into the
window below, and then we write the wof@RUE into the two lowest windows

and press simultaneously the k&yERL, SHIFT, ENTER That's all. The table of
results is given on the next page. The reader is encouraged to repeat the procedure.

The individual horizontal rows in the table of results contain: row R1: regression
constants arranged from left to right@s a;, a,;, row R2: standard deviations of
the individual regression constants, row R3: coefficient of determingtiamd the
standard deviation of yow R4: Fstatistics and the number of degrees of freedom,
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Table of results

a2 al a0
0,46907 5,489513 -197,333
0,065626 5,815328 96,55583
0,891138 6,640678  #N/A
28,65067 7  #N/A
2526,91 308,6903 #N/A

needed for testing whether the relationship among the dependent and independent
variables is not only random, and row R5: the regression sum of s@fgemnd

the residual sum of squar8&.s defined in Chapter 5. The three cells with #N/A

do not contain any values. Detailed explanations can be found at the command
LINREGRESSIONh Excel menu. The coefficient of determinationris= 0.891

(see R3), which is acceptable. The reader can calculfaiechosen values,, x,

and compare it with the table of input data.

The regression function (see the constants in the first row of the above table) is
= —197.333 + 5.4895%, * 0.46907 x
The above facility for multiple linear regression can sometimes be used for finding
constants in nonlinear regression also. For example, the product
Y= @ X XoXs (7.15)
can be changed by logarithmic transformation to the sum
Z=b+tuu+tw+uw (7.16)

z=logy, b =loga, u; = log x;, U, = log %, andus = log xs. Similarly, it is possible

to transform individual variables. For example, in equaticna; x; + a, X + ag

sin(cx) new variables can be defined asw and v= sinx). Note: The regression
constantb must then be transformed back to the original systean=ad0. If the

shape of the assumed expression does not allow multiple linear regression, the
regression constants can be found by using a suitable solver, as described above.

REMARK. The direct determination of parameters in Weibull distribution from
measured values, described in Chapter 5, is nothing else than the determination of
constants in a regression function.
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Moving aver ages

Sometimes we have no idea what function could be used for the approximation of
the time course of some quantity expressed as time series. We just see plenty of
data points. A trend can sometimes be revealed better if the original data are
smoothened by replacing them by moving averages. Such average is calculated
from p neighbouring data points; the numigers a matter of our choice. For
example, the original serias, X,, X3, Xs, ...%, IS replaced (for a chosen numiper

3) by the serieg; = (Xi+Xo+X%a)/3, Y2 = (KotXatXe)/3, Y3 = Xa+XatXs)/3,... Yn2 = (Xn-
HXn1tXn)/3. This new series has onfy— 2 terms, generallg —  — 1), and is
smoother than the original one. It can be recommended to use several
approximations, for varioug, and choose the best looking one. Universal
computer programs (including Excel) enable easy application of moving averages
on empirical data.
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8. Confidence Intervals, Testing of
Hypotheses and the Amount of Data

An important task at the initial stage of any research is finding the necessary extent
of experiments. Experiments cost money (specimens and the related material, the
devices and other equipment that must be purchased or hired), and they also need
time and work capacity (plus corresponding personal expenses). Therefore, their
extent should not be excessively large, but in proportion to the: 1) task of the
research, 2) importance of the expected results, and 3) the demanded accuracy. All
this should be clarified in advance.

Information on the accuracy of a measured parameter is provided by the confidence
interval for this parameter. The width of such interval depends on the number of
measurements. Vice versa, the formula for the necessary number of values can be
derived from the expression for the confidence interval. Similarly, the decision
about a tested hypothesis is based on the value of the pertinent test criterion, which
also depends on the number of measurements. This number, important for
ascertaining or increasing the test power, can again be derived from the test
criterion.

In this chapter the formulae for confidence intervals and statistical tests will be
shown, and also the numbers of measurements needed for ensuring the demanded
accuracy of some characteristics (mean, standard deviation or other parameters),
the number of values for a confidence interval for points on a regression line, and
the amount of data for some statistical tests. Each section will start with the
pertinent formulae, and the applications will be shown on examples.

Confidenceintervals and the necessary number s of values
Mean value

The confidence interval for the meanis [1 —5]:

X=tz,dVn < pu < X+t,,9Vn (8.1)
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X is the average value (2x/n), n is the number of measured valusss the

sample standard deviation, aRg tis a-critical value of {distribution forv = n—-1
degrees of freedom. Half-width of the confidence interval,

A = t,sVn (8.2)

expresses the uncertainty in the determination of the mean value and corresponds
to the possible inaccuracy. This equation can be rewritten to express the number of
values (or tests) necessary for ensuring that the true meah differ from the
averagex not more than:

n = {,,54)° (8.3)

The probability that a larger difference can occurgisOne can see that the
necessary number of tests increases significantly with increasing dispersion of the
individual values and with increasing demands for accuracy (i.e. with smaller
allowable errord). It can be said roughly that the reduction of the inaccuracy to
50% needs four-times more tests. Certain mitigating role is played by the fact that
t,,, decreases with the increasing n, especially for small n.

According to Equation (8.3) it would be possible, in principle, to achieve any
accuracy, but for a high price. Therefore a compromise must often be made. It is
reasonable to make only a few tests first in order to obtain an estimate of standard
deviationsand to calculate a preliminary numbenf the necessary tests via Eq.
(8.3). If n is high, it is reasonable to make about half of the tests at the beginning,
to calculate the improved estimatesdndn (using the corrected value ©f and

then to make the remaining tests.

Example 1.

Diameters of machined shafts, measured on 10 pieces, Wverd:6.02 — 15.99 —

16.03 — 16.00 — 15.98 — 16.04 — 16.00 — 16.01 — 16.01 — 15.99 mm. Calculate: a)
the average value and standard deviation. Assume that the diameters have normal
distribution, and calculate b) the 95% confidence interval for the mean value and
also c) the interval, which will contain 95% of all diameters.

Solution.

a) The average value 3= (2Dj)/n = 16.007 mm and standard deviatiorsis
0.01889 mm.
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b) 5%-confidence interval for the mean, calculated by Eq. (1), is (for two-sided
critical valuety os: 10.1= 2.2622):

16007 22622 21889 ) < 16007 20622 P1E89
V10 ° V10

15.993 <t < 16.020 mm, ogp O (D + 4) = 16.007+ 0.0135 mm

If we want to increase the accuracy in the determination of the mean value of the
diameter so that the actual mean differs from the calculated avenagemore
than4 = 0,005 mm, Equation (8.3) gives

n = (4, 94)> = (2.0024650.01889/0.008)= 57.2

2.0025 is the critical value d@fdistributiont, , for significance levelr = 5% and

the number of degrees of freedam= n — 1 = 57. The standard deviatisn=

0.01889 mm as before was used, as no better estimate was available. Therefore, the
improved mean value will be obtained as the average of not less than 58 values.

¢) The individual values can be expected (under assumption of normal distribution)
to lie within the interval D — ug»Xs < D < D + UgppXS, Whereuy, is al2 — critical

value of standard normal distribution (corresponding to probahiigythat the
diameter will be larger than the upper limit of the confidence interval géhthat

it will be smaller than the lower limit). In our casgus= 1.96, so that 16.007 —
1.96>0.01889 <D < 16.007 + 1.960.01889; that iD O (15.970; 16.044). The
reliability of the prediction could be increaseddferance interval is used instead

of confidence interval; see later in this chapter.

Variance

The confidence interval for the variangeof normal distribution is [+ 5]

(n - 1ﬁ2 //\/20‘/2"’ = 02 S (n_ 1F2 //\/21—a/2,v (84)

qu/z,v is al2—critical value of chi-square distribution for = n—1 degrees of
freedom;,\/zl_u,zyv is (1-af2)-critical value. (NOTE:a~critical value is identical

with (1-a)-quantile.) The width of confidence interval depends on the number of
valuesn. The number of measurements needed for obtaining the demanded width
can be obtained using the relationship between the number of values and the

67



Jaroslav Mencik: Introduction to Experimental Analysis

corresponding critical values of chi-square distribution. Universal programs with
statistical functions (including Excel) are suitable for this task.

Example 2.
Calculate the 90% confidence interval for the standard deviafromsExample 1.

Solution. Equation (4) gives the confidence limits for variance. The variance for
standard deviatiors = 0.01889 mm iss® = 0.0003658 mm Further necessary
values arev=n—-1=10-1 = 9Qes(v=9) =19.9190,00s(v=9) = 3.3251.
Lower (L) and upper (U) confidence limits for the variance are

(L) = 9x0.0003658/19.9190 = 0,0001612 Ang = 0.0126975 mm
(V) = 9x0.0003658/3.3251 = 0,0009901 fm g, = 0.0314659 mm

and the confidence limits for standard deviation, calculated as square roots of the
variances, ares. = 0.0127 mm,s; = 0.0315 mm. (Note the large width of
confidence interval fos, compared with the estimated value- 8.0189 mm !)

Parameter of exponential distribution

Exponential distribution plays a very important role, for example, in reliability. It is
usual for the times between failures occurring from many reasons in complex
electrical, mechanical and other objects or systems consisting of many elements.
Probability of failure during interval (0) is

R(t) = & " ean (8.5)
tis the time andeanis the mean time to failure or between failures. In practice,
the mean time is determined as the average of the measured times to failure,

Tmean = Tave: thj / n (8.6)

the summation is done for afl valuest;. However, the times to failure of
individual elements vary, anfl,,, calculated from Eq. (8.6), is only an estimate of
the mean time. The knowledgeafidence limits for T, is therefore needed. The
lower (L) and upper (U) limit are given by the following formula{5]:

NP S P S— Y (8.7)
X a/2(|/) X l—a/2(|/)

—
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Ya(V) is the al2-critical value andy’_o»(v) is the (1af2)—critical value of the
chi-square distribution fov degrees of freedom. The probability that the actual
time to failure can be shorter thanor longer thary is a. The number of degrees

of freedom depends on the arrangement of the tests. If they are terminated after
failure of r pieces, it holdsy = 2r [6]. With increasing number, the difference
between the lower and upper critical values of chi-square distribution becomes
smaller. Also the confidence interval for the mean time becomes narrower and the
prediction ofT,,.anmore accurate. In this way it is possible to determine in advance
the number of failed specimens, at which the test may be terminated to achieve the
demanded width of confidence interval for the mean time to failure.

Example 3.

Ten electrical components were tested to determine their times to failure and the
failure rate. These tests can last very long for some components. Therefore, they
are sometimes terminated after certain defined time. In this example, the duration
of the tests was fixed &s= 500 hours. During this time, only 6 components failed

(r = 6), in times: 65 — 75— 90 — 120 — 250 — 410 hours. Four components survived
the test. It is necessary to estimate the mean time to failure and construct two-sided
confidence intervals (for the confidence 90%).

Solution. The mean value and standard deviation of times to failure of the 6 failed
components were, respectively: 168.33 and 136.33 hours. It is thus possible to
assume exponential distribution.

The cumulated duration of the tests was [6]:

t,=3°.t +4xt =60+ 75 +90 + 120 + 250 + 410 +500 = 3010 hours

The average time to failure igd= to/r = 3010/ 6 = 501.67 h.

The lower and upper confidence limit fQf.a, wWith respect that the tests were
terminated before the failure of all samples, are [6]:

_ 2 7j _ (8.8)
t = Lo Stocas e =
L )(211/2 (2_ + 2) ave ‘mean le—a/Z (2r) ave tU

where x’y2(2r+2) is a /2—critical value of chi-square distribution for+2r degrees
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of freedom, angy’y»(2r) is a /2 — critical value of chi-square distribution for 2
degrees of freedom. In the investigated case, mitt6 anda = 10%, the critical
values arey’ oos 14 = 23.685 angi s 12 = 5.226. Inserting them, together with.

= 501.67 h into (6.8) gives = 254.4 h andy = 1152.1 h. The mean time to
failure thus can be expected to lie within the intetyal O (254 h; 1152 h).

This confidence interval, obtained from only six failures, is very wide. If it should
be narrower (in order to get more accurate estimate), it is necessary to make a
longer test so that more parts of the tested group fail, or to increase the number of
tested parts; see [6] or Chapter 20 in [7].

Values predicted by aregression line
Regression line
y(x) = a + bx (8.9)

is often used for prediction of-values corresponding to certain values xof
However, the constants, b are determined from measured values that exhibit
some dispersion. If another series of measurements would be used, less or more
different regression line would be obtained. The confidence interval for a point of
the regression line (Figure 1) is4, 8J:

1 (x - %)?2
y = a + bx * =7 (8.10)
ta,v sfes\/ n (n_l)%z
where g4X) is the residual standard deviation, defined as
(y, - a- by )?
Ses = J —= (8.11)

All points of confidence limits form the confidence band, which is narrowest for
=X . The formula forx = x is identical with the formula (8.1) for the confidence

interval for the mean.

Similarly, the width of confidence interval &decreases with the square root of

1/n. The confidence band for the regression line can therefore by made narrower by
using higher number of values for the determination of regression constants. The
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y y=a+bx

yU,n{x‘)

y(x’)

YL,u.(x') /

X X
Figure8.1. Confidence interval for a regression line.

necessary number of values for ensuring the demanded accuracy can be found
similarly to the case of the mean value. A modification of Equation (8.3) gives

N = oy Sedd)’ (8.12)

Tolerancelimits

Sometimes we need to know the interval that will incliRlgpercent of the
population. A very important case is if the population has (approximately) normal
distribution. If the parameters, o of the population are known, théh% of the
population lies within the limitgs + u;_p0, Whereu,_p;, is the (1-FP2)—critical
value of standard normal distribution.

