Supporting Information

Table of contents Page

1. Methods and materials 2
2. Synthesis of chromophores $1-5$ 6
3. Synthesis of TPA precursors 13-16 8
4. Synthesis of acceptor intermediates 17-25 10
5. Electrochemistry 13
6. Optical properties 15
7. Data correlations 16
8. HOMO and LUMO localizations in TPA and 1-12 19
9. NMR Spectra of 1-12 26
10. References 38

1. Methods and materials

THF was dried in Puresolv ${ }^{\text {TM }}$ micro solvent purification system. All commercial chemicals and solvents were purchased from suppliers such as Sigma Aldrich, Acros and TCl at reagent grade and were used as obtained. All reaction were carried out in flame-dried flasks under argon. Thin-layer chromatography (TLC) was conducted on aluminum sheets coated with silica gel 60 F254 with visualization by a UV lamp (254 or 365 nm$).{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded at 400 and 100 MHz , respectively, with a Bruker AVANCE 400 instrument. Chemical shifts in ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ spectra are reported in ppm relative to the signal of $\mathrm{Me}_{4} \mathrm{Si}$. The residual solvent signal in the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra was used as an internal reference $\left(\mathrm{CDCl}_{3} 7.25\right.$ and $77.23 \mathrm{ppm}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$ 5.32 and 54.00 ppm and d^{6}-DMSO 2.55 and 39.51). Apparent resonance multiplicities are described as s (singlet), d (doublet), and m (multiplet), apparent coupling constants of multiplets (${ }^{3} \mathrm{~J}$ or ${ }^{4} \mathrm{~J}$) are given in Hz . IR spectra were recorded as neat using HATR adapter on a Perkin-Elmer FTIR Spectrum BX spectrometer. EI-MS spectra were measured on a GC/MS configuration comprised of an Agilent Technologies 6890N gas chromatograph equipped with a 5973 Network MS detector (EI 70 eV, mass range 33550 Da). High resolution MALDI MS spectra were measured on a MALDI mass spectrometer LTQ Orbitrap XL (Thermo Fisher Scientific, Bremen, Germany) equipped with nitrogen UV laser ($337 \mathrm{~nm}, 60 \mathrm{~Hz}$). The LTQ Orbitrap instrument was operated in positive- or negative-ion mode over a normal mass range ($\mathrm{m} / \mathrm{z} 50-2000$) with resolution 100,000 at $m / z=400$. The survey crystal positioning system (survey CPS) was set for the random choice of shot position by automatic crystal recognition. The used matrices were 2,5-dihydroxybenzoic acid (DHB), 2-[(2E)-3-(4-tert-butylphenyl)-2-methylprop-2-enylidene]malononitrile (DCTB) or 9-aminoacridine (9-AA). Mass spectra were averaged over the whole MS record for all measured samples. Thermal properties of target molecules were measured by DSC with a Mettler-Toledo STARe System DSC 2/700 equipped with FRS 6 ceramic sensor and cooling system HUBERT TC100-MT RC 23. Melting points of intermediates were measured in open capillaries and were uncorrected. The two-photon absorption properties of the dyes were studied by means of a two-photon excited fluorescence (TPEF) technique in which a modelocked Ti:sapphire laser emitting 80 fs pulses tunable from 750 to 850 nm was used as the excitation source. ${ }^{1}$ The laser beam passed through a beam expander and then was focused on the samples by a 0.32 NA objective lens. The 2PA induced fluorescence of the samples was collected backward by the same objective lens and
it was separated from the excitation beam by using a dichroic mirror and a series of short-pass filters. A photomultiplier connected to photon-counting electronics was used to detect the emitted fluorescence. In all cases, the fluorescence intensity was measured as a function of the excitation power and the quadratic law was verified, ensuring that the observed fluorescence was only due to two-photon absorption. The samples were
$10^{-4} \mathrm{M}$ solutions of the dyes in THF. Finally, the calculation of the two-photon absorption cross sections, $\delta_{\text {TPA }}$, was made by using Rhodamine $\mathrm{B}\left(10^{-4} \mathrm{M}\right.$ in methanol), having a well-known 2PA spectrum, as reference.

Monocyano acceptor chromophores 1-5

Figure S1. Molecular structures of chromophores 1-5 and 7-9 with monocyano and DCV acceptors.

N

(Di)cyano heteroaromatic acceptor chromophores 8, 11-12

Figure S2. Molecular structures of chromophores $9-10$ and 8, 11-12 with (di)cyano benzene and heteroaromatic acceptors.

2. Synthesis of chromophores 1-5

Chromophore 1

Triphenylamine $4,4^{\prime}, 4^{\prime \prime}$-triscarboxaldehyde ($200 \mathrm{mg}, 0.61 \mathrm{mmol}$) was heated to reflux with $\mathrm{NH}_{3} \mathrm{OH}^{+} \mathrm{Cl}^{-}(212 \mathrm{mg}, 3.04 \mathrm{mmol})$ in 25 ml of DMF. After gaining the boiling point of the mixture, TFAA ($384 \mathrm{mg}, 1.83 \mathrm{mmol}$) was added dropwise and the resulting mixture was refluxed for 6 h . The reaction mixture was poured over ice/water and was extracted with DCM $(3 \times 100 \mathrm{ml})$. The combined organic extracts were washed with water (100 ml) and brine ($2 \times 100 \mathrm{ml}$), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. Column chromatography $\left(\mathrm{SiO}_{2} ; \mathrm{DCM} /\right.$ hexane $\left.1: 1\right)$ afforded 1 as off-white solid ($90 \mathrm{mg}, 46 \%$). $\mathrm{R}_{\mathrm{f}} 0.75$ (DCM/Hexane 1:1). Mp $343^{\circ} \mathrm{C}$ (lit. ${ }^{2} 340-342{ }^{\circ} \mathrm{C}$). IR (HATR), $v_{\text {max }} / \mathrm{cm}^{-1}$ 2921, 2214 (CN), 1589, 1496, 1270, 1177, 836. ${ }^{1} \mathrm{H}-\mathrm{NMR}: \delta_{\mathrm{H}}(400$ $\left.\mathrm{MHz} ; \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) 7.15\left(6 \mathrm{H}, \mathrm{d},{ }^{3} \mathrm{~J} 8.8, \mathrm{CH}_{\mathrm{Ar}}\right), 7.61\left(6 \mathrm{H}, \mathrm{d},{ }^{3} \mathrm{~J} 8.8, \mathrm{CH}_{\mathrm{Ar}}\right.$) $){ }^{13} \mathrm{C}-\mathrm{NMR}: \delta_{\mathrm{C}}(100$ $\mathrm{MHz} ; \mathrm{CD}_{2} \mathrm{Cl}_{2}$) 108.3, 119.0, 125.5, 134.5, 149.9. HR-MALDI-MS (DHB): calcd for $\mathrm{C}_{21} \mathrm{H}_{12} \mathrm{~N}_{4}\left(\mathrm{M}^{+}\right) 320.1057$; found 320.1059.

