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Abstract:Modelling the highest compensations are very important for insurance 
companies, as more and more policies now can generate high claims (for example 
third party liability insurance, property, especially connected to catastrophic events). 
In modelling extreme values of compensations paid by insurance company it is 
possible to use different models (exponential, gamma, Pareto distribution are most 
common) for typical values and different ones for the highest compensations (for 
example Generalised Pareto distribution). In this case however a problem of choice of 
the point, in which the change of the way of modelling is taking place appears. 
The paper is devoted to methods useful in choosing this point, that can be found in 
literature. Using simple example of the data, these methods can be analysed to find 
their advantages and disadvantages. All of the presented methods are  mainly based 
on the analysis of graphs of selected parameters, which makes the results obtained are 
not strict guidelines, however, provide indicative results. 
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Introduction 

From the standpoint of insurance proper premium calculation is crucial in ensuring 
financial balance. The base pure premium calculation is the expected value of random 
variable, with which is described by the amount of compensation. Therefore, proper 
modeling of the random variable is important for insurance.  

In case of damage of a typical size insurance companies generally have a 
sufficiently large amount of data that the selection of the appropriate distribution is not 
a problem. Furthermore, it is also possible to use an empirical distribution.  

However, in the case of insurance, in which the terms of the contract allow the 
occurrence of exceptionally high compensation (the need to pay such compensation 
may occur eg in connection with the occurrence of events that can be described as 
natural disasters), there is a problem associated with the occurrence of a small number 
of observations, based on which can be requested on the form and distribution 
parameters. At the same time it is precisely these claims very strongly affect the 
expected value of damages. 

Also from the viewpoint of reinsurer the largest claims are of particular importance. 
This mainly applies to the excess of loss reinsurance, in which the reinsurer assumes 
liability for damages, which amount exceeds the value of the contract of reinsurance. 
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Thus, modeling is particularly important damage from the right tail of the probability 
distribution of random variable describing the amount of damages. 

1 Modelling extreme losses 

1.1 Approaches to modeling extreme losses 

The modeling of extreme values can distinguish several approaches (for [3]). The 
first approach is based on the distributions of extreme values. Based on the Fisher-
Tippett theorem can be concluded that the maximum compensation can be modeled 
using the generalized extreme value distribution (GEV). 

The second approach is to match the distribution for all observations or for values 
that exceed a fixed value (using the censored distributions and conditional). Problems 
with this approach will focus on the further part of the paper. If the distribution is 
matched to all observations, it may well describe a typical value, while for higher 
values may be poor fit to empirical data. Thus, often it is reasonable to separate 
modeling of typical damage and the values derived from the tail distribution - the use 
of censored distributions and mixtures of distributions. In this case, however, there is 
the problem of choosing the point at which a change in modeling. 

If the amount of compensation from the tail of the distribution are modeled 
separately, we introduce the distribution function of the excesses over threshold u 
(conditional excess distribution) defined as: 
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Of course, knowing the conditional excess distribution we can express a probability 
distribution for the original value x u≥ as follows: 
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where ( )nF x
 is a distribution function for typical values, or ot can be empirical 

distribution either.  

On the basis of Pickans-Balke-de Haan statements (see [5]) for a wide class of 
distributions of the conditional excess distribution for sufficiently high values of u can 
be approximated by a generalized Pareto distribution (GPD): 
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Additional paremeter (µ) can be introduced as follows: 

 

 ( ) ( ), , ,G x G xξ µ σ ξ σ µ= −
 ( 4) 

 

ξ can interpreted as a shape parameter,  β as a scale parameter. 

It can be shown that if the conditional distribution excess is approximated 
generalized Pareto distribution, then (2) also has a generalized Pareto distribution with 

the same parameterξ and  ( )( )1 nF u
ξ

σ σ= −% , ( )( )( )1 1 /nF u
ξ

µ µ σ ξ
−

= − − −% % . Thus there 

are strong theoretical arguments supporting the modelling the probability of extreme 
values of compensation using of the generalized Pareto distribution.  

In case of modeling the distribution of values that exceed the threshold u using 
GPD threshold selection plays an important role. If this value is too low, then the 
approximation of distribution is not justified, and if too high, the number of 
observations on which made the distribution of estimates of parameters, it will be too 
small. 

1.2 Choice of the optimal value of threshold u 

In literature you will find various hints to help you determine the value of u, but 
none deal with the problem in an unambiguous manner. One of the simplest 
suggestions is to set the threshold at a level level of empirical quantile. 

Another method is based on the analysis of the shape of mean excess function – 
MEF:  
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with empirical function (see [5]): 
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For heavy tailed distributions this fuction is increasing, otherwise decreasing, while 
for exponential distribution - constant. For Pareto distribution, also for GPD, the is 
increasing and linear. 