Often, however, only sample characteristicands are known instead qf and o.

In such case, it is impossible to determine the corresponding limits with certainty.
We can only determine so-called tolerance limits, which will contain the fraetion

of the population with a chosen probabiliy Two-sided tolerance limits (lower
and upper) can be calculated via the formula [5, 9, 10]

X, Xy = Xxks (8.13)

X ands are the average and standard deviation of the sample of, sarelk is a

constant, depending @) n andy. The coefficients kor selected valueB, n andy
can be found in statistical tables, for example [9, 10].
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Example 4.

In Example 1 the interval was calculated, which should contain 95% of all
machined shafts: (15.970 mm; 16.044 mm). This interval was calculated under the
assumption thab = 16.007 mm and = 0.01889 mm are parameters of the
population. These values, however, were calculated from a sample af enlyp
pieces. More reliable interval will thus be obtained via the formula for the
tolerance interval For the fractiorP = 0.95, reliability of the predictiopr= 0.90

and n =10 is k 3.18; see [9, 10]. The interval containing 95% of all pieces is

D+ kxs =16.007+ 3.18<0.01889 = 16.00% 0.060 = (15.947 mm; 16.067 mm)

This is wider than the original interval. The difference between both intervals gets
larger with larger standard deviation and smaller amount of empirical data,
especially if n < 10.

Testing of hypotheses

Difference of two averages

The test criterion depends on whether the variance of both samples is
(approximately) the same or not. Here, only the case with different variances will
be considered, which is more universal. In this case, the test characteristic is

(8.14)

and it will be compared with the critical valuetafistribution for the significance
level a andv degrees of freedom, defined as [8, 11]

v = [( §z/fl)Jf(Sf/nz)]z (8.15)
(s°/n)° , (8°/n,)’
n, -1 n, -1

Example 5.

A modified procedure for preparation of a certain kind of plastic was proposed.
The costs were lower, but also the measured strength was lower. It is necessary to
verify whether the strength decrease is only random, or if it is statistically
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significant. The characteristics of both samples are as follows:

Sample 1: p=31,%, =31.03, ¢ = 1.41, $= 1.19
Sample 2: p= 32, X, = 29.87, @2 =1.84,5=1.36

Insertion of these values into Equations (8.14) and (8.15) give$0.4 and =
3.615. This test characteristigs larger than the critical value tfistribution for
significance levelr = 0.05 and the number of degrees of freedom60, which is

to.0s: 60= 2.0003. The difference between both average values is significant (on level
5%), which means that the way of preparation has influence of the strength.
NOTE: The difference is statistically significant even on confidence level 0.001.

Comparison of the accuracy of two measuring methods

This test is based on the comparison of variances of both methods. The ratio of two
variances has-8istribution. The test criterion,

F=s5%/s’ (8.16)

will be compared with the critical value Bfdistribution forv, = — 1 andv. =

— 1 degrees of freedork, (ny — 1,n, — 1). If F > F,, the null hypothesis (no
difference between both variances) is rejected. Otherwise we conclude that the
difference is not significant.

Test of significance of the coefficient of correlation of two quantities

The correlation coefficient (= Vr?) is sometimes very high, for example 0.9 or
more, and we can assume that the proposed functional relationship between both
guantities is justified. Sometimes, however, the correlation coefficient is lower and
we do not know whether the values of one quantity really depend on the values of
the other quantity, or if they are correlated with it only loosely. Statistical test is
then useful. Correlation coefficienis statistically significant on significance level

a, if

IrVn-2

L AN (8.17)

tyv is one-sidedr-critical value of tdistribution forv=n — 2 degrees of freedom,;
is the number of pairs of values. If we want to be sure that the correlation
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coefficientr is statistically significant (on levat), it follows from (17) that the
number of the pairs must be

n> 2+ g, )* (1 —rdir? (8.18)

As ty, depends om, several iterative steps are sometimes needed to obtain the
right number of values n.

Example 6.

Correlation coefficient between strength and hardness of an alloy, determined from
30 pairs of values, was r = 0.7. Is this value statistically significant?

The test criterion (8.17) is
|0W30-2
V1-07

One-sided critical value dfdistribution forv =n — 2 = 30 — 2 = 28 degrees of
freedom istoes28 = 1.701 for confidence level 5%, and 2.763 for confidence level
0.5%. The calculated value 5.1867 is much higher than the critical values. We can
thus conclude that strong correlation exists between the strength and hardness of
this material.

=5186

Tests of goodness-of-fit. These tests are used to check whether the experimental
data have certain probability distribution. Two kinds of tests are used most often:
Kolmogorov-Smirnov and chi-square. WitKolmogorov-Smirnov test, the
differences between the empirical distribution function and the reference one are
calculated for all values of the empirical distribution, and the maximum difference
is compared with the critical value, which can be found in special tables [9, 10]. If
it is larger, we reject the null hypothesis and say that the empirical population does
not correspond to the assumed distribution. Otherwise we accept the hypothesis.
The following example illustrates the application of Kolmogorov-Smirnov test.

Example 7.

It is necessary to verify whether the batch of NaOH comes from the supply with
the mean concentratign= 42.3 and standard deviatiorr 1.5. The results dfl =
50 analyses were:
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440 450 425 419 419 412 410 433 423 400
422 436 444 402 415 427 450 430 432 411
424 424 408 39.2 432 442 423 433 447 411
419 427 414 444 430 40.1 420 39.7 429 427
415 388 434 439 408 405 428 416 43.0 428

The basic statistics are: average concentrgtiend2.27, standard deviatian=
1.48, the minimum and maximum valuegi, % 38.8, ¥ax= 45.0.

Solution. For Kolmogorov-Smirnov test the values of the empirical and theoretical
distribution functions are needed. First, the measured concentragiamsré rank-
ordered from minimumx) to maximum Xy) and the corresponding values of
empirical distribution function were calculatedRgsm,,= j/(N+1). Then, the values

of theoretical distribution function were calculated for the same quanrijlésit

under the assumption that they pertain to the normal distribution with parameters

= 42.3 ando = 1.5. (In Excel, the command NORMDIS[f, o, TRUE) can be
used.) Finally, the differences of both distribution functiafyss |Fjemp — Fjtheol,

were calculated. The table below shows a part of the complete table, and Figure 8.2
shows both distribution functions.

The maximum difference between the empirical and theoretical distribution
function wasd.x = 0.05612 (folj = 28; see the table). This is much less than the
critical value of the Kolmogorov-Smirnov criterion [10], whichDgeg50) = 0.188

for confidence levelr = 0.05 and the number of valuls= 50. Therefore we can
accept the hypothesis that the parameters of the batgh-a4@.3 andr= 1.5.

i X I:lemn I:l,theor Ai 15

1 388 0.019610.009820.009 F
2 392 0.039220.019380.019 ¢p -

28 42.7 0.549020.605140.056 s i
02 4

50 45.0 0.980390.964070.016 D: —_———
38 40 42 44 X 46

Figure 8.2. Kolmogorov-Smirnov test — comparison of empirical and theoretical
distribution for 50 values.
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Another goodness-of-fit test @hi-square test (Y’—test). This test is based on the
idea that if the sample has the assumed distribution, the differences of empirical
and assumed (theoretical) values have standard normal distribution and the sum of
their squares has therefore chi-square distribution. The application is as follows.
The data are divided intm intervals and the frequency of their occurrence in the
individual bins is determined. Then, the theoretical frequencies are computed for
the assumed distribution. The differences of both frequencies in the corresponding
classes are calculated. The criterion is [11]:

= gw (8.19)

LY

If the valuey?, calculated via Equation (8.19), is higher thandtwitical value of

the Y’—distribution for (nk-1) degrees of freedom, the hypothesis “the sample has
the assumed distribution” is rejected on the level of significance @therwise,

the hypothesis is accepted. REMARK:is the number of parameters of the
distribution function, calculated from the random sample. The condition for the use
of chi-square test and the numimeof intervals is thahp must be equal or higher
than 5 (i.e.np = 5) for every;.

Example 8.

The hypothesis from Example 7, “the 50 specimens come from the population with
the parameterg = 42.3 ando = 1.50” will now be tested by the chi-square test.
The input values are the same as in the previous example.

Solution. The range of possible concentrations (3845.0) was divided into 13
subintervals of width 0.5 each, and the frequencies of occurrence in each were
calculated, similarly to the above example. However, chi-square test may be used
only if the number of values in every subinterval is equal or higher than 5.
Therefore, new subintervals (7 altogether) were created by merging of some of
them. The following table contains all data. Column 1 shows the concentrations,
column 2 shows the corresponding “measured” numiyespecimens, column 3
shows the theoretical probabilitipsof concentrations, calculated via the values of
distribution function, column 4 shows the theoretical numbers of valydsr n =

50, column 5 gives the differencgs- np and column 6 shows the partial valdgs

= (n; —np)*/np for the chi-square criterion.
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X n; 8] np n—np Z
38.51-40.50 7 0.1151 5.755 1.245 0.2693
40.51-41.50 9 0.1818 9.090 0.690 0.0009
41.51-42.00 5 0.1238 6.190 1.390 0.2288
42.01-4250 6 0.1323 6.615 0.615 0.0572
42.51-43.00 9 0.1266 6.330 2.670 1.1261
43.01-43.50 5 0.1085 5.425 0.425 0.0333
43.51-45.00 9 0.1760 8.800 0.200 0.0045

The resultant value of the criterion, given by Equation (8.19, #1.720. This is

much lower than the critical valyg,.{4) = 9.488, corresponding to confidence
level @ = 0.05 and the number of degrees of freedosm - p - 1 = 4;mis the
number of subintervals (8.7) ang (=2) is the number of parameters of the
investigated distribution [10, 11]. Therefore, we can consider the tested sample of
50 specimens as being from the population with parameter42.3 ando = 1.50;
similarly to the conclusion from the Kolmogorov-Smirnov test.

Bayesian methods

This term denotes probabilistic methods, which enable combination of information
on some

event or quantity with previous information from measurement or experience. The
use of additional information can increase reliability of our information, or reduce
the extent of measurements needed for making conclusions on certain event.

Bayesian methods are based on the so-c8las theorem [7, 12, 13]. Let us
assume that an evem)(can occur if another evemd)(has occured. The eveAt
however, could occur by several way&;, (A, ... Ay, which are mutually
exclusive. The probability of simultaneous occurence of both eyegra#ndB, is
calculated as:

P(BA) = P(A) x A(BIA) (8.20)

P(A) is the probability of even#y, and P(B|A) is (conditional) probability that
eventB can occur provided that eveAt has happened. The total probability of
event Bis

RB) = S P(BA) (8.21)
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the summation is done for all possible cgsedl, 2, ...n. Bayes theorem looks at
the issue in the opposite wayf gvent B has happened, what is the probability that
it was as a consequence of (or after) evgft With the use of Egs. (8.20, 8.21)
and the fact thatB4) = P(AB), this probability can be expressed as [7, 12, 13]:

RAB) = P(A) x P(B|A) / P(B) (8.22)
the total probabilityP(B) in the denominator is calculated from individual

probabilities via Egs. (8.21) and (8.20). Equation (8.22) is the simplest form of
Bayestheorem. Its use will be shown on the following example.

Increasing thereliability of non-destructive testing.

Welded components are tested for the occurrence of defects (cracks). The device
used for non-destructive testing is not perfect. It classifies a defect correctly (as
defect) only with probability 98%, while in 2% of all cases it does not recognise
the crack and classifies the component as good. On the other hand, the device
marks 96% of good parts as good, but 4% classifies erroneously as with a crack.
According to long term inspection records, 3% of all tested components contain
cracks. The questions are: If the tested part was classified as ,wrong“ (i.e. with a
defect), what is the probability that it is actually: a) wrong, b) good? And what
about if the component was classified as ,good“?

Solution. Event?A;: component contains a defefl; component is goodP(A;) =
0.03; P(Ay) = 0.97. EventB: component is classified as wrorfg(B|A;) = 0.98;
P(BJA;) = 0.04. The fraction of tested components marked as wre(i): =
0.03x0.98 + 0.97x0.04 = 0.0682.

Case la. Probability that the component marked as wrong is actually wrong, is
P(A1B) = P(A))xP(BJA)/P(B) = 0.03x0.98/0.0682 = 0.431 = 43.1%. Case 1b.
Probability that the part marked as wrong, is actually goodP(&;B) =
0.97x0.04/0.0682 = 0.569 = 56.9%. [Due to high proportion of good parts (98%),
also the proportion of good, but rejected parts, is high. It may be useful to test the
rejected parts once more, in order to reduce the total losses.]

EventB’: component is classified as gooB(B’|A;) = 0.02;P(B’|A;) = 0.96. The
total fraction of components, denoted as good?(B!) = 0.03x0.02 + 0.97x0.96 =
0.9318.

Case 2a. Probability that the component marked as good is actually wrong, is
P(AB’) = 0.03x0.02/0.9318 = 0.00064 0.06%. _Case 2b. Probability that the
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component marked as good is actually goodR(i&,|B’) = 0.99936= 99.94%.
Similar approach can be used in medicine, for example in screening for cancer.