Chromophore 2

Compound 2 was prepared according to the literature ${ }^{3}$ starting from $13(243 \mathrm{mg}, 0.39$ mmol). Purification by column chromatography afforded 2 as greenish-yellow solid ($115 \mathrm{mg}, 74 \%$). $\mathrm{Rf}_{\mathrm{f}} 0.6$ (SiO_{2}; EtOAc/Hexane 1:3). Mp $275{ }^{\circ} \mathrm{C}$. IR (HATR), $v_{\text {max }} / \mathrm{cm}^{-1}$ 2892, 2212 (CN), 1589, 1497, 1264, 1178, 964, 947, 808. ${ }^{1} \mathrm{H}-\mathrm{NMR}: \delta_{\mathrm{H}}(400 \mathrm{MHz}$; $\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}\right) 5.81\left(3 \mathrm{H}, \mathrm{d},{ }^{3} \mathrm{~J} 16.8, \mathrm{CH}=\right), 7.09\left(6 \mathrm{H}, \mathrm{d},{ }^{3} \mathrm{~J} 8.4, \mathrm{CH}_{\mathrm{Ar}}\right), 7.35\left(3 \mathrm{H}, \mathrm{d},{ }^{3} \mathrm{~J} 16.8\right.$, $=\mathrm{CH}), 7.40\left(6 \mathrm{H}, \mathrm{d},{ }^{3} \mathrm{~J} 8.4, \mathrm{CH}_{\mathrm{Ar}}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}: \delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) 95.3,118.5,124.7$, 129.1, 129.5, 148.8, 149.4. HR-MALDI-MS (DCTB): calcd for $\mathrm{C}_{27} \mathrm{H}_{18} \mathrm{~N}_{4}\left(\mathrm{M}^{+}\right) 398.1526$ found 390.1528 .

Chromophore 3

Triiodotriphenylamine 13 ($150 \mathrm{mg}, 0.24 \mathrm{mmol}$) and 4-cyanophenylboronic acid 27 (123 $\mathrm{mg}, 0.84 \mathrm{mmol}$) were dissolved in a mixture of THF and water ($30 \mathrm{ml}, 4: 1$). Argon was bubbled through the mixture for 10 min , whereupon $\mathrm{Na}_{2} \mathrm{CO}_{3}(106 \mathrm{mg}, 1 \mathrm{mmol})$ and $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(17 \mathrm{mg}, 0.024 \mathrm{mmol})$ were added and the mixture was refluxed for 8 h . The reaction was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ aq. solution and was extracted with $\mathrm{DCM}(3 \times 100 \mathrm{ml})$. The combined organic extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. Purification of the crude product by column chromatography (SiO_{2}; EtOAc/hexane 1:3) afforded 3 as yellowish solid ($100 \mathrm{mg}, 76$
\%). $\mathrm{R}_{\mathrm{f}} 0.35\left(\mathrm{SiO}_{2}\right.$; EtOAc/hexane 1:3). Mp $329^{\circ} \mathrm{C}$. IR (HATR): $v_{\mathrm{max}} / \mathrm{cm}^{-1} 3034,2220$ (CN), 1589, 1488, 1272, 1182, 820. ${ }^{1} \mathrm{H}-\mathrm{NMR}: \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) 7.26\left(6 \mathrm{H}, \mathrm{d},{ }^{3} \mathrm{~J}\right.$ $8.8, \mathrm{CH}_{\mathrm{Ar}}$), $7.59\left(6 \mathrm{H}, \mathrm{d},{ }^{3} \mathrm{~J} 8.8, \mathrm{CH}_{\mathrm{Ar}}\right), 7.70-7.75\left(12 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{Ar}}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}: \delta_{\mathrm{C}}(100$ $\mathrm{MHz} ; \mathrm{CD}_{2} \mathrm{Cl}_{2}$) 111.1, 119.5, 125.2, 127.7, 128.8, 133.2, 134.5, 145.2 148.1. HR-MALDI-MS (DCTB): calcd for $\mathrm{C}_{21} \mathrm{H}_{12} \mathrm{~N}_{4}\left(\mathrm{M}^{+}\right) 320.1057$ found 320.1059.

