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1. Introduction 

The aim of this article is to perform a detail numerical analysis of the spherical cap 
subjected to an external pressure. The main task is to perform fully non-linear 
computational analyses in which both the material and geometrical nonlinearities are 
taken into consideration. The material nonlinearity enables a study of the limit state of 
plasticity while the geometrical nonlinearity displays the possible loss of stability. The 
problem is reduced to the spherical caps with hinged boundary conditions.  

2. Theoretical background 

The loss of stability is one of the limit states which may occur in an excessively 
loaded thin-wall structure. It flows from the shell theory that they can collapse in various 
ways depending on geometrical parameters, boundary conditions, loading conditions, 
material characteristics and initial imperfections. The stability collapse is induced by 
minimum load corresponding to a particular form of deformation. The membrane energy 
is converted to both the membrane and bending energy. As the membrane stiffness of 
the shell structures is several orders higher than the bending stiffness, the loss of stability 
is attended by large displacements of a wave character often visible to the naked eye.  
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Way of loss of stability 

Bushnell D. describes in the introductory chapter of his book Computerized 
Buckling Analysis of Shells [1] basic types of loss of stability:  

 Linear buckling 

 Nonlinear axially symmetrical collapse 

 Nonlinear buckling 

Linear buckling (point BL in Fig. 1) is characterized by a deformation of the 
structure in a new shape entirely different from the pre-buckling shape. The structure 
collapses when the curve tangent behind the bifurcation point is negative. The critical 
load corresponding to the bifurcation point is computed by means of the generalized 
eigenvalue theory.  

Nonlinear axially symmetrical collapse (point A in Fig. 1) is characterized by 
decreasing stiffness of the structure with increasing load. In most cases, when the peak 
of the equilibrium curve is reached, the sudden loss of stability follows. The cap snaps 
through into its inverse position. The snap-through occurs in an axially symmetrical form 
along the curve 0AC.   

Nonlinear buckling is characterized either by axially nonsymmetrical snap-through 
along the curve 0BN1D or by nonlinear axially symmetrical collapse subsequently followed 
by axially nonsymmetrical snap-through along the curve 0ABN2E. 

 

 

Fig. 1 Loading path of the spherical cap   
The real structures with initial imperfections exhibit similar behavior, however, the 

loading curve (curve ) is lower than the loading curve valid for the ideal structures 
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(curve ). The collapse occurs again due to either the nonlinear buckling or nonlinear 
axially symmetrical collapse or nonlinear axially symmetrical collapse followed by 
nonlinear buckling.     

Initial imperfection influence on loss of stability 

The current technical standards and recommendations concerning stability of thin-
walled shell structures [2], [3], [4], [5] provide needed analytical formulas convenient for 
the buckling analysis. The methods are based on the linear theory [6]. The equation (1) 
represents the linear partial differential equation of the spherical shell. The resulting 
external critical pressure is expressed in equation (2). The influence of both the material 
nonlinearity and initial imperfections are additionally taken into consideration.   

 
஽೟
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ݓ଺׏ ൅ σ׏ସݓ ൅ ா

ோమ
ݓଶ׏ ൌ 0 (1) 

௄ோ݌           ൌ 1,21 ∙ ܧ ∙ ቀ௧
ோ
ቁ
ଶ
  . (2) 

Primarily, the standard stability solution based on the generalized eigenvalue 
problem is performed. It results in the critical load of the ideal shell. However, this value is 
too optimistic in relation to a real imperfect structure. Therefore, some corrections 
regarding to initial imperfections are necessary. The initial imperfections are represented 
by variations in shape, real boundary conditions, real load and residual stresses. The 
standards provide various procedures to adjust results of the ideal shell to the real one.  

It can be shown that the imperfection sensitivity of axially compressed cylindrical 
shells is the same as in the case of imperfection sensitivity of spherical shells loaded with 
an external pressure. Based on this fact, the following procedure for verification of 
spherical shell stability in elastic area may be adopted [3].  