Another example of combination of various kinds of information is the
Improvement of the estimate of parameter s of normal distribution

Mean valuei and standard deviatiamof a population with normal distribution are
usually unknown, so that they are replaced by their estinmtesd sfrom a
sample of sizen. The estimate of the mean value can be refined via confidence
interval (8.1). The estimate can be made more accurate if additional information is
available, for example estimates wf and s, from previous measurements or
records. If the numbar, of these values is known, and if the assumption can be
made that all samples (new and old) belong to the same population, the updated
average mcan be calculated as the weighted average of both sample averages,

m = @m+ ) /n, 5 n=n+n (8.23)

n, is the updated number of values. The updated standard deviation is

s(,=\/( ) 28 ( 1) 0§+;Fﬁ' B —nny’ (8.24)
-

Then, the updated confidence interval focan be calculated witim, s andn in
(8.1) replaced by the updated valmess, an,. If ny is unknown, the literature [14,
15] recommends the formula:

B =5/ (8.25)

based on the idea that ng carry information corresponding to a fictitious sample
of certain sizen,. The smaller the variancg’ compared ta?, the more important
are the original results, and the larger is the size of the fictitious sample.

More on Bayesian methods can be found in [7;-15] and in references quoted
therein.

Acknowledgment. Parts of this chapter were previously published in Chapter 22 of
Ref. [7].

79



Jaroslav Mencik: Introduction to Experimental Analysis

Referencesto Chapter 8

1. Freund, J. E.: Modern elementary statistics. Prentice-Hall, Inc., Englewood
Cliffs, New Jersey,1981(6th edition). 561 p.

2. Freund, J. E., Perles, B. E.: Modern elementary statistics. Prentice-Hall, Inc.,
Englewood Cliffs, New Jersey, 2006 (12th edition). 576 p.

3. Suhir, E.: Applied Probability for Engineers and Scientists. McGraw-Hill, New
York, 1997. 593 p.

4. Montgomery, D. C., and Runger, G. C.: Applied Statistics and Probability for
Engineers. John Wiley, New York, 2006 (4th edition). 784 p.

5. CSN 010250. Statistical methods in industrial practice. General principles. (In
Czech: Statistické metody vipnyslové praxi.) UNM, Praha, 1972.

6. Bedndik, J. et al.: Reliability techniques in electronic practice. (In Czech:
Technika spolehlivosti v elektronické praxi.) Praha, SNTL, 1990. 336 p.

7. Mertik, J.: Concise reliability for engineers. InTech, Rijeka, 2016, 204 p.

ISBN 978-953-51-2278-4An Open Access publication, availakle
http://www.intechopen.com/books/concise-reliability-for-engineers.

8. Felix, M., Bldha, K.: Statistical methods in chemical industry. (In Czech:
Matematickostatistické metody v chemamysiu.) SNTL, Praha, 1962, 336 p.

9. Jilek, M.: Statistical tolerance limits. (In Czech: Statistické tolaiameze.)
SNTL, Praha, 1988. 280 p.

10. Likes, J., Laga, J.: Statistical tables. (In Czech: Zakladni statistické tabulky.)
SNTL, Praha, 1978. 564 p.

11. CSN 010253. Statistical methods in industrial practice Ill. Basic distribution-
free methods. (In Czech: Statistické metody unprslové praxi. Zakladni
neparametrické metody.) Vydavatelstu@adu pro normalizaci a &eni, Praha,
1974. 114 p.

12. Martz, H. F., Waller, R. A.: Bayesian Reliability Analysis. John Wiley, New
York, 1982. 745 p.

13. Press, S. J.: Bayesian statistics. Principles, models and applications. John Wiley
& Sons, New York, 1989. 256 p.

14. Holicky, M., Markov4, J.: Principles of reliability theory and risk evaluation.
(In Czech: Zaklady teorie spolehlivosti a hodnoceni rifik/JJT, Praha, 2005.

115 p.

15. Ang, A. H. S., Tang, W. H.: Probability Concepts in Engineering Planning and

Design. Vol. 1, Basic Principles. John Wiley, New York, 1975. 574 p.

80



Jaroslav Mencik: Introduction to Experimental Analysis

9. Dimensional Analysis and Theory
of Similarity

Dimensional analysis and theory of similarity are powerful tools that significantly
increase the efficiency of experimental research. Theory of similarity is very useful
for effective creation of models and work with them. This is especially important if
large structures should be studied or if experimentation with real objects or systems
is impossible or very difficult. Dimensional analysis and the use of dimensionless
variables simplify the experiments, can spare a lot of experimental work and make
the results more general. This chapter defines various kinds of similarity, gives
examples of dimensionless quantities and shows how they can be created. This is
illustrated on practical problems. Also limitations of the principle of similarity are
shown.

Dimensional analysis

Every physical quantity is described by a numerical value accompanied by a unit.
The numerical value says how many times the considered quantity is larger than its
unit. An example of length is 5.3 m, example of force is 25 N, of time is 15.6 ms.
In addition to the fundamental units (meter, kilogram, second...), defined in the
Systeme International (Sl), also various derived units are used, as well as prefixes
(1, m, k, M...) denoting the order.

Every equation, describing a physical phenomenon, must be dimensionally
homogeneous: its left side must have the same dimension as the right side. The
check of this homogeneity should always be done before the first use of a newly
derived formula. Such check also helps in formulating a correct relationship among
the variables. Consider, for example, a formula for the deflegtiohan elastic

beam loaded by a forde It is known from mechanics of materials tyawill be

directly proportional td- and indirectly proportional to the bending stiffness of the
beam, defined aBxJ, whereE is the Young modulus of the material ahd the
moment of inertia of the cross section. The deflection will also be proportional to
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some powerS of the beam length. Now, imagine that we do not know the
exponent S. In such case we could write the basic form of the formula:

y = CxFxL¥/(ExJ) (9.1)

C is a non-dimensional constant. Replacement of the individual quantities in Eq.
(9.1) by their units gives

m=1x N x f(Nm? x nf)

The dimension of the right side must be the same as that of the left side, i.e. meter,
or, generally, rh The product of all terms containing m iSxm’<xm* = nv2*=

m° 2. Comparison of the exponents on the left and right side of the equation gives 1
= S- 2. From this it followsS = 3, so thay = CxFxL¥(EJ), a formula well known

from mechanics.

If one side of an equation is created by a sum of several terms, then they all must
have the same dimension. For example, vertical moveyneha body falling in
gravitational field is described as

Y = Yo+ Vot + %2 gt (9.2)

t is time,y, andv, are the position and velocity of the bodyt at 0, andg is the
acceleration of gravity. The dimensional homogeneity demands that the individual
guantities cannot exist in the physical equation independently, but only in groups
of the same dimension. If Equation (9.2) is divided by one of the terms, for
example y, it changes to non-dimensional form

Ylyo = 1 + \itlyo + ¥ gffyo (9.3)
with normalised quantitiegyo, Vet/yo and gt/yo.

Nearly every physical equation can be transformed to non-dimensional form. The
use of normalised quantities has many advantages. Physical equations, expressed
by means of non-dimensional variables, are more general than if they are expressed
by dimensional quantities. The relative displacemgig, does not depend simply

on Vo, t andy,, but only on their certain combinations, shown in Eq. (9.3).
Dimensionless quantities thus enable one to combine the results of experiments
made with specimens of various initial velocity and position, the only condition
being their proper combination. (In the above case of a beam, combination of its
size and material play a role.) Therefore, more data and a wider range of
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parameters can be used for the formulation of a certain law (see Figure 9.2 later).
The results expressed in non-dimensional form are also more universal, valid for
the whole class of similar objects, with similar geometry or physical properties.
Moreover— and this is very important the use of non-dimensional quantities can
spare experimental work, because

The relationship of N quantities, whose dimensions can be expressed by means
of D basic dimensions, may usually be replaced by a relationship of only

P=N-D (9.4)
dimensionless parameterg7.

According to this, so-calleBuckingham theorem[1 — 4], the determination of
fewer regression constants needs fewer experiments. The reduction of experimental
work is significant especially if the investigated relationship contains many
quantities and if the number of variablés, is closer to the number of basic
dimensionsD. This can be illustrated on the previous example of falling body.
Equation (9.2) represents relationship of 5 quantitieg;, Yo, g and tthat is N=5.

These quantities can be expressed by means of two basic dimensions: meter and
second; thusD = 2. According to Eg. (9.4), the number of non-dimensional
parameters should @ =N - D =5 — 2 = 3. And really, Equation (9.3) is the
relationship of 3 dimensionless parametesgy, Vitly, and gt/y,. The
determination of the necessary number of experiments will be discussed in Chapter
11. Nevertheless, an idea can be obtained from a simple example. If the influence
of six factors should be investigated, with each on two levels (low and high), the
number of necessary experiments would be @4. If the number of dimensionless
factors would be only 4, the number of necessary experiments drops t62i.e.

to 25%!

Similarity

The use of non-dimensional quantities is also of prime importance in the study of

behaviour of real objects by means of models. For example, building of a new large
ship, a bridge, or a chemical reactor is accompanied with many uncertainties, and
the potential losses due to wrong design would be very high. Therefore, usually a
smaller model is built first and tested. However, if the model should adequately

reflect the behaviour of the actual structure, similarity between them must exist.
There are various kinds of similarity, for example:
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Geometric similarity, which means identity of shape, equality of corresponding
angles, and a constant proportionality between the corresponding dimensions (so-
called scale factor). The following relation holds:

Model dimension = Scale factor x Dimension of the real object

For example, a model of a building, made in the scale 1:20, has all dimensions 20x
smaller than the real building.

Static similarity means that the relative deformations of a model under constant
stress is in the same proportion as the corresponding deformations of the object.

Kinematic similarity is based on the ratio of the time proportionality between
corresponding events in the model and the object.

Dynamic similarity exists if the forces acting at corresponding times and locations
in the model and object are in a fixed ratio.

Thermal similarity means that the temperature profiles in the model and the
prototype must be geometrically similar at corresponding times.

Chemical similarity means that the rate of a chemical reaction in the model is
proportional to the rate of the same reaction at the corresponding time and location
in the object.

The theory of similarity works with so-calledgsimilarity numbers. Those, who

have attended a college course of physics, know, for example, the Reynolds
number (Re), which helps in assessing whether a flow of a liquid will be laminar or
turbulent. More examples will be given at the end of this chapter. The similarity
numbers are dimensionless; in fact, every non-dimensional quantity can serve as a
similarity number.

Dimensionless variablexan be created in various ways. The simplest case is the
ratio of some quantity to its characteristic value, for examplg or Ax/x, for
distance or displacement. Well known in mechanics are: strain, defined as relative
elongation €& = A4L/L), Poisson numbey (the ratio of relative shortening in
transverse direction to the relative elongation in the direction of stress action), or
coefficient of frictionf, defined as the ratio of the force, needed to slide a body
along another body, and the normal force pressing both bodies together. Another
example is relative position of a point in a body, for example

<t= (X - X'nin)/(xmax_ X'nin) (95)
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X, Xmax @andXmin, represent the coordinates. Similarly it is possible to express time.
Non-dimensional temperatured = (T — T,)/(To — T,), is used for universal
description of processes of heat transigri¢ the initial temperature ang, is the

final temperature). In this case also the position of the investigated place and the
time can be in non-dimensional form. lllustration of this approach follows.

Example. Determination of elastic modulus of thin coatings by instrumented
indentation.

Modulus of elasticityE of various materials can be determined (among other
methods) by instrumented indentation. An indenter is pressed into the specimen,
and its displacement is measured during loading and unloading as the function of
load. The elastic modulus is then determined by special processing of the measured
data [5, 6]. The determination of elastic modulus of a coating, deposited on a
substrate, is more complex. The response of the coated sample to indenter
penetration, and thus tlevalue, obtained in a test, depends on the modulus of the
coating E;) and the substrat&d), on the coating thicknesy @nd on the depth

of indenter penetration into the specimen. The app&ealue gradually changes

from the value of the coating (for “zero” indenter penetration) to the substrate
modulus for very large depths of penetration (Fig. 9.1). Note that silicon (Si) has

Figure 9.1. Measurement of elastic modulus of coated samples [8]. The coating of TbTe/Fe
was deposited on (a) silicone substrate and (b) glass substrate. Dotted horizontal lines
correspond to the substrate moduli (Si, glass).
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higher modulus of elasticity than the coating, while glass has lower modulus.

The genuine value of the coating moduklgscan be obtained by fitting several
apparentE-values, measured for various depths, by certain functiorand
extrapolating them to zero depth of penetration. This non-dimensional furgtion
can be defined as [7]

@ (hhe) = [E(hf) — E] / [E. - E] (9.6)

The importance of non-dimensional notation is demonstrated in Figure 9.2. This
diagram shows the values measured on 25 specimens with various coating
materials and thicknesses

w 02 ka
00 L I L 1 L 1

0 1 2 3 4af 5

Figure 9.2. Measurement of elastic modulus of coated samples; after [7]. The apparent
values, measured for 25 various coatings, substrates and depths, are plotted in
standardised coordinates. a — contact radius, t — film thickness, s — substrate, f — film
(coating), E'— reduced modulus = E/(14).

and various substrates and depths of indenter penetration [7]. One can see that all
values plotted in standardised coordinates lie approximately on the curve, based on
the theoretical solution of the contact [9].

Dimensionless must also be the arguments in mathematical functions of type sin,
cos, In or exp. Otherwise any change of the units would change the numerical value
of the result. Non-dimensional are also the arguments in continuous probability
distributions. For example, normal distribution uses the argumenx £&4fi/ d]?,
where and o are the mean value and standard deviation, respectively. However,
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the term in square brackets is nothing else than standardised variable, which
expresses the distance ffrom the mean valug/ as the multiple of standard
deviation g. Similarly, the arguments in Weibull or exponential distribution are
dimensionless. (NOTE: Non—dimensional quantities are used more often than we
realise!)

A table at the end of this chapter shows examples of dimensionless quantities from
various branches of physics — as inspiration for creation of parameters in other
cases.