Chromophore 4

Triiodotriphenylamine 13 ($146 \mathrm{mg}, 0.23 \mathrm{mmol}$) and 4-ethynylbenzonitrile (28, 115 mg , 0.91 mmol) were dissolved in dry THF (15 ml) and TEA ($5 \mathrm{ml}, 36 \mathrm{mmol}$). Argon was bubbled through the mixture for 10 min , whereupon $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(16 \mathrm{mg}, 0.023 \mathrm{mmol})$ and $\mathrm{Cul}(13 \mathrm{mg}, 0.069 \mathrm{mmol})$ were added and the reaction was heated to $70^{\circ} \mathrm{C}$ for 8 h. The reaction mixture was poured into the saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution (100 ml) and was extracted with DCM ($3 \times 100 \mathrm{ml}$). The combined organic extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The crude product was purified by column chromatography (SiO_{2}, Hexane/EtOAc 4:1). Yield (98 mg, 69%), $\mathrm{R}_{\mathrm{f}} 0.25\left(\mathrm{SiO}_{2}\right.$; EtOAc/hexane 1:4), mp $217{ }^{\circ} \mathrm{C}$ (lit. ${ }^{4} 234-236{ }^{\circ} \mathrm{C}$). IR (HATR), $v_{\text {max }} / \mathrm{cm}^{-1} 2921,2216$ (CN), 1587, 1486, 1260, 1067, 1021, 806. ${ }^{1} \mathrm{H}-\mathrm{NMR}$: $\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.09(6 \mathrm{H}, \mathrm{d}$, $\left.{ }^{3} \mathrm{~J} 8.8, \mathrm{CH}_{\mathrm{Ar}}\right), 7.45\left(6 \mathrm{H}, \mathrm{d},{ }^{3} \mathrm{~J} 8.8, \mathrm{CH}_{\mathrm{Ar}}\right), 7.57\left(6 \mathrm{H}, \mathrm{d},{ }^{3} \mathrm{~J} 8.4, \mathrm{CH}_{\mathrm{Ar}}\right), 7.62\left(6 \mathrm{H}, \mathrm{d},{ }^{3} \mathrm{~J} 8.4\right.$, $\mathrm{CH}_{\mathrm{Ar}}$). ${ }^{13} \mathrm{C}-\mathrm{NMR}: \delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 88.1,93.8,111.5,117.4,118.7,124.3,128.4$, 132.1, 132.2, 133.3, 147.3. HR-MALDI-MS (DHB): calcd for $\mathrm{C}_{45} \mathrm{H}_{24} \mathrm{~N}_{4}\left(\mathrm{M}^{+}\right) 620.1996$ found 620.2003.

Chromophore 5

Triiodotriphenylamine $13 \quad(212 \mathrm{mg}, 0.34 \mathrm{mmol})$ and pinacol 2-(4cyanophenyl)vinylboronate $29(280 \mathrm{mg}, 1.10 \mathrm{mmol})$ were dissolved in 50 ml of $4: 1$ dioxane/water mixture. Argon was bubbled through the mixture for 10 min , whereupon $\mathrm{Na}_{2} \mathrm{CO}_{3}(127 \mathrm{mg}, 1.20 \mathrm{mmol})$ and $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(24 \mathrm{mg}, 0.034 \mathrm{mmol})$ were added and the mixture was heated to $90^{\circ} \mathrm{C}$ for 8 h . The reaction mixture was poured into the saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution (100 ml) and was extracted with DCM $(3 \times 100 \mathrm{ml})$. The combined organic extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The crude product was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, EtOAc/Hexane 1:4) to afford 5 as yellow solid. Yield ($100 \mathrm{mg}, 76 \%$). $\mathrm{R}_{\mathrm{f}} 0.4\left(\mathrm{SiO}_{2}\right.$; EtOAc/Hexane 1:4). Mp $291^{\circ} \mathrm{C}$. IR (HATR), $v_{\max } / \mathrm{cm}^{-1}$ 2920, 2219 (CN), 1589, 1505, 1277, 1172, 960, 831. ${ }^{1} \mathrm{H}-\mathrm{NMR:} \delta_{H}\left(400 \mathrm{MHz} ; \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) 7.05\left(3 \mathrm{H}, \mathrm{d},{ }^{3} \mathrm{~J} 16.4, \mathrm{CH}=\mathrm{CH}\right)$, $7.13\left(6 \mathrm{H}, \mathrm{d},{ }^{3} \mathrm{~J} 8.4, \mathrm{CH}_{\mathrm{Ar}}\right), 7.22\left(3 \mathrm{H}, \mathrm{d},{ }^{3} \mathrm{~J} 16.4, \mathrm{CH}=\mathrm{CH}\right), 7.48\left(6 \mathrm{H}, \mathrm{d},{ }^{3} \mathrm{~J} 8.8, \mathrm{CH}_{\mathrm{Ar}}\right)$,
7.61 (12 H, q, ${ }^{3} \mathrm{~J} 8.8, \mathrm{CH}_{\mathrm{Ar}}$). ${ }^{13} \mathrm{C}-\mathrm{NMR}: \delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) 88.1,93.8,111.5,117.4$, 118.7, 124.3, 128.4, 132.1, 132.2, 133.3, 147.3. HR-MALDI-MS (DHB): calcd for $\mathrm{C}_{45} \mathrm{H}_{30} \mathrm{~N}_{4}\left(\mathrm{M}^{+}\right) 626.2471$ found 626.2474 .

3. Synthesis of TPA precursors 13-16

Precursor 13

Triphenylamine ($3.0 \mathrm{~g}, 12 \mathrm{mmol}$), HgO (red, $12.2 \mathrm{~g}, 56 \mathrm{mmol}$) and $\mathrm{I}_{2}(15.2 \mathrm{~g}, 60 \mathrm{mmol})$ in ethanol (60 mL) were stirred 12 h at $20^{\circ} \mathrm{C}$. The reaction mixture was concentrated in vacuo and extracted with boiling toluene. The combined extracts were filtered through a plug $\left(\mathrm{Al}_{2} \mathrm{O}_{3}\right.$, toluene) and concentrated to 50 mL . The resulting solution was precipitated with methanol to afford 6.7 g (88%) of desired product as a white solid. Yield ($6.7 \mathrm{~g}, 88 \%$). $\mathrm{Rf}_{\mathrm{f}} 0.47\left(\mathrm{SiO}_{2}\right.$, hexane), M.p. $168-169{ }^{\circ} \mathrm{C}$ (lit. ${ }^{3} 169{ }^{\circ} \mathrm{C}$). IR (HATR): $v_{\max } / \mathrm{cm}^{-1} 1576,1480,1311,1268,1176,1059,1002,806,708 .{ }^{1} \mathrm{H}$ NMR: $\delta_{H}\left(\mathrm{CDCl}_{3}\right.$, $400 \mathrm{MHz}) 6.81\left(6 \mathrm{H}, \mathrm{d},{ }^{3} \mathrm{~J} 9.0, \mathrm{CH}_{\mathrm{Ar}}\right), 7.53\left(6 \mathrm{H}, \mathrm{d}, \mathrm{J} 9.0, \mathrm{CH}_{\mathrm{Ar}}\right) .{ }^{13} \mathrm{C}$ NMR $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right.$, 100 MHz) 86.6, 126.0, 138.4, 146.5; HR-EI-MS m/z for $\mathrm{C}_{18} \mathrm{H}_{12} \mathrm{l}_{3} \mathrm{~N}\left(\mathrm{M}^{+}\right)$calcld 622.8099 found 622.8104 .

