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Abstract: Multicore computational accelerators such as Graphics Processor Units 
(GPUs) became common for gaining high-performance computing on a larger scale. 
Programming GPUs requires detailed knowledge of the underlying architecture in 
order to get maximum performance. In this paper we present solution of vector 
distance calculation on NVIDIA’s parallel computing architecture CUDA (Common 
Unified Device Architecture), where we optimize the performance of a parallel 
algorithm and get significant speedup.
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1. Introduction

Current trends on high performance computing are moving towards the deployment 
of several cores on the same chip of modern processors in order to achieve substantial 
execution speedup through the extraction of the potential fine-grain parallelism of 
applications. At the forefront of this trend we find nowadays the modern Graphics 
Processor Units (GPUs), which due to their simplistic design are able to encompass 
hundreds of independent processing units on a single chip in contrast to their 
respective CPUs, which at the moment include only a few cores on the same chip.

CUDA-enabled [10] GPUs are SIMT (Single Instruction Multiple Threads) 
architectures and provide stream processing capabilities allowing the programmer to 
execute the parallel portion of the code on GPU devices. CUDA exposes three special 
programming abstractions: a hierarchy of thread groups, shared memories, and barrier 
synchronization.

Programmers use these abstractions by dividing the program into coarse-grain sub-
problems that can be executed independently in parallel. These sub-problems are 
further divided into finer-grain slices, which can also be solved cooperatively in 
parallel. This arrangement leverages one of the key benefits of threads: enabling them 
to cooperate with each other while solving individual sub-problems.

In recent years, a large amount of work has explored how to use GPUs for general 
purpose computing, sometimes known as “GPGPU” (General-Purpose Computation 
on GPU). Before the advent of general purpose languages for GPGPU, GPU 
implementations could only be achieved using existing 3D-rendering APIs: 
OpenGL [4] or DirectX [9]. The syntax, the need to pose problems in the context of 
polygon rasterization, and the limits imposed by pixel independence all made this 
approach cumbersome. Independently from GPU vendor efforts, several new 
languages or APIs were created to provide a general-purpose interface and abstract 
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away the necessary 3D API calls. Brook [1], Sh [8] and its commercial successor 
RapidMind, and Microsoft’s Accelerator [13] are notable examples.

Recognizing the value of GPUs for general-purpose computing, GPU vendors 
added driver and hardware support to use the highly parallel hardware of the GPU 
without the need for computation to proceed through the entire graphics pipeline 
(transforming vertices, rasterization, etc.) and without the need to use 3D APIs at all. 
NVIDIA’s solution is CUDA language, an extension to C. AMD’s solution was the 
combination of a low-level interface, the Compute Abstraction Layer (CAL) and 
extensions to Brook.

A wide variety of applications have achieved dramatic speedups with GPGPU 
implementations. A framework for solving linear algebra problems on graphics 
processors is presented by Krüger et al. [6]. Harris et al. present a cloud dynamics 
simulation using partial differential equations [3], and molecular dynamics simulations 
(e.g. [11]) have also shown impressive speedups. Some important database operations 
have also been implemented on the GPU by using pixel engines [2], and a variety of 
other applications, such as sequence alignment [12] have been successfully 
implemented on GPUs.

The rest of paper is organized as follows: in chapter 2 we describe CUDA 
architecture and programming model, and principle of vector distance calculation. In 
chapter 3 we present the possibility of accelerating vector calculations using GPU. 
Three different approaches are presented and the obtained results are compared. We 
demonstrate step-by-step optimization of the sequential algorithm applying the 
knowledge of modern GPU architecture. In conclusion the gained results are
summarized. 

2. Statement of a problem

2.1 CUDA architecture and programming model 

Computing system, which uses CUDA consists of a host that is a traditional CPU 
and one or more devices that are massively parallel processors equipped with a large 
number of arithmetic execution units. In modern software applications, there are often 
program sections that exhibit rich amount of data parallelism, a property where many 
arithmetic operations can be safely performed on program data structures in 
a simultaneous manner. The CUDA devices accelerate the execution of these 
applications by harvesting a large amount of data parallelism. 

CUDA programming model is shown at Fig.1. Code executed by host (CPU) is 
written in ANSI C and after compiling runs as standard process. The device code is 
written using ANSI C extended with keywords for labeling data-parallel functions, 
called kernels, and their associated data structures.
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Fig.1: CUDA Programming model

Source: [5]

2.2 Vector Distance Calculation

One of the problems solved in linear algebra packages is the problem of vector 
distance calculation. Let us consider two matrices BA, of dimensions 

NKNM  , respectively, representing a list of N -dimensional vectors. We need to 

calculate distances of the vectors in the matrix A from vectors in the matrix B . 
Resulting matrix C is of dimension KM  and its element jic , represents the distance 

of vector in row i of matrix A from vector in row j of matrix B , for Mi ,,2,1  and 