The following paragraphs, based on the works [1, 2], explain a formal procedure
for creation of non-dimensional parameters and give further advice.

Creation of non-dimensional parameters

The steps are shown on the above case of movement of a body in gravitational
field.

1. All quantities and their dimensions are written down:
y(m), y(m), b (Mxs ), K(s), g(mxs?); N=5,D=2
basic dimensions in this case are m and s.
2. Non-dimensional parameterS)(will be assumed in general form:
/7 = yxl % yoxzx V3 x P4 x g<5
3. The left and right side will be expressed by means of dimensions of the
participating quantities:
1= [mPx [s]” = [m]* x [m]®x [mxs ] x [s]“x [mxs 7
4. The equality of both sides demands the equality of the exponents at the same
bases. We shall here use the arrangement usual for systems of equations:
meter X1+ %+ X x =0 (@)
second —%+x—-2% =0 (b)

These are two linear equations with 5 unknowns. If 5 equations were available
instead of two (see above), the unknown valyes. xs would be obtained directly

by solving the system of five equations. In our case there are 3 more unknowns
than the equations for their determinatibh+-D = 5 — 2 = 3. We thus can propose

87



Jaroslav Mencik: Introduction to Experimental Analysis

3 exponents and calculate the remaining two. Such choice can be done three-times.
In this example, we shall propose the valueg; 0f; andxs, and want that they are

as simple as possible. Therefore, one of these chosen constants will always be
equal 1, and the remaining will be 0. It is reasonable if one of these exponents
pertains to the variable of our interest.

Choice 1. x=1; % =0;x;=0.

Inserting these constants into (b) givgs= 0. Insertingk;, X3 andxs into (a) gives
X, = — 1. The first non-dimensional parameter thug is= y* x yo - x vo°x t®x ¢° =
YiYo.

Choice 2. x=0; % =1;x;=0.
Inserting them into (a, b) and solving this system in similar way as above gives x
1 and x = — 1. The second parameteris = \° x yo ™ x ' x t' x ¢’ = vty

Choice 3. x=0; % =0;x; = 1.

Inserting them into (a, b) and solving this system gikses 2 andx, = — 1. The
third parameter i$7; = y°x yo - x vo° x t?x g* = gf%/yo. The reader is encouraged to
repeat the solutions.

Thus, the movement of the falling body can be expressed as

D [T, [T, [T5) = @ (ylyo, VollYo, glzlyo) =0, or Yy = f(vot/yo, QIZ/YO)

These choices would be suitablé dould be changed easily apdneasured. It is

also possible to choose other parameters. For example, if we could easily ghange
and measure the durativmf the fall, we could first defing,, X, andxs (similarly

as above), findxx; and obtain7, = wtlyo, /% = ylyo, /75 = Yogho™.

Further advice

1) Sometimes the form of the non-dimensional parameters does not correspond to
our intentions or experimental possibilities. Generally, it is possible to create new
parameters (or similarity numbers) by making a product or ratio of the original
ones, or to change them by making their reciprocal or some power. As they are
dimensionless, the new parameters obtained by such transformations will be
dimensionless, too.
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2) If several quantities of the same dimension appear in one problem, it is also
possible to create non-dimensional parameters directly as their ratios. This can
reduce the number of arguments, which must be determined by solution of the
system of equations such as those given under point 4 above. This will be
illustrated on an example of the deflectiprof a beam with rectangular cross
section v x h) and length. loaded by a point forcB. The modulus of elasticity is

E. The variables and their dimensions a(e1), w(m), h(m), L(m), P(N), E(Nm™?);

that is 6 variables with 2 dimensions. The number of non-dimensional parameters
needed for the description of the problemPiss N - D =6 — 2 = 4. We can
immediately create three parametéds = y/h, /7, = b/h and /7; = L/h. Two
guantities remainR andE), which must be contained in the fourth parameter. With
respect to their dimensions and the condition of non-dimensionality also one
geometric quantity must be included/ih, for exampleh or its power. We obtain

this parameter a&l, = P/(EN). The studied relationship can thus be written in the
following non-dimensional form:

yh = f[PI(ERD), Uh, whi (9.7)

One should remember that for the study of relative deflegtloare important not
the individual quantities br P, etc., but their ratios.

3) In some problems always non-dimensional quantities appear. Examples are
coefficient of friction, Poisson’s numbgrfor lateral contraction, or angg (rad).

These quantities automatically become arguments in the dimensionless
relationships.

4) When creating dimensionless parameters, one can use the existing knowledge on
the investigated or similar problem. For example, we may know that deflection of
an elastic beam is directly proportional to the load and indirectly to the modulus of
elasticity. Sometimes, analytical solution is known for very small or very large
values of certain variable. This can help in searching for proper form of the
arguments. Sometimes it is known that some quantities must appear in certain
combination. This combination can be considered as a new variable, which can
enable reduction of the total humber of variables. Consider, for example, force
acting in the contact area of two bodies. If friction should be investigated, the force
F (N) and contact area (&) can be replaced by contact pressure pA=(R/n).
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5) When preparing an experiment, it is necessary to include all quantities, which
can play a role. Otherwise wrong and misleading results can be obtained. It is less
dangerous to include a quantity, whose importance is uncertain (and, perhaps, it
appears later that it may be omitted), than to omit a quantity, which could be found
later as important. The use of dimensional analysis sometimes reveals serious
shortcomings. For example, if some dimension appears only at one quantity, this
quantity falls out and will not be included in any non-dimensional parameter.
However, if this quantity is obviously necessary for the description of the
investigated phenomenon (e.g. as dependent variable), it is necessary to add
another quantity having the same dimension. This can be illustratedtodyaof

wear rate of a cutting tool The quantities playing a role are: wear natém/s),
velocity of mutual sliding ¥m/s) and the pressure in the contact area p{Nfthe
non-dimensional parameter could be searched in the forw* X p*. We can
rewrite this expression by means of the dimensions of the individual quantities (m,
s, N):

[mP [sI° [N]° = [mxs T x [mxs™]®x [Nxm ] (9.8)

The left side corresponds to nondimensional notation. It follows from the condition
of equality of exponents at the same bast=NN“, thatx; = 0. But it is well
known from experiments that the wear rate does depend on the contact gressure
so thatxs cannot equal 0. It is thus necessary to include one further quantity, which
would also have the dimension NA This could be, for example, hardndss
(Nm™?), which characterises the resistance of the material. Now, the general form
of the non-dimensional parameter is

7= w* v péH* (9.9)
From this expression, we can easily formulate the appropriate relationship of
dimensionless parameters\as = f(p/H), and perform a series of experiments in
order to find the appropriate form of the functibrNevertheless, as an exercise,

we shall also find here the non-dimensional arguments by the formal procedure
described above.

Expressing the left and right side of Equation (9.9) by means of dimensions of the
participating quantities gives:

[m]O [S]O [N]O - [mXS_l]XlX [mxs—l]XZX [Nxm—Z]XSX [Nxm—21x4
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The condition of equality of exponents on the left and right side leads to the
following system of equations:

m: X+ X% — 22— 2% 0
S. —-X—X% =0
N: x+ % =20

These three equations are not sufficient for the determination of four exponents.

Generally, one could choose one exponent and then obtain the remaining three by
solving the system of 3 equations. Unfortunately, in our case this is not possible, as
linear relationship exists among the equations. (The first equation can be obtained
as the sum of the second one and twice of the third equation.) Thus, there must be 2
dimensionless parameters, so that 2 exponents must be chosen, for examgle

X3.

Choice 1. x=1; % =0.
This choice givesyx= —1 and x= 0, so that7; = wv

Choice 2. x=0; %= 1.
This choice givesyx= 0 and x= -1, so that7, = p/H

We can thus investigate the relationshi f(/7,), that is viv = f(p/H), as above.

Limitations of similarity principle

The principle of similarity holds only under some conditions, and outside them it
loses its validity [10]. A good example is the transition from elastic to elastic-
plastic deformations in components from ductile materials. If the stresses are lower
than the vyield strength, the deformations are elastic; linear relationship exists
between stresses and strains, and the similarity principle may be used. However,
the relationships in the elastic-plastic region are nonlinear and the situation must be
solved for various loads individually. Another case is elastic contact of two bodies.
If the stresses are low and the loaded area is large, the formulae for homogeneous
isotropic elastic bodies are suitable. However, if the size of the loaded volume
becomes smaller, comparable with the size of the crystalline grains and other
components of the microstructure, the heterogeneity cannot be neglected.
Examples are concrete and other composite materials tested by nanoindentation,
but also a crystal of pearlite if the indent size is comparable with the thickness of
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the ferrite and cementite lamellas. The nonhomogeneity is manifested by higher
scatter of individual measured values. Fortunately, statistical analysis of hundreds
of tests can reveal the properties of individual phases [11]. Here, the distribution of
microstructural units becomes an additional parameter for the material
characterization. The increasing hardness of metals with decreasing imprint size,
known as indentation size effect, is parttaused by decreasing amount of
dislocations that facilitate plastic flow. For very small depths of indentation, the
surface roughness becomes important, as well. The measurements under very low
loads can also be significantly influenced by adhesive forces, especially when
testing very compliant materials, such as gels.

Also other cases exist, where the principle of similarity does not hold. Well known
is the strength dependence of brittle components on the size of loaded area or
volume. Brittle fracture usually starts at a pre-existing weak point, e.g. a broken
crystalline grain in ceramics or a tiny scratch on the glass surface. Smaller size of
the loaded area or volume means a lower probability of occurrence of a larger
defect. A smaller defect can act as a starting point only at higher stress level.
Therefore, very small objects are stronger. For similar reasons, also the fatigue
limit of metal components increases with their decreasing size.

Generally, one must have in mind that sometimes the investigated quantity changes
with the changes of a certain parameter relatively slowly, but at its certain level it
can change very quickly. The relationship, describing some behaviour or process,
is often valid only within certain range of parameters. If the pertinent process is
described by means of non-dimensional quantities, the conditions for a transition
from one mode to another are characterised byjtigal value of some of these
guantities. A well-known example is the change from laminar to turbulent flow at
the critical value of Reynolds number. One must therefore always consider all
possible influences, and reduce their number only after a thorough analysis.

Examples of dimensionless quantities

Material properties

E./E,, Hi/H, ratio of elastic moduli or hardnesses; subscripts denote the
components,

92



Jaroslav Mencik: Introduction to Experimental Analysis

E(X)/Eo, H(X)/Ho ratios as above, subscript 0 denotes the characteristic
value,

H/Y, BY, E/H ratio of hardness and yield strength or elastic modulus,

ay, dag, Yo, ratio of stress to yield strenglj ultimate strengthd),
surface stress...

Geometry

x/d X — distance, depth of indenter penetratiot, —
characteristic length of the specimen or material (contact
radius, diameter of a crystal grain, pore or fibre, specimen
length, width, height or diameter, coating thickness, size of
plastic zone, distance of dislocations or other material
defects, distance from the specimen edge...),

A/l relative displacement, relative elongation (strgindl —
elongation, L— basic length,

h/R, Wt ratio of indenter penetratidnto the tip radiu® or coating
thickness ¢

hs/h ratio of the contact depth to indenter penetration h

Forces and stresses

F/Fq ratio of loadF and force of adhesionr{ = F,9 or another
characteristic force,

a o, ratio of the stressg to the nominal or mean stress or
pressuregy,.

Time

tho to — characteristic time (time of load increase, relaxation
time...).

The reader can find more examples.
Similarity numbers appearing often in physics and technology

Important similarity numbers were given names of prominent scientists, and are
denoted by the first two letters of the pertinent name. Some examples follow.
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Archimedes

Biot

Deborah

Euler

Fourier

Froude

Galilei

Grashoff

Nusselt

Péclet

Prandtl
Reynolds

Stanton

Stokes

Ar g0 (o— ) ; p, P — density of liquid and the bodyg,—
acceleration of gravityd — characteristic dimensior,— dynamic
viscosity

Bi = ad/A ; a — coefficient of heat transfed — characteristic
dimension A — thermal conductivity of the body

De =i ; t —relaxation time, + time

Eu =4p / ru*> ; Ap — pressure differenceg — density,u —
characteristic velocity
Fo =arid’; a — thermal diffusivity,r — time,d — characteristic

dimension

Fr =u?gd ;u — characteristic velocitg — acceleration of gravity,
d — characteristic dimension

Ga =gd®»? ; g — acceleration of gravityd — characteristic
dimensiony — kinematic viscosity

Gr =pATgPv ; B — thermal expansion of the liquidd7 —
temperature differenceg - acceleration of gravityd -
characteristic dimensiorn,=n/p = kinematic viscosity

Nu =ad/A ; a — coefficient of heat transfed, — characteristic
dimension, A — coefficient of thermal conductivity of the
surrounding medium

Pe md/a ; u — velocity,d — characteristic dimensioa,— thermal
conductivity

Pr=v/a ; v — kinematic viscosity, a — thermal diffusivity

Re =yd/n =udb ; u - characteristic velocity, d — characteristic
dimension,o— density of the liquidg — dynamic viscosity,
v =1l p= kinematic viscosity

St = a/(Au) = Nu/(Re.Pr) g — coefficient of heat transfes,—
thermal conductivity of the fluid, u — velocity of the fluid

Stk =ut /d ; u — velocity,t — relaxation timed — characteristic
dimension
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Weber We =pafd/o ; p- density, u — velocity, d — characteristic

dimension,g— surface stress
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10. Analysis of Variance (ANOVA)

A frequent problem in research is to evaluate the influence of various factors, to
find, which factor has the strongest influence, which one has negligible influence,
etc. If the influence of only two factors should be compatgeést for the
difference between means (Chapter 8) is suitable. Sometimes, however, it is
necessary to evaluate the effect of three or rfemters. For example, various raw
materials, various technological procedures and various apparatuses can be used in
the production of a chemical compound, and we want to know, which of these
factors have stronger influence on the product. It would be possible to test
separately the differences between the individual pairs of factors. However, more
efficient is so-calledanalysis of variance (ANOVA), which well be briefly
explained.