Precursor 14

Starting from $13(1.0 \mathrm{~g}, 1.6 \mathrm{mmol})$, precursor 14 was prepared via threefold Sonogashira cross-coupling and subsequent TMS group removal according to literature. ${ }^{1}$ Yield ($385 \mathrm{mg}, 76 \%$). $\mathrm{R}_{\mathrm{f}} 0.55\left(\mathrm{Al}_{2} \mathrm{O}_{3}\right.$, ether), M.p. $110-112{ }^{\circ} \mathrm{C}$ (lit. ${ }^{1} 113-114$ $\left.{ }^{\circ} \mathrm{C}\right) .{ }^{1} \mathrm{H}$ NMR: $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) 3.05(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}), 7.00\left(6 \mathrm{H}, \mathrm{d},{ }^{3} \mathrm{~J} 8.4, \mathrm{CH}_{\mathrm{Ar}}\right), 7.37$ $\left(6 \mathrm{H}, \mathrm{d},{ }^{3} \mathrm{~J} 8.4, \mathrm{CH}_{\mathrm{Ar}}\right) .{ }^{13} \mathrm{C}$ NMR $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) 77.2,83.6,117.0,124.1,133.6$, 147.2. HR-MALDI-MS (DHB): calcd for $\mathrm{C}_{24} \mathrm{H}_{15} \mathrm{~N}\left(\mathrm{M}^{+}\right) 317.1199$ found 317.1201.

Precursor 15

To the degassed solution of $13(820 \mathrm{mg}, 1.31 \mathrm{mmol})$, propargyl alcohol $(0.31 \mathrm{~mL}, 5.23$ mmol) in THF (10 mL), $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(92 \mathrm{mg}, 0.13 \mathrm{mmol})$, Cul ($25 \mathrm{mg}, 0.13 \mathrm{mmol}$) and triethylamine ($3 \mathrm{ml}, 21.5 \mathrm{mmol}$) were added and the reaction mixture was stirred 12 h at $20^{\circ} \mathrm{C}$. Evaporation of the solvents and subsequent column chormatography $\left(\mathrm{SiO}_{2}\right.$; hexane/EtOAc 1:1) afforded desired product as a yellow solid.
Yield $0.49 \mathrm{~g}(91 \%)$. M.p. $166-167{ }^{\circ} \mathrm{C}$; IR (neat): $V_{\max } / \mathrm{cm}^{-1} 3269,2237,1595,1496$, 1316, 1288, 1268, 1011, 950, 832, 678. ${ }^{1} \mathrm{H}$ NMR: $\delta_{H}(\mathrm{DMSO}, 400 \mathrm{MHz}) 4.28(6 \mathrm{H}, \mathrm{d}$, $\left.{ }^{3} \mathrm{~J} 6.0, \mathrm{CH}_{2}\right), 5.30\left(3 \mathrm{H}, \mathrm{t},{ }^{3} \mathrm{~J} 6.0, \mathrm{OH}\right), 6.98\left(6 \mathrm{H}, \mathrm{d},{ }^{3} \mathrm{~J} 9.0, \mathrm{CH}_{\mathrm{Ar}}\right), 7.36\left(6 \mathrm{H}, \mathrm{d},{ }^{3} \mathrm{~J} 9.0\right.$,
$\mathrm{CH}_{\mathrm{Ar}}$). ${ }^{13} \mathrm{C}$ NMR $\delta_{\mathrm{C}}(\mathrm{DMSO}, 100 \mathrm{MHz}) 49.5,83.3,89.5,117.3,123.9,132.8,146.2$. HR-MALDI-MS (DHB): calcd for $\mathrm{C}_{27} \mathrm{H}_{21} \mathrm{NO}_{3}\left(\mathrm{M}^{+}\right) 407.1516$ found 407.1509 .

Precursor 16

To a suspension of triole 15 ($100 \mathrm{mg}, 0.25 \mathrm{mmol}$) in DCM (40 mL) Dess-Martin periodinane ($3.0 \mathrm{~g}, 1.06 \mathrm{mmol}$) was added and the reaction mixture was stirred 3 hours at $20^{\circ} \mathrm{C}$, poured on saturated aqueous solution of $\mathrm{NaHCO}_{3}(30 \mathrm{~mL})$ and extracted with DCM $(2 \times 50 \mathrm{ml})$. The combined organic extracts were washed with water $(2 \times 50 \mathrm{ml})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo. The crude product was purified by column chromatography (SiO_{2}; hexane/EtOAc 1:2). Reddish solid. Yield 80 mg (81\%). M.p. ~ $101^{\circ} \mathrm{C}$ (dec.). IR (HATR), $v_{\max } / \mathrm{cm}^{-1} 2170,1643,1583,1493,1318,1261,1177,973$, 831, 749. ${ }^{1} \mathrm{H}$ NMR: $\delta_{H}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) 7.10\left(6 \mathrm{H}, \mathrm{d},{ }^{3} \mathrm{~J} 9.0, \mathrm{CH}_{\mathrm{Ar}}\right), 7.55\left(6 \mathrm{H}, \mathrm{d},{ }^{3} \mathrm{~J}\right.$ 9.0, $\mathrm{CH}_{\mathrm{Ar}}$), $9.41(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}=\mathrm{O}) .{ }^{13} \mathrm{C}$ NMR $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) 89.1,94.8,114.7$, 124.3, 135.0, 148.3, 176.5. HR-MALDI-MS (DHB): calcd for $\mathrm{C}_{27} \mathrm{H}_{15} \mathrm{NO}_{3}\left(\mathrm{M}^{+}\right) 401.1046$ found 401.1053.