It can therefore be concluded that u can be should be set at a level from which the 
graph of the function of MEF is approximately linear. This criterion may be useful for 
preliminary analysis of empirical data, but it should me mentioned that for a small 
number of observations MEF, even for observations generated from a particular 
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distribution, may differ significantly from the model run, as illustrated by the 
following charts. The largest differences occur for the highest value, which is in the 
area's most interesting from the perspective of modeling extreme values. 

 

Fig. 1: MEF for observation generated from a) Pareto and b) exponential 

distribution compared with theoretical value of MEF 

 Source: own studies 

 

Another way of preliminary data analysis is to analyze the shape of the quantile 
plots (empirical quantiles compared with theoretical - derived from the fitted to the 
empirical data distribution). This is a graph of points: 
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where Xk,n is k-th empirical quantile. 

If the matched observations well describes distribution, then the quantile plot is 
approximately linear. Distributions characterized by heavier tails the plot deviates 
from a straight line up for the points describing the highest quantile. The threshold 
should be set at a level where the plot begins to deviate from straight line. 

Another way (cf. [1]) is a graph showing dependency between p-th quantile 
estimated using GPD and the threshold, which is a chart of points: 
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 is maximum likelihood estimator of p-th 

quantile.  

The threshold u should provide a stabilization in the values of a selected quantile. 

Finally, when choosing an optimal threshold value may be helpful to analyze the 
value of the estimators of parameters of the generalized Pareto distribution, depending 
on u. The parameter which most affects the thickness of the tail distribution is the 
shape parameter ξ. A graph of the values of the threshold amount, together with 
marked confidence intervals, allow to find a compromise between error and stability of 
parameter estimation.  

2 Problem solving – empirical example 

The purpose of this article is the comparison of proposed in the literature criterion 
for selection threshold. Calculations used in the analysis are based on 1000 
observations generated from the Pareto distribution. At the same time in a better way 
to bring the behavior of data from heterogeneous portfolio of policies, mixing variable 
was introduced. Expected value is not constant, but in its place a mixing variable 
normally distributed N(100,40) was introduced. Similarly the standard deviation - N 
(80, 20) - distribution of parameters describes the structure of risk in the portfolio. 

 

Fig. 2: Empirical density (left chart) and distribution function (right chart) of data 

used in an example 

 Source: own studies 

 

The first way of finding optimal value of threshold u is to analise MEF function 
(Fig 3). A clear change in the nature of the graph is visible for values close to 250. The 
points corresponding to values greater than 250 are beginning to increase. As it is 
obvious it is quite difficult to give one good answer to the problem of finding 
threshold u in this case. 
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Fig. 3: Empirical MEF for the data used in an example

 

Source: Own studies 

 

Second way of finding u is to use quantile plot (Fig 4 – compared to Pareto 
distribution. Similar deviations from the straight line appear near the values of 200-
250. Data compared with distributions such as gamma, Weibull, Burr, GPD gave very 
similar conclusions. 

 

Fig. 4: Quantile plot (data vs Pareto distribution) 

 

Source: Own studies 

 

The next two charts (Fig 5 and Fig 6) illustrate the value of the maximum 
likelihood estimators of parameters of the generalized Pareto distribution, depending 
on the choice of the threshold u. For the lower thresholds than 170 of the estimators of 
parameters ξ (Fig 5) and σ (Fig 6) differ significantly from those obtained in case the 
higher values of u. The values of both estimators stabilizie for a threshold of about 170 
to about 250 Above u = 250 the number of observations above the threshold drops 
below 40, for u> 270 falls below 30. 
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Fig. 5: Estimator of  parameter ξξξξ depending on threshold u

 

Source: Own studies 

 

Fig. 6: Estimator of  parameter σσσσ depending on threshold u

 

Source: Own studies 

 

Similarly it can be observed stabilisation of 0,95 quantile (Fig 7) for threshold u 
lower than 250. For bigger values of u, the values of 0,95 quantile starts to be unstable. 
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Fig. 7: 0,95 empirical quantile of the data

 

Source: Own studies 

 

Based on the foregoing, it can be assumed that the optimal threshold value should 
be between 170 and 250th The following graph (Fig 7) shows a comparison of the 
empirical distribution function with fitted GPD. The value of the threshold u = 223, 
the parameters of GPD were estimated on the basis of 100 observations. 

 

Fig. 8: Empirical distribution with GPD for u=223

 

Source: own studies 
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Conclusion 

All these ways of determining the optimal thresholds are based on visual analysis 
of graphs. Thus, observations on stabilization of the value estimates may differ from 
the conclusions of others. Moreover, these methods allow to determine the indicative 
ranges, which should include a threshold value, the final decision is taken arbitrarily. 
However, despite the imperfections, they provide information that can make this 
decision much easier. 
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