Stability of the axially compressed cylindrical shell: 

௨ߪ  ൌ
ఈబ∙ఙ಼ೃ

ఊ
  ,  (3) 

where the critical stress (buckling stress) is:  

௄ோߪ  ൌ 0,605 ∙ ܧ ∙ ݐ ܴൗ    . (4) 

The ratio between the cylindrical and spherical shells can be expressed based on 
the boiler formula (5). It leads to the equation for the external critical pressure of the 
spherical shell:   

௄ோ݌   ൌ
ଶ∙ఙ಼ೃ∙௧

ோ
ൌ

ଶ∙ቀ଴,଺଴ହ∙ா∙൫௧ ோൗ ൯ቁ∙௧

ோ
ൌ 1,21 ∙ ܧ ∙ ൫ݐ ܴൗ ൯

ଶ
  . (5) 

Finally, the stability of the real imperfect spherical shell in elastic era is: 

௨݌  ൌ
ఈబ∙௣಼ೃ

ఊ
  .  (6) 
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The reduction factor 0 taking into account imperfections is determined using the 

expression: 

଴ߙ  ൌ
଴,଼ଷ

ඥଵା଴,଴ଵ∙ோ/௧
  for  R/t < 212 

   (7)  

଴ߙ  ൌ
଴,଻଴

ඥ଴,ଵା଴,଴ଵ∙ோ/௧
  for  R/t  212  . 

The graphic interpretation of 0 versus R/t is shown in Fig. 2 

 

 

Fig. 2 Reduction factor according to ECCS [3] 

Elastic-plastic material behavior 

Now, the influence of plasticity is necessary to take into consideration. The rigid-
plastic material behavior is implemented into the following mathematical formulas.    

௨ߪ  ൌ
ఈబ∙ఙ಼ೃ

ఊ
  for  ߙ଴ߪ௄ோ ൏

ଵ

ଶ
∙ ௬݂ (8) 

௨ߪ  ൌ ௬݂ ∙ ൤1 െ 0,4123 ∙ ቀ
௙೤

ఈబఙ಼ೃ
ቁ
଴,଺
൨  for   ߙ଴ߪ௄ோ 	൒ 	

ଵ

ଶ
∙ ௬݂  . (9) 

Both the equations are graphically described in Fig. 3. The safety factor for short 

thick shells is =4/3 1 since the plasticity there completely overcomes the stability. The 

transition from the design stress u to the design pressure pu is again performed by 

means of the boiler formula: 
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௨݌  ൌ
ଶ∙ఙೠ∙௧

ோ
  .  (10) 

 

 
Fig. 3 Influence of plasticity on stability 

3. Numerical stability analysis of hinged spherical cap  

Ideal structure 

The following text is devoted to a detail numerical analysis of an ideal shallow 
spherical cap with a hinged lower edge. The cap is loaded with an external pressure p. 
The finite element computational model (see Fig. 4) is assembled for this purpose. The 
model is assembled of 3076 elements SHELL4T. The cylindrical coordinate system 0xyz 
with radial direction x, circumferential direction y and axis z identical with the axis of the 
cap is defined. The ideal structure without initial imperfections is considered. The basic 
dimensions of the analyzed cap are R=1200 mm, D=1400 mm. The thickness varies from 
3 to 12 mm. The analysis is completed with two modifications of radius R=2400 mm and 
3600 mm. 

The stainless steel material 1.4301 [9] with Young’s modulus E=2E+5 MPa and 
yield strength fy=250 MPa at temperature T=20°C is prescribed. The material nonlinearity 
in the form of von Mises’s bilinear model with modulus ET=E/10000=20 MPa is adopted 
(elastic-plastic material, see Fig. 5). 

The results of the computer analyses are performed in Tab. 1  Tab. 3. To better 

illustrate, the results are also presented in a graphical form (see Fig. 6  Fig. 8). The 

diagram represents the external pressure p dependence on parameter R/t. 
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 The diagram consists of three curves: 

 LBA – linear buckling analysis,  

 NEA – nonlinear elastic analysis, 

 NPA – nonlinear elastic-plastic analysis. 

Tab. 1 Results: R=1200 mm,  D=1400 mm,  R/D=0.857, hinged 

 

 

 

 

Tab. 2 Results: R=2400 mm,  D=1400 mm,  R/D=1.714, hinged 

Tab. 3 Results: R=3600 mm,  D=1400 mm,  R/D=2.571, hinged 

  

t 12 10 8 6 5 4 3.333 3 
R/t 100 120 150 200 240 300 360 400 
pLP 4.595 3.771 2.932 2.083 1.672 1.261 0.993 0.855 
pLE 16.220 11.130 7.177 4.146 2.875 1.863 1.311 1.068 
L 3.530 2.951 2.448 1.990 1.719 1.477 1.320 1.249 
pKR 24.463 17.106 10.954 6.177 4.294 2.766 1.926 1.566 
pKRA 24.200 16.806 10.756 6.050 4.201 2.689 1.867 1.513 
KR 0.989 0.982 0.982 0.979 0.978 0.972 0.969 0.966 