If the results of a certain group of tests can be sorted according to one or more
criteria, then also the total variability can be sorted with respect to these criteria.
The basic idea of the analysis of variance is to decompose the total vaxigrafe

the investigated quantity into the parts caused by the individual faaﬁ)sa(ld a
residual parig,.Z caused by unidentified (random) influences:

2 2 2 2
Got = On" + 0" + ... + Cres (10.1)

Comparison of the variances corresponding to the individual factors with the
residual variance caused by random influences can reveal whether the former are
really due to the effect of the pertinent factors, or if they are only random.

The total variability of the results of experiments can be represented by the sum of
squared differences between the individual observations and the total average of all
values. The influence of the individual factors can be represented by the squared
differences between the average effect of the pertinent factor and the total average.
Then, residual variance remains, which is based on the squared differences
between the individual observations and the averages for the individual factors.
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(NOTE: the variance is obtained as the sum of squared differences divided by the
number of degrees of freedom.)

Analysis of variance is based on testing of hypotheses. It tests the null hypothesis:
“there is no significant difference among the influences of individual factors”,
which also means “all measured values come from the same population”, and tests
it by comparing various variances. Sample variances have chi-square distribution,
and the ratio of two quantities with chi-square distribution Rafistribution.
Therefore, Rests are used to check the influence of the individual factors.

The procedure can be explained ororee-way analysis of variance [1]. The
formulae for the necessary calculations are summarised in Table 1.

TABLE 1.

Source of variation  Sum of squares Degrees  Average variance F
of freedom

Factor Sy -y p-1) S =S/(P-1)  §7Sed

Residual S=2yk-%)  N-P  Se’'=Sed(p-1)

Total S = 3y —V..} N-1)

The individual symbols have the following meaning:

Sot — total sum of squared differences between the individual values and the total
average.

S — sum of squared differences between the individual values and the average
corresponding to theth investigated factor.

Ses — residual sum of squared differences between the individual measured values
and the average values of the groups corresponding to the individual factors.

N — number of all tests (or observations)

n — number of observations (or tests) for the individual factors

p — number of factors

ssz — average variance of the factor |

Sel — average residual variance

Yi — k-th value of the j-th factor

y;. — average of the values of j-th factor

y.. — total average of all values
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v — number of degrees of freedom (equal the number of the values for the
determination of the characteristic minus the number of the regression constants
used in this determination).

If no significant difference exists between the variances, the test criteridf has
distribution. If theF-value, calculated from the measured data, is higher than the
a—critical value ofF-distribution, an event has happened that was expected only
with very low probabilitya, and we conclude that the difference is not random —
the null hypothesis is rejected on the significance levéDtherwise we conclude
that the difference among the individual factors is not substantial. The application
will be illustrated on the following example.

Example. It is necessary to find whether the kind of motor oil has influence on the
fuel consumption. Three oil brands (A, B, C) were compared, each tested in five
vehicles. The individual fuel consumptions and the average values (all given in
[/100 km) were as follows:

Oil brand Average consumption Average
A: 7.7 8.1 7.1 7.6 8.0 W= 7.7

B: 7.0 5.8 7.4 6.6 7.0 By~ 6.8

C: 7.6 8.5 8.2 8.0 7.7 icyF 8.0

The total average wag. = 7.51/100 km. These values were inserted into the
formulae of Table 1, together with= 3,n = 5,N = pn = 3x5 = 15. The results are
in Table 2 below.

TABLE 2.

Source of variation  Sum of squares Deg. of freedom Average varian¢e

Factor ©=4.1853 34=2 41 = 2.0927 9.5410
Residual == 2.6320 15-3=12 Ses = 0.2193
Total & = 6.8173 15-1=14

The value of the test criterion B = sq%/se = 9.54. This is much more than the
critical value of F-distribution for the reliability levelr = 5% and degrees of
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freedomv; =3 -1 =2y, = 15 — 3 = 12, which i§(0.05; 2; 12) = 3.885. The
calculated valué- = 9.54 is even higher than the critical value for lewet 1%:
F(0.01; 2; 12) = 6.927. Therefore, we can be nearly sure that the kind of the oil has
influence on the fuel consumption. (The reader can repeat the procedure.)

The comparison of the calculated value with the critical value, corresponding to
some level of confidence, is a classical approach, developed at the time when only
tables of critical values of some distributions (&grt), corresponding to certain
probabilities (e.g. 5%), were available. Today, universal programs (including
Excel) can calculate the values of distribution functions of many distributions. And
the distribution function gives the probabilities of non-exceeding. One can thus
directly determine the probability that the differences among the individual factors
are significant. FoiF = 9.54 this probability is 0.996% 99.7%; therefore, the
probability that the measured differences were only randomm,=sl — 0.9967 =
0.0033= 0.3% (see the Excel function F.DIST¥E,; TRUE) forF = 9.54,v, = 2,

v, = 12). REMARK:a—quantile equals (1 &)-critical value.

Moreover, universal statistical programs enable direct application of the analysis of
variance. Only the input data (e.g. the measured fuel consumptions for the oils A,
B, C) must be known. The pertinent programs perform all necessary calculations
(including the determination of the degrees of freedom) and give the resultant value
of F and critical F-value for the chosen confidence lewel together with the
probability P that the influence of the factor is insignificant. For example, Excel
offers several kinds of the analysis of variance; they are available in the menu
Data, submenu Data analysis. The above problem of three oils belongs to the
category “Anova: One factor”. It is sufficient to write the measured oll
consumptions into an array of 3 rows x 5 columns (3 oil brands and 5 tests for
each), put this array into the pertinent input cell in the menu, mark the command
“merge the rows”, and to demand the confidence level of the test. After pressing
ENTER, the results are shown in two tables. The first table gives the number of
values in the individual compared cases (i.e. in the rows), their sums, averages and
variances. The second table gives all important values mentioned above; the sum of
squares is denoted SS and average variances are denoted MS. The reader is
encouraged to solve this example with the same input data and to compare the own
results with those in this chapter — for better understanding and practice.
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This was a simple problem, with only one factor, just for illustration. Analysis of
variance can be used for various problems, with sorting according to two, three or
even more factors. More can be found in textbooks on statistics, e.g. [1 — 5]. Brief
explanations are also available via Help command in computer programs for
statistical analysis.

Referencesto Chapter 10

1. Felix, M., Blaha, K.: Statistical methods in chemical industry. (In Czech:
Matematickostatistické metody v chemickénmimyslu.) SNTL, Praha, 1962.
336 p.

2. Freund, J. E.: Modern elementary statistics. Prentice-Hall, Inc., Englewood
Cliffs, New Jersey, 1981(6th edition). 561 p.

3. Freund, J. E., Perles, B. E.: Modern elementary statistics. Prentice-Hall, Inc.,
Englewood Cliffs, New Jersey, 2006 (12th edition). 576 p.

4. Suhir, E.: Applied Probability for Engineers and Scientists. McGraw-Hill, New
York, 1997. 593 p.

5. Montgomery, D. C., and Runger, G. C.: Applied Statistics and Probability for
Engineers. John Wiley, New York, 2006 (4th edition). 784 p.

101



The supreme judge of every physical theory is an experiment.
Lev Landau

Chance serves those, who are prepared.
Louis Pasteur



Jaroslav Mencik: Introduction to Experimental Analysis

11. Design of Experiments (DOE)

Any experimental investigation starts with preliminary experiments to obtain better
insight into the problem in question. Much of the work at this initial stage is mainly
intuitive and aims at better defining the problem. As soon as the goals of the
investigation have been defined, the next step is to reduce the large number of
possible variables to the several most important ones. Statistical analysis is useful,
because it can help in choosing from all possible models. As the experimentation
moves into the optimisation stage, statistical design of experiments is again
effective in finding the optimum parameters. This chapter shows how experiments
can be organised efficiently so that the demanded information is obtained with
minimum effort. Important terms, such as blocks, randomisation and Latin squares
are explained, as well as the principal rules and tables for design of experiments.
Their use is illustrated on examples.

The variables, which play a role in the experiments, can be classified as
quantitative, qualitative, or binarQQuantitative response, which is measured by a
continuous scale, is the most common and easiest to work with in statistical
analysis.Qualitative response, like glitter or odour, can be ranked on an ordinal
scale, for example from O for the worst alternative to 10 for the besBomary
response produces one of two values, e.g. pass or fail, go or no-go, men or women.

Factors are experimental variables controlled by the investigator. An important
part of planning an experimental program is the identification of the important
variables that affect the response, and deciding how to exploit them in the
experiments. The scientific model of the problem is examined for important
variables. Previous experience is very useful. We often take the advantage of
dimensional analysis in establishing the factors (see Chapter 9).

Factors may be independent in the sense that the level of one factor is independent
of the level of other factors. However, two or more factors may interact with one
another. This means that the effect of one variable on the response depends on the
levels of the other variables.
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Random sampling

In every experimental program using a large number of tests or measurements
made on individual specimens it is important that any of the specimens involved in
the experiment has the same chance of being selected for the given test. This, so-
called random sampling, can be achieved rapdomisation. One way to
randomize a batch of specimens is to assign a number to each specimen, put the
numbered tags into a jar, mix them, and then withdraw them like in a lottery.
(Today, computer-generated random numbers can be used instead.) In this way,
bias caused by uncontrolled second-order variables is minimised (e.g. that due to
subtle changes in the characteristics of the testing equipment or in the proficiency
of the operator). If metal specimens are taken from large forgings, the possibility of
the variation of properties with the position in the forging must be considered. If
average properties of the entire forging should be determined, randomisation of the
specimens positions will minimize the bias due to the position in the forging. In
addition to the primary variables that are under control of the experimenter there
are other variables which may not be under control. Examples are small differences
in the way different operators run an experiment or carry out a test, or differences
in humidity or other environmental factors. These effects can be reduced using
blocking design, described further.

Block design, Latin squares

In order to increase the reliability of the conclusions, the experiment is often
repeated several times. However, a frequent problem in these experiments is to
maintain the identical conditions. Often, one batch of a homogeneous raw material
is sufficient only for one series of tests and another batch must be used for another
test series. The properties of individual batches often vary. If this fact is neglected
and all measured values are evaluated together, the results will exhibit bigger
variance due to the combination of the natural scatter and the differences of
properties among the batches. This drawback can be reduced or eliminated if the
experiments are designed so that the differences among the repetitions are
separated from the differences due to various batches. (See the chapter Analysis of
variance and [1 — 5].) The experiments are divided into groups with approximately
the same conditions.
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The wordblock denotes a set of conditions that creates a homogeneous entity
(from the experimental point of view). A block can be raw material from one batch,
compared with the materials from other batches. A block can also be experiments
done in the same chemical reactor under the same thermal conditions, analyses
made by the same technician, or samples taken from a continuous process during a
short time.

In order to avoid systematic errors that could be caused by the same order of
procedures in every block, it is recommended to carry out the individual
experiments in random order, as described in the previous section. We speak about
randomized blocks-or example, if we want to study the influence of temperature

on the result of a chemical reaction, and if this investigation should be based on the
raw materials from four batcheBy( B,, Bs, B;) and four temperature3( T,, Ts,

T,) for every batch, the following random arrangement can be used:

Batch Order of temperatures in each batch
B Ti Ts T, T,
B T3 T, T4 T,
Bs T, T, Ts Ti
By Ti T, T, Ts

This arrangement resembles so-calletin squares [1 — 5]. In such experiments,

the same number of variants for every factor is used. An example of a Latin square
“4 x 4" for three factors is below. The rows are assigned to the levels of the first
factor, the columns are assigned to the second factor, and theAee(S, D are
assigned to the third factor. The creation of such system (rotation of the letters for
the third factor) is obvious from the table.

Rows Columns
1 2 3 4
1 A B C D
2 B C D A
3 C D A B
4 D A B C
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Factorial experiments

The necessary extent of experiments increases with the number of factors that play
a role. If we want to determine whether the factohas an influence on the
quantity w, and how strong this influence is, we must make (at least) two
experiments, i.e. for two values gf If the influence of two factors should be
revealed, we must make at least three or four experiments. This number will grow
significantly with an increasing number of factors. The use of the rulaefesmgn

of experiments, or DOE, can make the process more effective.

DOE means creation of schemes with such combinations of input quantities, which
generate the required information with minimum experimental effort. This can be
illustrated for the case of three independent variakleg z and a dependent
variable w. The independent quantities are usually callactors, and their
individual valueslevels) are denoted by subscripts, e.g. 1 for the lower level and 2
for higher level if two levels are used. For example, the dependent variable
corresponding to the experiment with the facten the lower level, witly on the
upper level and with @n the upper level, is denoteg i

Also other notations are used to denote the arrangement of input quantities, for
example -1 for lower level and +1 for upper level. If three levels are used, the
subscript O is used for the intermediate level. Symbols + and — are also used and
then arranged into tables for various numbers of factors (see at the end of this
chapter).

REMARK: The situation with three factors is used here for illustration, as it can be
imagined easily in our “3-D” space. The described procedures can be extended for
more factors.