Another synthetic path leading to precursor 16

To the degassed solution of 13 (150 mg, 0.24 mmol) and 3,3-diethoxypropyne (110 $\mathrm{mg}, 0,87 \mathrm{mmol})$ in THF (10 mL), $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(14 \mathrm{mg}, 0.02 \mathrm{mmol})$, Cul ($8 \mathrm{mg}, 0.04$ mmol) and triethylamine (1 ml) were added and the reaction mixture was stirred 12 h at $20^{\circ} \mathrm{C}$. The reaction mixture was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution (50 ml) and extracted with DCM ($2 \times 50 \mathrm{ml}$). Combined organic extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvents were evaporated in vacuo. Subsequent column chromatography (SiO_{2}; hexane/EtOAc 1:1) afforded 34 as a reddish oil. Yield 135 mg (90 \%). $\mathrm{R}_{\mathrm{f}} 0.65\left(\mathrm{SiO}_{2}\right.$; EtOAc/Hexane 1:1). ${ }^{1} \mathrm{H}$ NMR: $\delta_{H}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) 1.26(18 \mathrm{H}$, t, ${ }^{3} \mathrm{~J} 7.2, \mathrm{CH}_{2} \mathrm{CH}_{3}$), 3.61-3.82 ($12 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{3}$), $5.48\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}(\mathrm{OEt})_{2}\right), 7.05(6 \mathrm{H}$, $\left.\mathrm{d},{ }^{3} \mathrm{~J} 8.8, \mathrm{CH}_{\mathrm{Ar}}\right), 7.43\left(6 \mathrm{H}, \mathrm{d},{ }^{3} \mathrm{~J} 8.8, \mathrm{CH}_{\mathrm{Ar}}\right) .{ }^{13} \mathrm{C} \mathrm{NMR} \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) 15.4,61.2$, 84.6, 85.4, 92.0, 119.0, 120.8, 125.7, 146.0. HR-MALDI-MS (DHB): calcd for $\mathrm{C}_{39} \mathrm{H}_{45} \mathrm{NO}_{6}\left(\mathrm{M}^{+}\right) 623.3241$ found 623.3241 .

Compound 34 ($50 \mathrm{mg}, 0.08 \mathrm{mmol}$) was dissolved in 3 ml of DCM. Formic acid (20 mg , $0,44 \mathrm{mmol}$) was added dropwise and the solution was stirred for 1 h at $20^{\circ} \mathrm{C}$. The reaction mixture was subsequently filtered through a short plug ($\left.\mathrm{SiO}_{2}, \mathrm{DCM}\right)$. The combined organic fractions were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo to afford 16 ($20 \mathrm{mg}, 61 \%$) as a red solid. The spectral data were consistent with those obtained above.

4. Synthesis of acceptor intermediates 17-25

General procedure for preparation of carboxylic acids 17-19

Oxidation of bromoxylenes and bromomesitilene was carried out according to modified literature procedure. ${ }^{5}$ The appropriate commercial bromoxylene or bromomesitylene (20 mmol) was dissolved in ${ }^{\mathrm{t}} \mathrm{BuOH}(15 \mathrm{ml})$ and water (15 ml) and the mixture was heated to $117{ }^{\circ} \mathrm{C}$. Solid KMnO_{4} (40 mmol per each methyl group +40 mmol excess) was added portion wise into the hot mixture during 2 h . The reaction mixture was heated to reflux for 10 h , cooled to $25^{\circ} \mathrm{C}$, whereupon formaldehyde ($50 \mathrm{ml}, 40 \%$ aq. solution) was added and the mixture was boiled again to degrade the residual KMnO_{4}. Hot reaction mixture was filtered through a 5 cm plug of Celite and the plug was subsequently washed with boiling water ($3 \times 100 \mathrm{ml}$). The combined opalescent filtrates were concentrated to one third of the original volume in vacuo. The pH was adjusted to 1-2 with $\mathrm{HCl}(35 \%)$. The white precipitate formed was filtered off and the crude product was recrystallized from water to afford 17-19 as white solids.

2-Bromoisophtalic acid 17

Yield ($3.5 \mathrm{~g}, 71 \%$). Mp $220-221^{\circ} \mathrm{C}$ (lit ${ }^{6} 213-214{ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}-\mathrm{NMR}: \delta_{H}\left(400 \mathrm{MHz} ; \mathrm{d}_{6}\right.$-DMSO) $5.04(2 \mathrm{H}, \mathrm{br}$ s, COOH$), 7.56\left(1 \mathrm{H}, \mathrm{t},{ }^{3} \mathrm{~J} 7.6, \mathrm{CH}_{\mathrm{Ar}}\right), 7.74\left(2 \mathrm{H}, \mathrm{d},{ }^{3} \mathrm{~J} 7.6, \mathrm{CH}_{\mathrm{Ar}}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}$: $\delta_{C}\left(100 \mathrm{MHz} ; d_{6}\right.$-DMSO) 116.4, 128.1, 131.0, 137.0, 168.1. HR-MALDI-MS (9-AA): calcd for $\mathrm{C}_{8} \mathrm{H}_{5} \mathrm{BrO}_{4}\left([\mathrm{M}-\mathrm{H}]^{-}\right)$242.9298/244.9278 found 242.9304/244.9283.