t 12 10 8 6.667 6 5.333 5 4 3.333 3 
R/t 200 240 300 360 400 450 480 600 720 800 
pLP 2.049 1.648 1.246 0.979 0.846 0.721 0.659 0.454 0.329 0.270 
pLE 4.355 3.060 1.984 1.358 1.091 0.853 0.741 0.454 0.329 0.270 
L 2.125 1.857 1.592 1.387 1.290 1.183 1.124 1.000 1.000 1.000 
pKR 6.163 4.241 2.736 1.890 1.542 1.213 1.066 0.684 0.476 0.387 
pKRA 6.050 4.201 2.689 1.867 1.513 1.195 1.050 0.672 0.467 0.378 
KR 0.982 0.991 0.983 0.988 0.981 0.985 0.985 0.982 0.981 0.977 

t 12 10 9 8 7.5 6 5 4.5 4 3 
R/t 300 360 400 450 480 600 720 800 900 1200 
pLP 1.204 0.945 0.821 0.696 0.630 0.449 0.327 0.262 0.202 0.111 
pLE 1.904 1.270 1.017 0.804 0.713 0.467 0.329 0.262 0.202 0.111 
L 1.581 1.344 1.239 1.155 1.132 1.040 1.006 1.000 1.000 1.000 
pKR 2.732 1.869 1.521 1.221 1.066 0.679 0.474 0.382 0.304 0.171 
pKRA 2.689 1.867 1.513 1.195 1.050 0.672 0.467 0.378 0.299 0.168 
KR 0.984 0.999 0.995 0.979 0.985 0.990 0.985 0.990 0.984 0.982 
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Fig. 4 FEM computational model 

 

 

Fig. 5 Nonlinear material model – von Mises 

 

Firstly, it is clear that the curves decrease with an increasing parameter R/t. The 
difference between the results LBA and NPA is not as big as could be expected in case 
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of the cap with free lower edge in the radial direction. The ratio pCR/pLE is located in a 

narrow interval 1.41.55. For that case, the following slightly conservative equation can 

be adopted: 

௅ா݌  ൌ  ௄ோ/1,6 .  (11)݌

Furthermore, it is worth noting that the critical pressures pCR computed numerically 
for a spherical cap are practically identical with the critical pressures pCRA received 
analytically for a full spherical shell (2). The slightly higher numerical results can be 
explained by the stiffer discrete numerical model in comparison with the real continuum. 
Then equation (11) can be rewritten in the form:   

௅ா݌  ൌ  ௄ோ஺/1,6 .  (12)݌

However, the limit pressure pLE may not be a real limit value of the ideal shell. In 
most cases, the nonlinear collapse can occur in an elastic-plastic area due to limit 

pressure pLP which can be significantly lower than pLE. The ratio L=pLE/pLP versus 

parameter R/t is performed in Tab. 13. The maximum value L=3.53 corresponds to the 

cap with R/t=100, while minimum L1.0 to the cap with R/t600. It is clear that the caps 

with lower R/t are influenced by plastic deformations more than thin-walled caps.    

 

  

Fig. 6 Pressure pCR, pLE, pLP versus parameter R/t,  R=1200 mm 
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Fig. 7 Pressure pCR, pLE, pLP versus parameter R/t, R=2400 mm 
 

 

 

Fig. 8 Pressure pCR, pLE, pLP versus parameter R/t,  R=3600 mm 
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Fig. 9 Pressure pCR, pLP versus parameter R/t 

The study of the curves in Fig. 6  Fig. 8 shows that they may be expressed in 

a form of a regression curve  

௅݌   ൌ ܭ ∙ ܧ ∙ ቀ௧
ோ
ቁ
௠

  .  (13) 

The regression coefficients are performed in Tab. 4. This regression formula is now 
suitable for a practical use. To better illustrate the situation, the ratio pCR-R/t and pLP-R/t is 
shown in Fig. 9.  

Tab. 4 Regression coefficients, hinged lower edge 
GEOMETRY R/D=0.857 R/D=1.714 R/D=2.571 

KOEFFICIENTS K m K m K m 
pLP 6.248E-3 1.211 2.475E-2 1.456 0.1105 1.723 
pLE 0.6538 1.956 1.0503 2.032 0.9134 2.016 
pKR 1.1432 1.985 1.1953 1.995 1.1882 1.995 
R/t 100400 200800 3001200 

Real structure 

Now, it is necessary to open the question concerning the initial imperfections. The 
limit pressure pLP is not a limit pressure of the real cap since the initial imperfections can 
significantly reduce this value. The initial imperfections are considered through the 

reduction factor 0 (7). Several possible ways to determine a design pressure of the real 

spherical cap pu are shown in the following text:  

 based  on the critical pressure pCRA of the ideal spherical shell, 

 based on the limit pressure pPL of the ideal spherical cap, 
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 based on the full nonlinear numerical analysis of the real imperfect 
spherical cap. 