Kj ,,2,1  . To calculate all elements of resulting matrix C , sequential algorithm 

(Fig. 2) can be applied. 

for (i = 0; i < M; i++) {
  for (j = 0; j < K; j++) {
    sum := 0
    for (k = 0; k < N; k++)
      sum += (A[i,k] – B[j,k]) * (A[i,k] – B[j,k]);
    C[i,j] = sum;
  }
}

Fig. 2: Sequential algorithm for calculation the distances among vectors

Source: (Authors)

It is quite obvious, that particular iterations are independent. Such kind of problem 
is suitable for parallel processing. To speedup the calculation of matrix C , its elements 
can be determined in parallel. For matrices which fit into main memory of computer, 
the shared memory parallel architecture is suitable. If such system contains 
p processors, we can expect linear speedup of up to p times.
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In case when matrices do not fit into main memory, some distributed memory 
architecture (e.g. MPI, grid or cloud technology) can be considered. In such case the 
problem would be divided and distributed among p processors, each processing only 

part of the problem. In the end the partial results would be combined into final result. 
This approach can suffer from overhead needed to distribute data among processors 
and collecting results.

3. Problem solving

In this chapter we present the possibility of accelerating vector calculations using 
Graphical Processing Unit (GPU). Three different approaches will be introduced and 
the obtained results will be compared. We will demonstrate step-by-step optimization 
of the sequential algorithm (Fig. 2) applying the knowledge of modern GPU 
architecture.

Basic paradigm of using GPU for calculation is to divide the solved problem into 
smaller parts. Each part will then be solved using a thread executed on GPU. Before 
executing calculation of GPU, necessary data must be transferred from main memory 
of CPU to main memory of GPU. This introduces some overhead to the calculation.

To obtain some baseline for comparison of results, we have performed the distance 
calculations on square matrices (i.e. KNM  ) of different sizes applying sequential 
algorithm. Parallel calculation on multi-core CPU using OpenMP was also carried on. 
Experiments were performed on computer equipped with two quad-core processors 
Intel Xeon E5530 2.40GHz. Calculation times for different problem size are 
summarized in Tab. 1, column denoted CPU (sequential algorithm) and column 
denoted OpenMP (performed on all eight cores). GPU calculations were performed on 
the same computer, using NVIDIA Tesla C1060 card equipped with 4GB of main 
memory.

3.1 Naive approach

As was mentioned before, to use the GPU for calculation, one has to divide the 
solved problem into parts and then assign the parts to the particular threads. In many 
tutorials on CUDA, authors encourage to create as many threads as possible, and leave 
the scheduling of them to GPU. Applying this approach to the problem of vector 
distance calculation leads us to a simple modification of sequential algorithm. We 
create KM  threads, each thread calculating exactly one element jic , of matrix C . 

The code of each thread will perform only the inner-most loop of the sequential 
algorithm to calculate distance of two vectors. The modified code is on the Fig. 3. This 
implementation uses exclusively the main GPU memory.

Results obtained using this algorithm are summarized in Tab. 1, column denoted 
GPU1. As can be seen, the speedup is of maximum factor 3, which is not satisfactory. 
This algorithm performance is poor because of the slow access to the main memory of 
GPU.
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int i, tmp;
int vysl = 0;

int row = blockIdx.y * blockDim.y +th hreadIdx.y;
int col = blockIdx.x * blockDim.x + threadIdx.x;

for (i = 0; i < N; ++i) {
  tmp = (A[row][i] - B[col][i]);
  vysl += tmp * tmp;
}
C[row][col] = vysl;

Fig. 3: Code executed by threads on GPU - version 1

Source: (Authors)

3.2 Local memory usage

The detailed knowledge of the GPU architecture allowed us to improve the 
performance of the algorithm by using faster shared memory. Threads on GPU are 
organized into blocks. Each block contains memory for private data of threads and 
local shared memory. This is used to exchange data among threads. 

NVIDIA GPUs contain shared memory, which is significantly faster than main 
memory, but is limited in size. Each block of threads has 8KB of shared memory 
available.

To use shared memory, the algorithm has to be modified. It consists of two 
different phases. During first phase data are transferred from main memory of GPU 
into shared memory of a block. In second phase these local data are used to calculate 
partial results. Modified algorithm is presented in Fig. 4. The principle is explained on 
Fig 5. Resulting matrix C is divided into square blocks of dimension BLOCK_SIZE. 
Each block is processed by BLOCK_SIZE2 threads, executed in parallel. Let us 
consider block of matrix C marked by gray color. To calculate elements in this block, 
we have to access the stripes of matrices BA, also marked by gray color. These stripes 

are divided into blocks of dimension BLOCK_SIZE. In the first step of the algorithm, 
first blocks of matrices BA, are transferred into shared memory and used to perform 

calculations. Then second blocks of both matrices are transferred and used for 
calculations. This process continues until all blocks are processed and final results are 
obtained.