The simplest arrangement for three factors is depicted in Fig. 11.1. Four
experiments are made, with the following combinationg;, W11, Wiz1, Wi1o. The
influence ofx onw is obtained as the difference of values, —w;;1, the influence

of y is obtained asvi»; — W13, and the influence of is wii, —wiga. In these cases,
always the influence of only one quantity is investigated, whereas the remaining
gquantities keep their original levels. If we want to obtain information on the
variance, we must repeat the experiments at least twice; that is we have to make at
least eight experiments.
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W
£ 2141

Figure11.1. Simple experiment with three independent factors (X, y, z), each on two levels.

More information is obtained from fall factorial experiment. The quantity of
our interestw, is determined for all possible combinations of all factors and levels
(Fig. 11.2). The necessary number of experiments is, generally,

relxp = (nlevels) Nfactors (l 1 . 1)

if the number of levelg,,esis the same for every factor. For three factdkg. s =

3), each at two levels, the number of experimentsgis = 2 = 8, with the
combinationsivg 1, Wogg, Wiog, Wi1p, Waog, Waro, Wyop, Wapo (S€€ Fig. 11.2 and also the
table at the end of this chapter). If various numbers of levels are used for the
individual factors, the number of experiments is

r‘ltzxp = Nevel 1% Nievel 2% Nievel 3% ... 11(2)

where Ry; denotes the number of levels for thé jfactor.

Figure11.2. Full factorial experiment with three independent factors.
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An advantage of full factorial experiments is that always the results of all
experiments are used for ascertaining the influence of any factor. This increases the
accuracy of results. For example, the average influence of fatiayur case with
three factors is obtained by summing its effects for various values of fa@ndsz
and dividing by four (Fig. 11.2):

Uy = [(WaarWa21) + (Wo1—Wa11) + (WoorWazg) + (Wa1r-Was10)] / 4 (11.3)

The result can be rewritten:

Uy = [(Wao1 + Wo11 + Wogo + Wa1p) — (Waza + Wagg + Wazp + Wa1o)] /4 (11.4)

The term in the first brackets is the sum of all results obtainedxvaththe upper
level, and the term in the second brackets is the sum of all results obtained with
on the lower level. Equation (11.4) can also be rewritten as

Uy = (Waz1 + Wor1 + Woop + Vo1 — Wip1 — Wia1 — Waop — Wiao) / 4 (11.5)
Similarly the influences of and zare obtained as:

Uy = (Wiz1 + Whas + Wizp + ooz — Wigg — Worg — Waip — Weao) / 4 (11.6)

U, = Wiz + Waoo + Wigp + Worp — Wip1 — Vo1 — Wiag — Wb11) / 4 (11.7)

Another advantage of factorial experiments is the possibility of revealing
interactions from the same experimentgeraction means that the influence of a
certain factor, say, depends also of the values of facyoor z, or both. The
situation is schematically depicted in Fig. 11.3 with curves for various values of
the left illustration is without interaction, and the right one corresponds te-zhe
interaction. If, in our experiment with three factors, the interaction among the
factors xand zshould be revealed, the solution is as follows:

1) The effect o at one level ok is subtracted from the effect wfat the second
level of z [(Wa1-Wi12) Minus Wair— Wa1g)].

2) As the influence of is not considered, similar effects must be added for the
second level ofy: [(Waor—Wip) MINUS (Vo— Wip7)]. The result must again be
divided by four:

Uiz = [(Wa1r-Wa12) — (Wor— Waa1) + (Woo-Wazp) — Woor— Wa29)] / 4 (11.8)

Expression (11.8) can be rewritten as:
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Uiz = (Wa12 + Wagp + Wiag + Wipy — Worg — Wop1 — Wiio — Wip) / 4 (11.9)

The effects of other interactions could be obtained in a similar way.

X X

Figure11.3. Experiments without interaction (a) and with interaction (b) of some factors.
The individual curves correspond to various values of factor z.

A practical illustration of design of experiments (DOE) follows.

Example. It is necessary to reveal the cause of creation of surface cracks on steel
springs during quenching. The three most influential factors were: temperature of
steel before quenching (Ts), temperature of oil bath (To), and carbon content in the
steel (C).

For quantitative characterisation of their influence, a full factorial experiment was
proposed, with each factor on two levels:

Level Ts(°C) To (°C) C (%)
Low (—) 830 70 0.5
High (+) 910 120 0.7

The number of experiments is 2 8. The combinations of the levels and the
corresponding numbers of cradkfound on the hardened springs are given in the
table on the next page (cf. also Fig. 11. 2pxresponds to Ts,gorresponds to To,
andz corresponds to C; + corresponds to higher level and — corresponds to lower
level):
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Test No. Ts To C Ts(°C) To(°C) C(%) N
1 - - - 830 70 0.5 67
2 o+ - - 910 70 05 79
3 - + - 830 120 0.5 59
4 + + - 830 120 0.5 90
5 - - + 830 70 0.7 61
6 + - + 910 70 0.7 75
7 - + + 830 120 0.7 52
8 + + + 910 120 0.7 87

The average influences of steel temperature (Us), oil temperature (Uo) and carbon
content (Uc), calculated via Equations (11.5) — (11.7), are:

Us = (79+90+75+87-67-59-61-52)/4 = 23.0
Uo = (59+90+52+87—67-79-61-75)/4 = 1.5
Uc = (52+87+61+75-59-90-67-79)/4 =-5.0

The steel temperature has the strongest influence; the influence of carbon content
(in the range 0.5 + 0.7 %) is small and the influence of oil temperature (in the range
70°C + 120°C) is negligible.

The interaction of steel temperature and carbon content, following from Equation
(11.9), is

Usc = [(75+87+67+59)—(79+90+61+52)]/4 = 1.5
i.e. also negligible. The other interactions can be found in a similar way.

Very informative is a graphical representation (Figure 11.4). The horizontal axis
represents the average of all values, i.e. (67+79+59+90+61+75+52+87)/8 = 71.25.
The influence of steel temperature is depicted by two points at the left: one, giving
the average number of cracks in the cases where the temperature was on the lower
level, i.e. (59+67+52+61)/4 = 59.75, and the other, corresponding to the higher
temperature, (90+79+87+75)/4 = 82.75. For better visibility they are connected by

a straight line. NOTE: 82.75 — 59.75 = 23.0 = Us. Figure 11.4 also depicts the
influence of oil temperature and carbon content.
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Figure11.4. Influence of individual factors on the quality of springs.

Sometimes it is necessary to investigate the influence of a higher number of
factors. The following table gives the levels of individual factors for full-factorial

experiments with two, three and four factors, each on two levels. Four tests are
necessary for two factors (columns A,B), eight tests for three factors (A,B,C), and
16 tests for four factors (A,B,C,D). The table can be easily extended for more
factors if one looks how pluses and minuses vary at the individual factors,

beginning from A.

Test A B C D .
1 - — — -
2 + - - -
3 - + - -
4 + + - -
5 - - + -
6 + - + -
7 - + + -
8 + + + -
9 - - — +

10 + - - +

11 - + - +

12 + + - +

13 - - + +

14 + - + +

15 - + + +

16 + + + +
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In industrial research, for example in optimisation of manufacturing conditions,
more factors often play a role, and the number of experiments for a full-factorial
experiment would be very high (e.g. 256 experiments for 8 factors, each on two
levels). Here,reduced factorial experiments are often used, where some
combinations of levels are omitted. For this purpose, special schemes (so-called
orthogonal arrays) have been developed. This topic goes beyond the scope of this
book and the reader is referred to the books on design of experiments, and robust
design and the relevant methods developed by Genichi Taguchi and other authors
[6 — 9]. For design of experiments (DOE) in general, an engineering handbook [10]
and a comprehensive monograph [11] can be recommended.
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12. Experimental Finding of Maximum
or Minimum

A usual problem in research is finding a maximum or minimum of some quantity,
for example certain parameter of a machine or a chemical compound, efficiency, or
costs. This chapter shows how an extreme of a function (maximum or minimum)
can be found in cases when the analytical form of this function is not known and its
values can be obtained only by experiments or by computer modelling for concrete
values of the input quantities. An intuitive method of successive changes of the
input values is explained first, then the method of the steepest gradient, and the
simplex method, which is very efficient for cases with several independent
variables. The procedures will be illustrated on an example of search for a
maximum. Also the methods of simulated annealing or genetic algorithms are
explained.

A. Gradual changes of the individual variables

The experimental search for a maximum of a function of one variablé(x), is
very easy (Figure 12.1). We start with two experiments, for vaduasdx;. If the
value ¥fx;) was higher thag(x,), we make the next experiment wilthanged in

5-0-49-©
y oL -~ o< _

2 | ~
X3 \\\
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|
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1

Xo X X

Figure12.1. Search for a maximum of a function of one independent variable.
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the same directiork, = x; + Ax, whereAx is a suitably chosen increment. In this
way we proceed unty starts decreasing; the maximum lies approximately at the
value of the preceding step or near it (Fig. 12.1). A more accurate position of the
maximum can be found by making more experiments here.

If we look for a minimum, we move in the opposite direction.

With two independent variableswe assume that the functiafx, y) can be
approximated by a polynomial, at least in the vicinity of a chosen startingxoint

Yo. Several experiments are made, in which only one variablexsesychanged,

while y keeps its initial value. In this way we proceed in the direction of increasing

Z until z starts decreasing. The preceding step corresponded to the local maximum
of z. Now, we move from this point in perpendicular direction and changeyonly
and proceed until the local maximum ofs attained, and so on. The situation is
depicted in Figure 12.2.

Figure 12.2. Experimental search for a maximum of a function of two independent
variablesx and y.

If the approximate position of the maximum (or minimum) is roughly known, it is
also possible to make several experiments around this point, for example 4 to 8 for
two independent variables, and fit the obtained values by a response surface (Fig.
13.1 in Chapter 13); a second order polynomial is often sufficient. The accurate
position of its extreme can then be found using standard mathematical methods or a
suitable solver. More on this topic can be found in Chapter 13 and in the literature,
recommended there.

114



Jaroslav Mencik: Introduction to Experimental Analysis

B. Gradient method

This method tries to approach to the maximum (or minimum) in the fastest way,
which is in the direction of the gradient to the response surface [1-3]. This gradient
must be found first, as it will be shown here for two independent factors. Several
experiments are made around a suitably chosen xpit Thez (X, y) values can

be fitted by a polynomial, for example

Z=gtax+axX +a .. thy+bhy + ... (12.1)

The gradient vector is obtained generally by means of partial derivatives,

grad z=0z/0xi + dzloy j + ... (12.2)

i andj are the unit vectors in directiomsandy, respectively. For the polynomial
(12.1) the gradient is

gradz= (a, + 2ax+ 3aC + ...) i + (b + 20y + ...) | (12.3)

In a small vicinity of the poink,, Yo, often a first-degree polynomial (tangential
plane) is sufficient,

Z=a+ aX+ by (12.4)

with the gradient
gradz=ai+bj (12.5)

Now, we proceed in this direction towards the local maximum, with steps
proportional toa; in directionx and simultaneously tb; in directiony, until the
values ofz start decreasing. Again several experiments are made around this point,
the direction of fastest growth is found, etc. The application of this approach for
three and more variables is similar.

C. Simplex method

This is a simple method, in which the input variables approach to the optimum
stepwise according to an algorithm proposed by Spendley et al. [4]. The knowledge
of gradient is not necessary. In the first stepingplex is created. This is a simple
fictitious convex body wittn + 1 vortices; this number is by one higher than the
numbern of input variables (for example, a triangle for two independent variables
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and a tetrahedron for three input variables). The coordinates of the vortices
correspond to the values of input parameters. For all these points, the output
quantityz is calculated. In the next step, a new simplex is created by replacing the
vortex with the worst value af by a new one, whose coordinates are mirror-
symmetrical. (In a two-dimensional space, the new simplex is obtained by skipping
the original one over the edge opposite to the worst vortex, Fig. 12.3a.) For this
new point, the dependent variable is calculated. Now, the values of the dependent
variable for all vortices of the new simplex are compared, and again the worst
vortex is omitted and the new one is created in the same way. In this manner we
proceed until the quantity of interest attains the extreme or acceptable value. The
reaching of optimum is usually indicated by the oscillation of the simplex between
two positions, or by the movement of the simplex bodies along the closed curve
(Fig. 12.3b).

REMARK: A thoughtful reader will notice the similarity between this method and
Figure 1 for one independent variable.

W=
YV h

a) b)

Figure 12.3. Smplex method. a) Non-dimensional simplex 1-2-3 for two independent
variables (x, X,) and one optimisation step (creation of vortex 4); b) movement towards the
optimum.

The practical procedure is as follows [4, 5]. First, the coordingfesfxhe starting

point (= the centroid of the simplex) are chosen, as well as the increments of
individual variables4x. (The first subscript denotes the variable; 1, 2,...n,
wheren is the number of independent variables; the second subscript denotes the
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step.) Then, the coordinates of the individral vortices of the first simplex are
calculated by means of the associated non-dimensional regular simplex as [4, 5]:

Xi1= X0+ z 4% (12.6)

z denotes the radius of the sphere inscribgd dr circumscribed K) to the
associated simplex. The centroid of this simplex is in the centre of the coordinate
system, and the pertinent radii are calculated using the following matrix and
formulae:

-1, -r, —r ... -r, -r |

The column denotes the variable, and the row denotes the vortex number; the
matrix hasn columns andn + 1 rows. The response of the structure is then
calculated for alh + 1 combinations of input values. TRecoordinate of the new,
generally [ + 1)-st vortex, is then determined as

*

2n
Xja = K0T X (12.8)

The first subscript denotes the variablg X, ...), the second subscript denotes the
vortex numbersxuD is the coordinate of the point with the worst value of the
optimisation criterion y), and €x;)/n is the average of the coordinates of all

vortices (of thg-th simplex) except the worst one. In this waynatbordinates of
the new vortex are obtained.