The first way leads to the design pressure computed analytically through the 

equations (5)(10). The second way is based on the nonlinear limit pressure pPL 
computed numerically and adjusted directly to the real structure by means of the 

reduction factor 0 

௨݌  ൌ
ఈబ௣ಽು
ఊ

  .  (14) 

The following table (tab. 5.) performs the design pressure pu1 (way 1) and pu2 (way 
2). As he results are considerably different the further research in this area is needed. 

The last way (way 3) is somewhat complicated and its deeper analysis is a 

question of the further research. The supposed ratio 0 versus parameter R/t for various 

boundary conditions is shown in Fig. 10. The increasing reduction factor 0 with stiffer 

boundary conditions can be expected.  

Tab. 5 Limit pressure of the ideal and real hinged shallow cap 
R/t 100 120 150 200 240 300 360 
pu1 3.539 2.769 2.005 1.250 0.864 0.505 0.319 
Pu2 2.023 1.583 1.155 0.737 0.547 0.359 0.258 

continuation of table 5. 
400 450 480 600 720 800 900 1200 

0.245 0.183 0.156 0.089 0.057 0.044 0.033 0.016 
0.213 0.170 0.149 0.095 0.064 0.048 0.035 0.017 

 

 

Fig. 10 Reduction factor versus parameter R/t 
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4. Example 

The following text is devoted to the example concerning the numerical analysis of 
the spherical cap with radius R=3600 mm, diameter D=1400 mm and thickness t=8 mm. 
Von Mises’s elastic-plastic bilinear model of material with real material characteristics 

E=2E+5 MPa, =0.3, fy=250 MPa and ET=20 MPa is considered (stainless steel 1.4301 
[5]). The nonlinear computational analysis is governed by Riks’s arc-length control 
procedure. The axially-symmetrical initial imperfection with amplitude wz0=6 mm is 
prescribed (cylindrical coordinate system 0xyz is used).    

 The equilibrium path is shown in Fig. 11. It represents the loading pressure p 
dependence on vertical displacement uz of the center of the cap. At the beginning the 

model performs a linear behavior. At pressure p0.33 MPa the stiffness begins to 
decrease. It is caused by non-linear nature of the structure. The plasticity of the boundary 
elements can contribute to this phenomenon. The non-linear axially-symmetrical collapse 
occurs at point A (step 24 of the non-linear computational procedure). The non-linear 
collapse of the cap into its inverse position is starting. The deformed shape at the point A 
is shown in Fig. 12. However, the axially symmetrical collapse is suddenly disturbed at 
point B by axially non-symmetrical non-linear buckling. The deformed shape in step 158 
is shown in Fig. 13. The analysis is ended in step 419 where the cap is close to its 
inverse position - again almost axially symmetrical shape (see Fig. 14). 

 

 

Fig. 11 Loading curve (equilibrium curve) 
 

 

The resulting values important for a design are shown in Fig. 15, where 
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pCR=1.221 MPa …   critical pressure of ideal spherical cap, 

pLE=0.804 MPa …   elastic limit pressure of ideal cap, 

pLP=0.696 MPa …   elastic-plastic limit pressure of ideal cap, 

pLEI=0.425 MPa …   elastic limit pressure of real imperfect cap, 

pLPI=0.343 MPa …   elastic-plastic limit pressure of real imperfect cap. 

It flows from the results that the defined initial imperfection significantly reduced the 

stability of the cap. In this case is the ratio pLP/pLPI2.0. 

In most practical cases, the general imperfections prescribed by corresponding 
standards are considered instead of the real measured imperfections. The first two ways 
of tacking the stability problem are performed   

 according to ECCS with standard reduction factor 0   

௨ଵ݌  ൌ
ఈబ௣ಽು
ఊ

ൌ ଴,ଷଶ଺∙଴,଺ଽ଺

ସ/ଷ
ൌ  ܽܲܯ	0,170

 according to ECCS with supposed imperfection w0=6 mm 

௨ଶ݌  ൌ
௣ಽು಺
ఊ

ൌ ଴,ଷସଷ

ସ/ଷ
ൌ  .ܽܲܯ	0,257

To decide which result is closer to the truth, the complex analysis of initial 
imperfections on the spherical cap is needed. That analysis is taken as a subject of future 
research.   