4-Bromoisophtalic acid 18

Yield (3.2 g, 65%). Mp 283-284 ${ }^{\circ} \mathrm{C}$ (lit ${ }^{7} 291-292{ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}-\mathrm{NMR}: \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; d_{6}-\right.$ DMSO) $4.46(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{COOH}), 7.86\left(1 \mathrm{H}, \mathrm{d},{ }^{3} \mathrm{~J} 8.3, \mathrm{CH}_{\mathrm{Ar}}\right), 7.95\left(1 \mathrm{H}, \mathrm{dd},{ }^{3} \mathrm{~J} 8.3,{ }^{4} \mathrm{~J} 2.0\right.$, $\mathrm{CH}_{\mathrm{Ar}}$). ${ }^{13} \mathrm{C}-\mathrm{NMR}: \delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; d_{6}\right.$-DMSO) 125.6, 129.8, 131.6, 132.9, 133.2, 134.1,
166.5, 167.1. HR-MALDI-MS (9-AA): calcd for $\mathrm{C}_{8} \mathrm{H}_{5} \mathrm{BrO}_{4}$ ([M-H]-) 242.9298/244.9278 found 242.9304/244.9284.

2-Bromotrimesilic acid 19

Yield ($3.4 \mathrm{~g}, 59 \%$). Mp 285-286 ${ }^{\circ} \mathrm{C}$ (lit. $.^{8} 291-294{ }^{\circ} \mathrm{C}$) ${ }^{1} \mathrm{H}-\mathrm{NMR}: \delta_{H}\left(400 \mathrm{MHz} ; d_{6}\right.$-DMSO) $5.99(3 \mathrm{H}, \mathrm{br} s, \mathrm{COOH}), 8.19\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{\mathrm{Ar}}\right),{ }^{13} \mathrm{C}-\mathrm{NMR}: \delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; d_{6}-\mathrm{DMSO}\right) 121.9$, 130.6, 131.3, 137.4, 165.7, 167.4. HR-MALDI-MS (9-AA): calcd for $\mathrm{C}_{8} \mathrm{H}_{5} \mathrm{BrO}_{4}$ ([M-H]) 286.9197/288.9176 found 286.9202/288.9182.

General procedure of preparation of amides 20-22

Amides 20-22 were prepared according to modified literature procedure. ${ }^{9}$ Well dried compounds 17-19 (10 mmol) were suspended in $\mathrm{SOCl}_{2}(40 \mathrm{ml}, 206 \mathrm{mmol})$ and DMF ($2 \mathrm{ml}, 26 \mathrm{mmol}$) was added. The reaction mixture was heated to reflux for $4 \mathrm{~h} . \mathrm{SOCl}_{2}$ was distilled off and the residue was dissolved in dry DCM (200 ml). Gaseous NH_{3} was bubbled through the solution for 2 h (apparent and spontaneous cooling of the reaction mixture usually indicated end of the reaction). DCM was evaporated in vacuo and the crude product was recrystallized two or three times from water to afford 20-22 as white solids.

2-Bromoisophtalic acid diamide 20

Yield (1.7 g, 70%). Mp. 249-250 ${ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}-\mathrm{NMR}$: δ_{H} ($400 \mathrm{MHz} ; d_{6}$-DMSO) 7.40-7.42 (2 $\mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{Ar}}$), 7.45-7.49 (1 H, m, $\left.\mathrm{CH}_{\mathrm{Ar}}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}: \delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; d_{6}\right.$-DMSO) 115.3, 127.4, 128.3, 140.5, 169.1. HR-MALDI-MS (DHB): calcd for $\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{BrN}_{2} \mathrm{O}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$ 242.9764/244.9743 found 242.9767/244.9746.

4-Bromoisophtalic acid diamide 21

Yield ($1.85 \mathrm{~g}, 76 \%$). Mp $242-243{ }^{\circ} \mathrm{C}$ (lit ${ }^{10} 248-249{ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}-\mathrm{NMR}: \delta_{H}\left(400 \mathrm{MHz} ; d_{6}-\right.$ DMSO) $7.59\left(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}_{2}\right), 7.72\left(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}_{2}\right), 7.78\left(1 \mathrm{H}, \mathrm{d},{ }^{3} \mathrm{~J} 8.0, \mathrm{CH}_{\mathrm{Ar}}\right), 7.85(1 \mathrm{H}$, dd, $\left.{ }^{3} \mathrm{~J} 8.0,{ }^{4} \mathrm{~J} 2.0, \mathrm{CH}_{\mathrm{Ar}}\right), 7.95\left(1 \mathrm{H}, \mathrm{d},{ }^{4} \mathrm{~J} 2.0, \mathrm{CH}_{\mathrm{Ar}}\right), 8.01\left(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}_{2}\right), 8.17(1 \mathrm{H}, \mathrm{s}$, NH_{2}). ${ }^{13} \mathrm{C}-\mathrm{NMR}: \delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; d_{6}\right.$-DMSO) 121.9, 127.4, 129.5, 132.8, 133.3, 139.2, 166.4, 168.7. HR-MALDI-MS (DHB): calcd for $\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{BrN}_{2} \mathrm{O}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$242.9764/ 244.9743 found $242.9760 / 244.9747$.

2-Chlorotrimesylic acid triamide 22

Yield ($1.35 \mathrm{~g}, 56 \%$). Mp 290-292 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}: \delta_{H}\left(400 \mathrm{MHz} ; d_{6}\right.$-DMSO) $7.64(1 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{NH}_{2}\right), 7.77\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NH}_{2}\right), 7.99\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NH}_{2}\right), 8.06\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{\mathrm{Ar}}\right), 8.22\left(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}_{2}\right) .{ }^{13} \mathrm{C}-$

NMR: $\delta_{C}\left(100 \mathrm{MHz} ; d_{6}\right.$-DMSO) $127.5,129.05,132.32,138.1,165.8,167.7$. HR-MALDIMS (DHB): calcd for $\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{CIN}_{3} \mathrm{O}_{3}\left(\mathrm{M}^{+}\right) 241.0249$ found 241.0249.