The procedure is best shown on an example. Let us have2 independent
variables,x; and x,. (For examplex; is the width of a cross section of a load
carrying component, anx} is its height). Let the coordinates of the starting point
bex; 0 =200 mmx,,= 500 mm, and their increments in the optimisation steps let
be 4x; = 20 mm, 4x, = 30 mm. (Generally, the individual variables can have
different dimensions.) The non-dimensional matrix (12.7) in this case ka2
columns and n+ 1 = 3 rows:
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-nh — 0500 - 0289
Rl -t = 0500 - 0289
0 0577

®

The left (right) column expresses the non-dimensional coordinates (&), the
rows pertain to the first, second and third vortices. Tjhand R, values were
calculated using the formulae at the right side of Equation (12.7).

The coordinates of the three vortices of the first simplex are (with respect to Figure
12.3a) as follows: thg, value of the first vortex ig; ;= X; o— 0.50054x; = 200-
0.500%20 = 190 mm, the value of the second vortexxs,= X; o+ 0.500%4x; =

200 + 0.500%20 = 210 mm, and the third vortex,is= X; o+ 0x4x; = 200 + 0%20

= 200 mm. The corresponding valuesxgfare: X, 1 = X0~ 0.2894x, = 500 -
0.289%30 = 491.33 mnx, = X0~ 0.289%4x, = 500— 0.289%x30 = 491.33 mm,
andxX; 3= X0+ 0.578%4x, = 500 + 0.578%x30 = 517.34 mm. All values are arranged
in the table:

vortex X %
1 190 491.3
2 210 491.3
3 200 517.3

Now, if the worst value of the optimisation criterion belonged, e.g., to the vortex
No. 3, then the coordinates of the new vortex (No. 4) would; ke 2(190 +
210)/2 — 200 = 200 mm, and, 4, = 2(491.3 + 491.3)/2 — 517.3 = 465.3 mm. The
new simplex is defined by the vortices 1, 3 and 4 [see also Fig. 33a; here the non-
dimensional coordinates of vortex 4 are 0 and —-0.289 — (0.289 + 0.578) = —1.156.
Then, the value of optimisation criterioy) @t this vortex is computed, tyevalues

for the points 1, 2 and 4 are compared and the coordinates of the vortex 5 are
calculated, and so on, until the optimisation criterion stops growing.

The described simplex method has several advantages. The algorithm is very
simple and the coordinates of the new vortex are calculated directly from those of
the previous simplex. No gradients must be determined. One gets closer to the
optimum in every step. The method is suitable also for higher number of variables.
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As the construction of a new vortex is based not on the exact values of the
dependent variable at the individual vortices, but on their comparison, there are no
excessive demands on the accuracy of results in this stage of optimisation. If
constraints exist for some of the variables, and the coordinates of a new vortex
would move outside the allowable limits, it is possible to omit not the vortex with
the worst value, but with the second (or third) worst one.

D. Further methods

Also other methods exist for finding the extreme of a function. They are more
demanding and need a computer and a suitable program. Here, only two will be
mentioned: simulated annealing and genetic algorithms.

Simulated annealing. The methods, described here until now, tried to approach
the maximum stepwise so that in each step the values of the independent variables
were changed in the direction of the increase of the investigated quantity. A
drawback is that this procedure can find only local maximum. Sometimes, more
local extremes can exist, and the task usually is to find the global maximum.

REMARK. The search for minimum is analogous. The term simulated annealing is
used in analogy with heat treatment (annealing), in which slow controlled cooling
of a hot body leads to the state with minimum internal energy and defects.
Simulated annealing proceeds in steps. In contrast to the gradient methods,
described before, this method enables random search in various directions, and
accepts (with some probability) even worse solutions than current ones. Thanks to
this approach one can (in the following steps) get out from the local minimum and
consider also other possible solutions. Gradually the solution approaches to the
global maximum (or minimum) in the investigated region.

The method of simulated annealing needs a suitable computer program, such as
Simulated Annealing Solver [6], which is a part of Global Optimization Toolbox
within the universal computing tool Matlab. The details can be found at
http://www.mathworks.com,. The first information on the method can be found,
e.g., in Wikipedia and sources quoted there.

Genetic algorithms solve optimisation problems by mimicking principles of
biologic evolution. Such algorithm generates various solutions of the investigated
problem. It works with so-called population, every member of which constitutes
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one solution of the problem. The solution is usually represented by binary numbers,
i.e. an array of 0 and 1, but also other representations are used, for example with
matrices. At the beginning of optimisation process (the first generation) the
population consists of totally random members. Then, several individuals are
chosen from it, which are then modified by mutations and crossover. (Mutation
means random change of a part of the individual, and crossover means mutual
exchange of parts of several individuals.) In this way, a new population arises.
After this creation of new generation, so-called fitness function is calculated for
each individual, which characterises its ability and thus the quality of the solution.
Further selection and modification is done with respect to the obtained value of the
fitness function. This procedure is repeated, so that the quality in the population
gets gradually better (,upgrading“). The process is usually stopped on attaining a
sufficient quality of solution, or after the elapse of certain time.

Optimisation via genetic algorithms can be done, for example, using the Genetic
Algorithm Solver program [7], a part of Global Optimization Toolbox of Matlab.
Details can again be found dittp://www.mathworks.comor, generally, in
Wikipedia and sources quoted there.
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13. Sensitivity Analysis

Input quantities often vary or deviate from nominal values, which causes deviations
of the investigated quantity from its nominal value. The task of sensitivity analysis

is to show how these variations contribute to the deviations of the investigated
quantity from its nominal or assumed value. This is important for the prediction of

the response under real conditions, i.e. with some uncertainties or variations of
input quantities. Sensitivity analysis can be made using analytical expressions or
simulation probabilistic methods. In the former case the relationship between the
output quantityz and input variablesy, X,, ... X, so-calledresponse function,

should be known. The exact analytical expression,

y =X, %, ... %) (13.1)

is available only for simple problems. Often, the response must be found by
experiments or by time-consuming numerical solution. In such cases, an
approximate expression is used, obtained by regression-fitting the response for
several combinations of input variables.

The simplest form of a response function is a polynomial, for example

Yy = 3t axtax g . (13.2)
or

Vi = Yora(x - xo)* b(x- )’ +...  (13.3)
Equation (13.3) expresses the changey @§ a function of deviations of input
variablex; from the nominal value,. Subscripti denotesi-th variable, andy;
corresponds to this variable. These regression functions represent the sections

through the response surface (Fig. 13.1). In the vicinity of the design gaint (
polynomials up to the second order are often sufficient.

Polynomial, or even a linear function can also be used for the approximation of
other relationships (e.g.XLbr Vx) if suitable transformation is made. Solvers in
universal programs enable easy determination of regression coefficients in complex
functions by direct use of the least squares method, without transformations.
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Figure13.1. Response surface for 2 independent variables, with guts=xconst.

Further comments to response functions can be found in Chapter 14.

Sensitivity analysis depends on whether the deviations of individual quantities
from their nominal values are considered as deterministic or random [2, 3].

Deter ministic deviations of input quantities

The sensitivity of the response to the variations of individual variables is obtained
from partial derivatives at the pertinent point,

G =(2y/ox) (13.4)

The sensitivity coefficients; correspond to the constardag in (13.2) anda; in
(13.3). Further information is obtained from relative sensitivities,

c = 9Y o o AY [O% (13.5)
L% Y, Yo/ %o

Yo andx; are the values corresponding to the design point. Coeffigjexpresses
the relative change of (in %, for example) caused by 1% deviatiorxdiom the
nominal valuex; 0. For linear approximation;;i g X (X o/Yo)-

Sensitivity analysis also reveals the input variables that have negligible or small
influence on the variability of the output quantity and may be considered as
constants in the more complex analysis with more input quantities. (Note that the
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variance of the output depends on the variances of the input quantdies also
on the sensitivities; §

If the incrementsdx; are small, the response surface may be approximated by a
linear expression

Yy = @t axtaXxt..tax, (13.6)

which represents a plane for two independent variahles?) and a hyperplane for
more input variables. The constants correspond to the sensitivity coefficients
(exceptay), and are obtained by fitting thre+ 1 values of response by a multiple
linear regression function. (Also Excel can be used for this purpose). The
increments ofy are calculated via the first derivatives. ior f(Xq, X, ..., X,), the
infinitesimal increment of is generally

dy= @y/ox)dx, + @y/0x)dx + ... + @y/0x,)dx, (23.7)

oy/lox, expresses partial derivatives. In practical analysis, the differentials are
replaced by small finite increments A

Ly = (0y/0X) Ay + (OY/0%)A%, + ... + @Y/0Xn)AX, (13.8)

The application of sensitivity analysis can be illustrated on an example [1, 3] of a
small flat spring for a measuring device (Fig. 13.2). We want to know the
sensitivity of its compliance to the variations of its dimensions and elastic modulus
of the material. This compliance is

C = y/F= 4L%(Ewt) (13.9)

y is deflection,F - load,L - length,E - elastic modulus, w spring width,t —
spring thickness. The partial derivative of Equation (13.9) with respect to the first
variable g, = L) is

&L = 312 x 4/EwWE) = [4L¥(Ewt)] x 3L = (3L) x C (13.10)
and the increment of compliance due to an increment of the beam lénigtihfis

AC = 3C(AL/L) (13.11)
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Figure 13.2. Spring for a measuring device [1].

The formulae for other variables are obtained in a similar way. The resultant
expression, involving the changes of all variables, is

AC = C(3AL/L — AE/E — Aw/w — 314/t) (13.12)
The relative sensitivity
AC/C=3A/L — AE/E - An/w— 304/t (13.13)

shows illustratively the influence of the individual quantities. If the spring will be
longer by 1% than the nominal value, the compliance will be higher by 3%; if the
elastic modulu€ will be higher by 1%, the compliance will be lower by 1%, etc.
The constants in the individual terms correspond to their exponents in Equation
(13.9), and the signs depend on whether the quantity was in the numerator or
denominator.

Influence of random variations of input variables

The combined influence of random variations of input quantities can be evaluated
via the expression for the variance of a function of several random variables. For
small variance,

2
2y oy 2y |( 9y 13.14
Sy ( é’xlj §<1 ( ) S5<2 +. +2( a"xlj( a"xzj covixy X, )+ ... (13.14)

s is the standard deviation gf The far right-hand term is nonzero if the variables
are correlated.

The response surface function for all factors can be written approximately as a
polynomial:
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Y = Y% +Xa(X— Ko)*T B X— %)? X, € % $Xjxj%) +.. (13.15)

the summation is done for all independent variables. The constants are obtained by
regression fitting the points around the design point. For non-correlated variables
and linear approximation (6) gf Equation (13.14) becomes

S At R ot B (13.16)

The individual components,” = a°s,’, give the variances gf caused by random
variations ofi-th variable. The contribution & to the total variancey2 is larger
for larger variance of the variabkeand for larger sensitivitya() of the output to
the changes of;. Division of Eq. (13.16) bys),2 gives the relative proportions of
individual factors in the total variance,

2 2 2
2Sa 280 2Sn

l=a"— +a&— +.+ta —

Y S S
The influence of variance of the individual input factors can be assessed by means
of the ratio of the variation coefficient of theth variable and the variation
coefficient of the output, corresponding to the variance of this variable only,

+ . (13.17)

w = L = ¥ /54 (13.18)

Vi Yo Xi,O

Sengitivity analysis using simulation methods

The influence of random variability of input quantities can be assessed even
without analytical expression for the response function — by means of the
probabilistic simulation technique Monte Carlo, described in the next chapter. In
this case, the sensitivity analysis consists of makmgials, the only random
variable being xand then calculating the partial variang%csf the obtained values

y. Then, using the characteristgs x,o andy,, and Equations (13.16) and (13.18),
one can determine the ratios of variation coefficiemtsor the sensitivity
coefficients a(=s/s.) and the coefficients of relative sensitivity [2].

The approximate value of the total variance is obtained by summing up the partial
variances,
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sy2 = %42 + syzz + ...+ §n2 + .. (13.19)

A more accurate value is obtained if all input variablgg, x,, ... X, are
simultaneously considered as random quantities in the Monte Carlo simulations.
Dividing Equation (13.19) by the total varianqé gives the relative influence of
individual factors, similarly to Eq. (13.17).

Examples of applications of uncertainty analysis for the prediction of lifetime can
befound, for example, if4, 5] and inChapterl9 of[1].

Acknowledgment. Partsof this chaptemerepreviouslypublished in Chaptet9 of
Ref. [1].
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14. Simulation Methods for Study of
Random Quantities and Influences

Today, a great part of research is made by computer simulations. Probabilistic
simulation methods can be used to study the influence of random variability of
various quantities on the properties of machines, on chemical or biological
processes, on the load carrying capacity or reliability of a structure and in many
other cases. A very powerful tool for study of random phenomena or processes is
the Monte Carlo technique. In some cases, useful results can be obtained with less
effort using the Latin Hypercube Sampling.