Parameter BLOCK_SIZE is essential for optimization of the algorithm 
performance. Maximum number of threads executed in one block is limited by 
properties of particular GPU. Typically, for recent NVIDIA GPU families it is usually 
equal to 512. This determines maximum value of BLOCK_SIZE to be not larger than 
22.
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int m;
int i, tmp, vysl = 0;

int row = blockIdx.y * blockDim.y + threadIdx.y;
int col = blockIdx.x * blockDim.x + threadIdx.y;

__shared__ int sA[BLOCK_SIZE][BLOCK_SIZE];
__shared__ int sB[BLOCK_SIZE][BLOCK_SIZE];

for(m = 0; m < N / BLOCK_SIZE; m++) {
  sA[threadIdx.y][threadIdx.x] = A[row][m * BLOCK_SIZE + threadIdx.x];
  sB[threadIdx.y][threadIdx.x] =B[col][m * BLOCK_SIZE + threadIdx.x];
  __syncthreads();
  for (i = 0; i < BLOCK_SIZE; ++i) {
    tmp = (sA[threadIdx.y][i] - sB[threadIdx.x][i]);
    vysl += tmp * tmp;
  }
  __syncthreads();
}
C[row][col] = vysl;

Fig. 4: Code executed by threads on GPU - version 2

Source: (Authors)

Second constraint which limits the possible values of BLOCK_SIZE is warp size. 
Warp is the set of 32 threads which is executed simultaneously and represents a unit 
for threads planning. To have all warps full, number of threads in a block must be an 
integer multiple of warp size. 

For our experiments the value of parameter BLOCK_SIZE was set to 16. This 
gives us 256 threads in block and eight full warps in each block. 

In previous algorithm the execution of threads was completely independent. This 
does not hold in this algorithm. It is obvious that threads in a block depend on each 
other. Second phase of the algorithm cannot be performed before all the threads have 
transferred relevant part of data into shared memory. To guarantee this, some kind of 
synchronization among threads is required. To ensure that all the threads have 
transferred their respective data into shared memory, __syncthreads() call is used. It 
represents a barrier. The calculation continues after barrier only when all the threads 
have reached it.

Results obtained by this algorithm are summarized in the column GPU2 in Tab. 1. 
It can be seen, that speedup of the factor 30 was achieved, which is better comparing 
to the previous algorithm.
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Fig 5 Principle of modified algorithm

Source: (Authors)

3.3 Minimizing bank conflicts

Third step in optimizing the performance of the parallel algorithm is to avoid bank 
conflicts. Shared memory is organized into banks. If two or more threads executed in 
the same warp access the same shared memory bank, conflict occurs. This conflict is 
solved by serializing the access to memory, which decreases the performance [10].

Tesla C1060 organizes shared memory into 16 banks. Brief inspection of the 
parallel code (Fig. 6) reveals that bank conflicts can occur. To avoid them, we can 
scatter data of the shared memory matrices among memory banks (Fig. 6).

Applying this modification, we were able to improve the performance of the 
algorithm. Obtained results are summarized in column GPU3 in Tab. 1. It can be seen, 
that speedup of a factor 90-100 was achieved.

Tab. 1: Summary of calculation times for different algorithms and problem size

Matrix 
dimension 
(M, K, N)

Execution time [ms]

CPU OpenMP GPU1 GPU2 GPU3

128 7.6339 4.7381 2.5 0.25 0.12

256 48.594 12.1866 29.47 1.27 0.51

512 324.39 54.868 350 9.15 4.3

1024 2551.6 372.86 1245 70 27

2048 21096 2819 6950 563 206

4096 168920 20580 53557 4505 1647

Source: (Authors)
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Fig. 6: Memory banks of shared memory

Source: (Authors)

4. Conclusion

In this contribution the possibility of vector calculations acceleration using GPU 
was presented. Recently the CUDA technology attracts the attention of researchers 
involved in numerical calculations. Massive parallelism achievable by this technology 
is used to speedup time-consuming calculations. 

One of the areas, where application of massively parallel processor is applicable is 
the vector and matrix manipulation. This paper deals with simple vector calculation. 
First the serial algorithm run on CPU was presented. Next, the parallel version suitable 
to run on GPU was presented. Obtained results indicate, that naive transformation of 
the serial algorithm into parallel one does not lead to significant performance 
improvement. To achieve optimal performance, detailed knowledge of the underlying 
parallel technology is necessary. Vector distance calculation is essential in such areas 
as signal recognition, data clustering and data mining. Acceleration of the vector 
distance calculation can significantly improve the performance of these algorithms.

To motivate other scientists we have presented step-by-step procedure of 
optimization of the parallel algorithm. Final version of the parallel algorithm is 
approximately 90 – 100 times faster than serial one.
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