General procedure of preparation of nitriles 23-25

Dehydratation of amides was carried out via a standard literature procedure. ${ }^{11}$ Amide 20-22 (3 mmol) was suspended in 1,4-dioxane (30 ml). Pyridine ($3 \mathrm{ml}, 37 \mathrm{mmol}$) was added and the reaction mixture was cooled to $0{ }^{\circ} \mathrm{C}$. TFAA (6 mmol per each amide group) was added dropwise with cooling during 30 min and the mixture was allowed to reach 25° where was stirred for additional 2 h . The reaction pH was adjusted to 7-8 with saturated NaHCO_{3} solution and then extracted with DCM $(3 \times 50 \mathrm{ml})$. The combined organic extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The crude product was recrystallized from the mixture of diethyether and petether to afford 23-25 as off white solid.

2-Bromobenzene-1,3-dicabronitirle 23

Yield (590 mg, 95 \%). Mp. 191-192 ${ }^{\circ} \mathrm{C}$ (lit. $.^{11} 190-190.5$). ${ }^{1} \mathrm{H}-\mathrm{NMR}: \delta_{H}(400 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 7.59\left(1 \mathrm{H}, \mathrm{t},{ }^{3} \mathrm{~J} 7.8, \mathrm{CH}_{\mathrm{Ar}}\right), 7.87\left(2 \mathrm{H}, \mathrm{d},{ }^{3} \mathrm{~J} 7.8, \mathrm{CH}_{\mathrm{Ar}}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}: \delta_{\mathrm{C}}(100 \mathrm{MHz}$; CDCl_{3}) 115.8, 118.3, 128.6, 128.9, 137.8. El-MS (70 eV) m/z (rel. int.): 206/208 (M ${ }^{+}$, $100 \%), 127$ (40), 100 (30), 75 (20).

4-Bromobenzene-1,3-dicarbonitrile 24

Yield ($602 \mathrm{mg}, 97 \%$). Mp 191-193 ${ }^{\circ} \mathrm{C}$ (lit. ${ }^{11} 193-193.5^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}-\mathrm{NMR}: \delta_{\mathrm{H}}(400 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 7.70\left(1 \mathrm{H}, \mathrm{dd},{ }^{3} \mathrm{~J} 8.4,{ }^{4} \mathrm{~J} 2.0, \mathrm{CH}_{\mathrm{Ar}}\right), 7.86\left(1 \mathrm{H}, \mathrm{d},{ }^{3} \mathrm{~J} 8.4, \mathrm{CH}_{\mathrm{Ar}}\right), 7.93\left(1 \mathrm{H}, \mathrm{d},{ }^{4} \mathrm{~J}\right.$ $\left.2.0, \mathrm{CH}_{\mathrm{Ar}}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}: \delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 112.9,115.5,116.3,118.0,131.1,134.8$, 136.7, 137.5. El-MS (70 eV) m/z (rel. int.): 206/208 (M ${ }^{+}, 100 \%$), 127 (45), 100 (35), 75 (25).

2-Chlorobenzene-1,3,5-tricarbonitrile 25

Yield ($482 \mathrm{mg}, 86 \%$). Mp $167-168{ }^{\circ} \mathrm{C}$ (lit ${ }^{10} 167-168^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}-\mathrm{NMR}: \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right.$) $8.17\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{\mathrm{Ar}}\right),{ }^{13} \mathrm{C}-\mathrm{NMR}: \delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 112.7,113.5,114.3,117.3,140.2$, 144.4. El-MS (70 eV) m/z (rel. int.): 187 (M+, 100 \%), 152 (10), 125 (14), 100 (12), 75 (18).

5. Electrochemistry

Electrochemical measurements were carried out in acetonitrile containing 0.1 M $\mathrm{Bu}_{4} \mathrm{NPF}_{6}$ in a three electrode cell by cyclic voltammetry (CV) and rotating disk voltammetry (RDV). The working electrode was platinum disk (2 mm in diameter) for CV and RDV experiments. As the reference and auxiliary electrodes were used saturated calomel electrode (SCE) separated by a bridge filled with supporting electrolyte and Pt wire, respectively. All potentials are given vs. SCE. Voltammetric measurements were performed using a potentiostat PGSTAT 128N (AUTOLAB, Metrohm Autolab B.V., Utrecht, The Netherlands) operated via NOVA 1.10 software.

Figure S3. Representative CV curve of the oxidation and reduction of chromophore 5 at Pt electrode in acetonitrile containing $0.1 \mathrm{M} \mathrm{Bu}_{4} \mathrm{NPF}_{6}$.

Figure S4. Representative CV curve of the oxidation and reduction of chromophore 7 at Pt electrode in acetonitrile containing $0.1 \mathrm{M} \mathrm{Bu}_{4} \mathrm{NPF}_{6}$.

Figure S5. Representative CV curve of the oxidation and reduction of chromophore 8 at Pt electrode in acetonitrile containing $0.1 \mathrm{M} \mathrm{Bu}_{4} \mathrm{NPF}_{6}$.

Figure S6. Representative CV curve of the oxidation and reduction of chromophore 9 at Pt electrode in acetonitrile containing $0.1 \mathrm{M} \mathrm{Bu}_{4} \mathrm{NPF}_{6}$.

Figure S7. Representative CV curve of the oxidation and reduction of chromophore 11 at Pt electrode in acetonitrile containing $0.1 \mathrm{M} \mathrm{Bu}_{4} \mathrm{NPF}_{6}$.

6. Optical properties

Figure S8. Colors of chromophores 1-12 (from left to right, DCM).

Figure S9. Colors of chromophores 1-12 (from left to right, DCM) under irradiation with handheld UVlamp (365 nm).

7. Data correlations

$$
\begin{gathered}
1240 / \lambda_{\max }=(1.25 \pm 0.24)+(6.79 \pm 0.86) 10^{-1} \Delta E \\
n=10, s=7.6210^{-2}, r=0.941
\end{gathered}
$$

Figure S10. Correlation of the energy of the longest-wavelength absorption maxima and the electrochemical gap.