Monte Carlo simulation method

The Monte Carlo method is a simple computer technique based on performing
numerous fictitious experiments with random numbers [1 - 3]. Its use is universal
and does not need a special knowledge of probability theory. The only information
one needs is the relationship between the output and input quantities,

y=1fx), or y=1f(xi, %, X, ...) (14.1)

and the knowledge of probability distributions of the input variables. The method
repeats trials with computer-generated random numbers processed by the relevant
mathematical operations. In each "trial, the input variabigsx,, ..., x, are
assigned random values, but such that their distributions correspond to the
probability distribution of each variable. With these values, the output qugrsity
calculated via Equation (14.1). From the results, a histogram can be constructed
(Fig. 14.1), which corresponds to the distribution .of y

The generated values can be used for the determination of the average value or of
the probability thaty will be lower or higher than a chosen valye or for the
determination of values, which will be exceeded (or not achieved) with some
probability (e.g. the time to failure, maximum expectable load or deformation).

Various commercial computer programs exist for Monte Carlo simulations [5 — 7],
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Figure 14.1. Histogram obtained by the Monte Carlo simulation program Ant-Hill [4, 5].

but they can also be created. The base of such programs is a genearaoorof
numbers. Actually, these numbers are not truly random, but created via a suitable
algorithm. The principle of these generators is simple. For example, the so-called
congruential generator gives random numbers with uniform distribution in the
interval (0; 1) in the following way. One number is chosen as the base for the series
of random numbera (e.g.u, = 0.5284163). Now, in the first step, this number is
multiplied by some suitable numbé), for example 997. The product is 987
0.5284163 = 526.8310511. The first random numbes then created as the part

of the result, lying behind the decimal point; in our cages 0.8310511. In the
second stepy; is again multiplied by the same numbk@y 997 x 0.8310511 =
828.5579467, and the second random number is created as the decimal part of the
result (i.e.u; = 0.5579467). The reader is encouraged to make several steps in this
way; for a check,u; = 0.2728599. A long series of these numbers has
approximately uniform distribution. Many other algorithms exist; e.g. one for
normal distribution is based on central limit theorem. Generators of random
numbers are also a part of universal computer programs, such as Matlab. The use
of commercial generators is strongly recommended, as they have undergone
thorough statistical testing to prove that they behave nearly as really random. Even
Excel has its own generator, though with limited possibilities.
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Creation of random number swith specified distributions

The commercial programs offer often-used distributions, for example uniform or
normal. The random numbers, corresponding to other analytically defined
distributions, can be generated via uniform distribution. The basic idea is that the
distribution functionF for any continuous random variable is also a random
quantity, distributed uniformly in the interval (0; 1). Thus, if the distribution
function of random quantitx is z = F(x), then the random numberscan be
obtained from the random numberith uniform distribution in the interval (0; 1)
using the inverse formula (Fig. 14.2):

X = F' @ (14.2)

For example, the distribution function for exponential distributianad=(x) = 1 —
exp(=x/xg), with the parameteg. The inverse transformation for this distribution is
=—%In(1-2).

Figure 14.2. Generation of random numbers x by inverse probabilistic transformation [4].

In some cases, the distribution of a random quaxtitgs a complex shape and can
only be described by a histogram (obtained from measurements). This histogram is
then used for the construction of distribution functi&(®). This function can be
approximated either by constant valued=ah the individual subintervals of or

by interpolation within each class,
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F,.-F F(X) - F
FO) =F + 22— (x=%), X=X+ “(%a %) (14.3)
X+1_)§ I:i+l_|:i '
i = 1, 2, ...,n denotes the interval. The formula at the right generates

corresponding to the probabiligy TheF values are generated as random numbers
with a uniform distribution.

A typical feature of the Monte Carlo method is that the characteristic values
(average, quantiles, probabilities corresponding to certain valueg efc.),
obtained as a result of trials, are never the same in two sets of simulations. The
results are thus only approximate, but they are closer to the actual values for more
trials. The number of simulation triats needed for achieving some accuracy of
results, is given approximately by the formula

n= g 1-P/PFH (14.4)

P is the expected (estimated) probability of the investigated phenomemothe
allowed relative error in the determinationR)fanduy, is thea/2—critical value of
standard normal variable for the probabilitythat the actual value & will lay
outside the interval B d. The necessary number of simulations significantly grows
with decreasing probability. For example, if the assumed probabikty0.01, the
allowed relative errod = 10% and confidence level= 5% (with i, = 1.96), then

~ 40,000 simulation trials are necessary. Fer 0.0001, it is as many as 4,000,000
trials, etc. [Note: Equation (14.4) is based on the fact that the number of outcomes
of an event of probability? in n repetitions has binomial distribution, and this
distribution can be approximated for high n by normal distribution.]

M or e complex cases, Response Surface M ethod

The direct use of the Monte Carlo method is suitable for simple relationskips

f(xs, %o, ...). Often, the respongemust be obtained by numerical solution. If one
such trial lasts minutes or more, then thousands of simulations would consume too
much time. In these cases, more effective is the combination of the MC technique
with the response surface method (RSM), mentioned in Chapter 13. The principle
is that the “accurate” response is calculated only for selected values of input
variables, the results are fitted by a simple regression function (response surface,
Fig. 13.1 in Chapter 13), and the Monte Carlo trials are done with this function.
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The relationship between the output quantity(deformation, load-carrying
capacity of a structure, amplitude of vibrations) and the input variables can often be
fitted by a polynomial function:

y = @ +Xax + XX’ + ..+ XX + .. (14.5)

This approximation is possible if the relationship between input and output has a
similar character (e.q¢ 0x°) or if the output quantity changes in the considered
interval only little. If it differs from a polynomial significantly (eg01A¢C ory O

x*?), equation (14.5) cannot give a good approximation in a wider interval. Several
ways for improvement exist. Linear or polynomial function may be used for the
approximation of other relationships if suitable transformations are made. For
example, the relationship= a/x> can be expressed @s az by introducing a new
variablez = 1%, the relationshipy = ax/x,° can be converted to multiple linear
regressiorY = Aq + AlX; + AoX, using logarithmic transformations, etc. The fitting

of response function can sometimes be improved by dividing the definition interval
of input quantities into subintervals and using different regression functions for
each.

The quality of the fit can be evaluated by means of residual standard desigtion

Also, the differences between the "accurate” values and those on the response
surface can serve as a criterion. With good response surface, these differences are
randomly positive and negative. (See also the residuals and Fig. 7.2 in Chapter 7.)

Application of the Monte Carlo method for correlated quantities

The application of Monte Carlo technique to problems with several input variables
is simple if the individual input quantities are mutually independent (e.g. material
properties and the geometry of a component). Sometimes, however, correlation
between them exists (for example between mass density and Young's modulus of
concrete). A special case is autocorrelation, when the value of a random quantity at
some point is related partly to the values at neighbouring points or in preceding
times. Examples are the properties of soil at foundations or the temperature of a
building structure: it varies during a day or from a day to day, but depends partly
also on the season in the year.

The omission of correlations can lead to errors. For example, a very low value of
elastic modulus of concrete could be generated simultaneously with a very high
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value of strength, but this does not correspond to reality. If correlations are
respected, the calculations reflect the reality better and the predictions are more
accurate. Sometimes, also, a quantity needed for the analysis is unavailable, but can
be replaced by a correlated quantity. For example, if the direct measurement of the
tensile strength of an existing massive steel structure is impossible, the information
from hardness tests can sometimes be used.

The strength of the relationship of two quantities is characterized by the correlation
coefficientr, defined as

r=coviy) /(ss) (14.6)

where cowy) is the covariance ok andy, ands, and s, are the standard
deviations. The correlation coefficientanges from —1 to +1. For= 0, no mutual
relationship exists, whereas= +1 or —1 corresponds to deterministic (functional)
relationship. For > 0, thex values grow with growing, and decrease far< 0.
(NOTE: The correlation coefficient is equal to the square root of the coefficient of
determinationr?, explained in Chapter 6.) Three examples with the same mean
values and standard deviations and different valuesui shown in Figure 14.3.

1200 1200 - 1200
®2 . %2 w2

1000 4 . . } 1000 N . 1000 4 o=

800

800 4 . -, =00 4

600 - GO0 { .iTia B0 -

400 | - ._- :-_. 400 i - :. 400 i : e I

ay r=0 w1 by r=0,3 w1

200 T T T 200 T T T 200 T T T
a a0 100 150 200 u] a0 100 150 200 u} 50 100 180 200

Figure 14.3. Two correlated quantities;y)and % with the same meang;(= 100 andi, =

700) and standard deviationsy(= 30 andg; = 150) and various correlation coefficients r
[8, 9].

If two correlated random quantities and x, should be generated, and if the
regression functionxeq = f(X;) is known, as well as the coefficient of
determinatiorr® of this approximation, the following procedure may be used [7, 8].
First, the random value of is generated. Then, the corresponding value, if
generated as
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% = f(xg) + Ao = f(Xe) + USpres= F(X0) + US(L —1?) ; (14.7)

S resiS the sample residual standard deviation,@rgund the regression functifn
and uis

the random quantile of standard normal distribution (provided that the distribution
of individual valuesx, aroundf is normal). The right-hand part of Equation (14.7)
uses the fact that the residual deviapR.of x, can be expressed by means of the
standard deviatiors, and the coefficient of determinatiord pertaining to the
regression functionyx f(xy).

For more information on the Monte Carlo method, the books [1, 2] can be
recommended. Many examples of practical applications can be found in [3].
Various commercial Monte Carlo programs for engineering applications exist, for
example [5 — 7]; several others are mentioned in Chapter 26 of the book [4].

Latin Hypercube Sampling (LHS)

The Monte Carlo technique has two disadvantages. First, it usually needs a very
high number of simulations. If the output quantity must be obtained by time-
consuming numerical computations, the simulations can take a very long time.
Also the response surface method is not always usable. Second, it can happen that
the random numbers of distribution functién(which serve for the creation of
random numbers with nonstandard distributions) are not distributed sufficiently
uniformly in the definition interval (0; 1). Sometimes, more numbers are generated
in one region than in others, and the generated quantity has thus a somewhat
different distribution than demanded. This problem can appear especially if the
output function depends on many input variables.

A method called Latin Hypercube Sampling (shortly LHS) removes this drawback
[10, 11]. The basic idea of LHS is similar to the generation of random numbers
with nonstandard distribution via the inverse probabilistic transformation (14.2), as
shown in Fig. 14.2 above. The difference is that LHS creates the valbewoby
generating random numbers dispersed in chaotic way in the interval (0; 1), but by
assigning them certain fix values. The interval (0; 1) is divided into sdageak

of the same width, and thevalues are calculated via the inverse transformation
(F™) from theF values corresponding to the centre of each layer (Fig. 14.4). With
reasonably high number of layers (tens or hundreds) the created quanilty
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approximately have the proper probability distribution. This approach is called
Stratified Sampling. If the output quantiyydepends on several input quantities,

X2, ... Xn, it IS Necessary that each quantity is assigned values of all layers, and that
the quantities and layers of individual variables are randomly combined. This is
done by random assigning the order numbers of layers to the individual input
quantities.

0‘6 h“,vl - //
0.4 Layer 3 /
F(L2) +—=Layer 2

Y

Layer 1

x.(LZ) S x
Figure 14.4. Latin Hypercube Sampling method (LHS) — principle [4].

The procedure is as follows. The definition interval of the distribution funétion

for each ofm variables is divided int® layers.N, the same for all variables, also
corresponds to the number of trials (= simulation experiments). In each trial, the
order numbers of layers are assigned randomly to the individual varizbl&s, (.,

Xm). In this way, various layers of the individual variables are always randomly
combined. In practice, this is achieved by means of random numbers and their
rank-ordering. Then, each input variable is assigned the value corresponding to the
centre of the pertinent layer of its distribution function.

The application is illustrated on a case with four random quantiieXd, Xs, Xs)

and the definition interval of divided into 5 layers (Fig. 14.5). Five layers are
used here for simplicity; usually several tens of layers are used. In oul aaide,

be calculated for five combinations of the four input quantities. Thus, 5 x 4 = 20
random numbers with uniform distribution in interval (0; 1) are generated (see the
table on the left part of Fig. 14.5). Then, the layer numbers for varab(for
example) for individual trials are assigned with respect to the order of random
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values (forX;) ranked by size from the maximum to minimum. Here, layer No. 2
(with the highest number 0.885) for the first trial, No. 3 for the second, No. 1 for
the third trial, etc., corresponding to the numbers 0.382 — 0.885 — 0.863 — 0.032 —
0.285 in the column foX;. Similar operations are done for each variable. Thus, in
the first trial, variables<;, X,, X3 andX, are assigned the values corresponding to
the 3rd, 5th, 1st and 1st layer of their distribution functions, respectively. Inverse
probabilistic transformatiofr ~1is then used for the determinatidq from Fi,

etc.; see the table on the right. Now, the investigated quafity(X;, Xz, Xs, X4)

is calculated 5-times. The obtained valdgsYs, Ys, Y4, Y5 can be used for the
determination of statistical characteristics (mean, standard deviation...).

Random numbers (RN) Layer numbers for individual layers (LN)
Variable X1 X2 X3 X4 Variable X1 | X2 | X5 | Xs
""""""" RN |RN | RN |RN IN|LN|LN|L
Layer/trial Layer (trial) N | LN | IN | LN

1 0.382 | 0.101 | 0.596 | 0.899 1 3 15 |1 1

2 0.885 | 0.958 | 0.014 | 0.407 2 1 1 15 |2

3 0.863 | 0.139 | 0.245 | 0.045 3 2 4 3 4

4 0.032 | 0.164 | 0.220 | 0.017 4 5 3 4 5

5 0.285 | 0.343 | 0.554 | 0.357 5 4 |2 |2 |3

Figure14.5. LHS method — assignment of layers to individual variables and trials.

Usually several tener hundreds of trials are made, which enable construction of
distribution functionF(Y) and determination of the mean value, standard deviation,
various quantiles and other characteristics.

More on the LHS method can be found in [10, 11].
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