 

 
Fig. 12 Deformed shape - step 24 
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Fig. 13 Deformed shape - step 158 

 

 

Fig. 14 Deformed shape - step 419 
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Fig. 15 Loading curve for various cases of numerical analysis 
 

CONCLUSION 

The article is aimed at stability of the spherical cap with the hinged lower edge. It is 
shown that the critical pressure of the cap is broadly in line with the critical pressure of 
the spherical cap. Further, the limit pressure in elastic area may by approximately 

expressed in form pLEpCR/1.6. The influence o plasticity and initial imperfections on the 
stability of the real spherical cap can be finally computed, for example, on the basis of the 
European Recommendation [3]. The slightly conservative results are expected. The more 
precise influence of the initial imperfections on the stability of the spherical cap is a matter 
of further research. 
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Resumé 

STABILITA KLOUBOVĚ ULOŽENÉHO KULOVÉHO VRCHLÍKU ZATÍŽENÉHO VNĚJŠÍM 
TLAKEM  

Petr PAŠČENKO, Pavel ŠVANDA 

Tenkostěnný kulový vrchlík zatížený vnějším tlakem vykazuje obecně nelineární chování. 
U kloubově uloženého vrchlíku s neposuvným okrajem v radiálním směru není toto nelineární 
chování tak výrazné. Z lineární analýzy kritického zatížení plyne, že stabilitní únosnost kulového 
vrchlíku je prakticky shodná se stabilitní únosností kulové skořepiny. Z nelineární elastické analýzy 
dále vyplývá, že mezi kritickým tlakem a mezním tlakem platí přibližný vztah pCR/pLE=1,6. Na 
základě toho lze počítat mezní elastický vnější tlak ideálního vrchlíku pLE pomocí základního vztahu 
pro kritický vnější tlak kulové skořepiny pCRA, tzn. pLEpCR/1.6pCRA/1,6. Přepočet na mezní tlak 
reálného vrchlíku v pružně-plastickém oboru lze provést pomocí redukčního faktoru 0 a pomocí 
diagramu na obrázku 3. Hlubší analýza vlivu počátečních imperfekcí na stabilitní únosnost 
kulového vrchlíku je předmětem dalšího výzkumu. 

 

 

Summary 

STABILITY OF HINGED SPHERICAL CAP SUBJECTED TO EXTERNAL PRESSURE 

Petr PAŠČENKO, Pavel ŠVANDA 

The thin-walled spherical cap loaded by an external pressure generally performs a non-
linear behavior. This phenomenon is not as significant in case of the hinged cap with restricted 
movements in the radial direction. The linear analysis of the critical load shows that stability of the 
cylindrical cap is practically identical to stability of the cylindrical shell. In addition, the non-linear 
analysis further leads to the conclusion that the ratio between critical pressure and limit pressure 
might be expressed by formula pCR/pLE=1.6. Based on these facts, the limit elastic pressure pLE of 
an ideal cap can be derived from a critical external pressure pCRA of the spherical shell 
pLEpCR/1.6pCRA/1.6. Conversion of pLE to the limit pressure of a real spherical cap in elastic-plastic 
area pu might be performed by means of the procedure provided by ECCS [3]. The influence of 
initial imperfections on stability of the spherical cap is a subject of further research. 
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Zusammenfassung 

DIE STABILITÄT DER VON AUSSENDRUCK AUSGESETZTE DREHBARE KALOTTE  

Petr PAŠČENKO, Pavel ŠVANDA 

Die dünnwandige Kalotte durch einen Aussendruck ausgesetzt führt im Allgemeinen einem 
nichtlinearen Verhalten. Dieses Phänomen ist nicht als erheblich im Fall einen aufklappbaren 
Deckel mit eingeschränkten Bewegungsmöglichkeiten in radialer Richtung. Die lineare Analyse der 
kritischen Belastung zeigt, dass die Stabilität der zylindrischen Kappe ist praktisch identisch mit der 
Stabilität der zylindrischen Schale. Darüber hinaus ist die nicht-lineare Analyse führt weiter zu dem 
Schluss, dass das Verhältnis zwischen kritischen Druck und Druck zu begrenzen Formel 
ausgedrückt werden könnten pCR/pLE=1.6. Auf der Grundlage der Fakten ist die Obergrenze 
elastischen Druck pLE einer idealen Kappe von einem kritischen Druck pCRA der Kugelschale 
abgeleitet werden  pLEpCR/1.6pCRA/1.6. Umwandlung von pLE" bis an die Grenze Druck einer 
realen Kalotte in elastisch-plastischen Bereich pU könnte durch das Verfahren, nach ECCS 
vorgesehen durchgeführt werden [3]. Der Einfluss der ersten Unvollkommenheiten auf die Stabilität 
der Kalotte ist Gegenstand weiterer Forschung. 