Figure S11. Correlation of the energies of the longest-wavelength fluorescent and absorption maxima.

$$
\begin{gathered}
E_{\text {Номо }}=-(2.89 \pm 0.43)+(4.44 \pm 0.07) 10^{-1} E_{\text {Номо,DFT }} \\
n=12, s=8.1510^{-2}, r=0.903
\end{gathered}
$$

Figure S12. Correlation of the electrochemically- and DFT-derived energies of the HOMO (8 as an outlier).

$$
E_{\text {LUMO }}=-(9.17 \pm 1.65) 10^{-1}+(6.15 \pm 0.60) 10^{-1} E_{\text {LUMO,DFT }}
$$

$$
n=6, s=3.1510^{-2}, r=0.981
$$

Figure S13. Correlation of the electrochemically- and DFT-derived energies of the LUMO (excluding 9-12).

Figure S14. Correlation of the electrochemically- and DFT-derived HOMO-LUMO gaps.

8. HOMO and LUMO localizations in TPA and 1-12

The following HOMO and LUMO localizations in TPA and molecules 1-12 were derived from the calculations using PM7 method implemented in MOPAC2012 program (lit. ${ }^{12}$) . The visualizations have been performed in program OPchem. ${ }^{13}$

Figure S15. HOMO (red) and LUMO (blue) localizations in TPA.

Figure S16. HOMO (red) and LUMO (blue) localizations in chromophore 1.

Figure S17. HOMO (red) and LUMO (blue) localizations in chromophore 2.

Figure S18. HOMO (red) and LUMO (blue) localizations in chromophore 3.

Figure S19. HOMO (red) and LUMO (blue) localizations in chromophore 4.

Figure S20. HOMO (red) and LUMO (blue) localizations in chromophore 5.

Figure S21. HOMO (red) and LUMO (blue) localizations in chromophore 6.

Figure S22. HOMO (red) and LUMO (blue) localizations in chromophore 7.

Figure S23. HOMO (red) and LUMO (blue) localizations in chromophore 8.

Figure S24. HOMO (red) and LUMO (blue) localizations in chromophore 9.

Figure S25. HOMO (red) and LUMO (blue) localizations in chromophore 10.

Figure S26. HOMO (red) and LUMO (blue) localizations in chromophore 11.

Figure S27. HOMO (red) and LUMO (blue) localizations in chromophore 12.

9. NMR Spectra of 1-12

Figure S28. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of chromophore $1\left(400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$.

Figure S29. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum of chromophore $1\left(100 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$.

Figure S30. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of chromophore $2\left(400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$.

Figure S31. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum of chromophore $2\left(100 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$.

Figure S32. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of chromophore $\mathbf{3}\left(400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$.

Figure S33. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum of chromophore 3 ($100 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$).

Figure S34. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of chromophore $4\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Figure S35. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum of chromophore $4\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Figure S36. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of chromophore $5\left(400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$.

Figure S37. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum of chromophore $5\left(100 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$.

Figure S38. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of chromophore $6\left(400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$.

Figure S39. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum of chromophore $6\left(100 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$.

Figure S40. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of chromophore $7\left(400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$.

Figure S41. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum of chromophore $7\left(100 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$.

Figure S42. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of chromophore $8\left(400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$.

Figure S43. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum of chromophore $8\left(100 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$.

Figure S44. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of chromophore $9\left(400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$.

Figure S45. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum of chromophore $9\left(100 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$.

Figure S46. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of chromophore $10\left(400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$.

Figure S47. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum of chromophore $10\left(100 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$.

Figure S48. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of chromophore $11\left(400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$.

Figure S49. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum of chromophore $11\left(100 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$.

Figure S50. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of chromophore $12\left(400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$.

Figure S51. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum of chromophore $12\left(100 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$.

10. References

[^0]
[^0]: ${ }^{1}$ P. Hrobarik, V. Hrobarikova, I. Sigmundova, P. Zahradnik, M. Fakis, I. Polyzos and P. Persephonis, J. Org. Chem., 2011, 76, 8726.
 ${ }^{2}$ G. A. Pearson, M. Rocek and R. I. Walter, J. Phys. Chem., 1978, 82, 1185.
 ${ }^{3}$ Y.-P. Tian, L. Li, J.-Z. Zhang, J.-X. Yang, H. Zhou, J. Wu, P. Sun, L. Tao, Y. Guo, C.-K. Wang, H. Xing, W. Huang, X.-T. Tao and M.-H. Jiang, J. Mater. Chem., 2007, 17, 3646.
 ${ }^{4}$ S. P. Mcllroy, E. Clo, L. Nikolajsen, P. K. Frederiksen, C. B. Nielsen, K. V. Mikkelsen, K. V. Gothel and P. R. Ogilby, J. Org. Chem., 2005, 70, 1134.

 5 F. C. Courchay, J. C. Sworen, I. Ghiviriga, K. A. Abboud and K. B. Wagener; Organometallics, 2006, 25, 6074.
 ${ }^{6}$ A. Padwa, K. E. Krumpe and J. M. Kassir J. Org. Chem., 1992, 57, 4940.
 ${ }^{7}$ E. W. Crandall, R. Beasley, L. L. Lambing and R. Moriconi, J. Org. Chem., 1967, 32, 134.
 ${ }^{8}$ P. Holý, J. Závada, J. Zezula, I. Císařová and J. Podlaha, Collect. Czech. Chem. Commun., 2001, 66, 820.
 ${ }^{9}$ K. Wallenfels, F. Witzler and K.Friedrich, Tetrahedron, 1967, 23, 1353.
 ${ }^{10}$ E. J. Fendler , J. H. Fendler , C. E. Griffin and J. W. Larsen, J. Org. Chem., 1970, 35, 287.
 ${ }^{11}$ C. C. Leznoff, Z. Li, H. Isago, A. M. D'Ascanio and D. S. Terekhov, J. Porphyrins Phthalocyanines, 1999, 3, 406.
 ${ }^{12}$ MOPAC2012, J. J. P. Stewart, Stewart Computational Chemistry, version 13.084W, webpage: http://OpenMOPAC.net.
 ${ }^{13}$ OPchem, O. Pytela, version 7.6, webpage: http://pytela.upce.cz/OPgm.

