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THE SIERPIŃSKI TRIANGLE AND ITS COORDINATE FUNCTIONS 

Libor Koudela  
University of Pardubice, Faculty of Economics and Administration, Department of 
Mathematics  

Abstract: The famous fractal set called the Sierpiński triangle was introduced as a 
plane curve every point of which is the point of ramification. Since it satisfies the 
Jordan definition of a curve, it can be represented by two continuous coordinate 
functions of a parameter. The coordinate functions are constructed by iterations of a 
system of linear transformations in the complex plane. 
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1. Introduction 
Many examples of sets with strange and counter-intuitive properties appeared 

during the development of point set theory in the first decades of the 20th century. The 
general definition of a curve had been missing until 1920's. There were two widely 
accepted definitions of a curve: the Jordan definition which describes a curve 
parametrically and Zoretti's definition of so called Cantorian line, i.e. a continuum 
which is nowhere dense in the plane. However, both definitions allowed sets that are 
far from intuitive understanding of the concept of a curve. The classes of Jordan curves 
and Cantorian lines are not identical; there are Cantorian lines that do not satisfy 
Jordan's definition and vice versa. Even the sets that can be called lines according to 
both definitions may have very peculiar properties.  

In the note [2] presented to the Academy of Sciences in Paris in 1915, Polish 
mathematician Wacław Sierpiński described a plane set which satisfies both 
definitions whose every point is the point of ramification. Thus begins the history of 
the celebrated set which is now known as the Sierpiński triangle or the Sierpinski 
gasket. Its complex structure contrasts with apparent simplicity of its construction. It is 
constructed from an equilateral triangle T by a sequence of deletion operations. The 
initial triangle is divided into four smaller equilateral triangles and the inner points of 
the middle triangle U are removed (Fig. 1). The set F1 thus consists of three triangles 
T0, T1, T2. The same operation is repeated with each of them. The set F2 is the union 
of nine equilateral triangles T00,..., T22. The process continues ad infinitum. The 
Sierpiński triangle is the set F which consists of all points that all sets Fk, k ∈ N have 
in common. 
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Fig. 1. Construction of the Sierpiński triangle. 

2. Approximating polygons 
The set F is nowhere dense in the plane and hence it is a Cantorian line. It can be 

shown that F is also the Jordan curve. In the extended Polish version [3] of the above 
mentioned note Sierpiński shows how to represent F in terms of approximating 
polygons. If we place the initial triangle T into the complex plane so that its left corner 
coincides with the origin and the real axis points in the direction of its base of unit 
length, then the polygonal lines are constructed as follows. Let L1 be a polygonal line 
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1 =z  (Fig. 2). It is 
an initial line which Sagan [1, p. 23] calls leitmotiv. The line L2 is obtained from L1 
by replacing its sides with three copies of itself placed in the triangles T01, T02 and 
T03 (Fig. 1) so that the resulting line is connected. Sierpiński does not use complex 
representations of points in the plane, but his construction is essentially the same. 
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Fig. 2. Approximating polygons for the Sierpiński triangle. 
 

The polygonal line Ln is obtained recursively from the leitmotiv and passes through 
13 +n  points 

)0(
nz , 

)1(
nz ,..., 

)3( n

nz . It can be expressed by equations 

 
]1,0[

)(
)(

∈




=
=

t
ty
tx

n

n

ψ
ϕ

     (1) 
so that the values 

 
1,

3
13,,

3
2,

3
1,0 n

n

nnnt
−

= K
     (2) 

correspond with 
)0(

nz , 
)1(

nz ,..., 
)3( n

nz  and the functions )(tx nϕ= , )(ty nψ=  are linear in 

every interval 






 +

nn

kk
3

1,
3 , 13,,0 −= nk K . Sierpiński demonstrates that the sequence of 

polygons converges uniformly and the limiting set is the set F, which is therefore a 
continuous image of the unit interval, i.e. the Jordan curve. 
 

3. The Coordinate Functions 
The set F consists of three small copies of itself and thus it can be taken as an 

invariant set of an iterated function system (IFS) composed of three contraction maps 
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where 3
π

ω
i

e= . The above construction can be expressed by means of transformations 
S0, S1, S2. If we start again with the initial line L1, then 

)()()( 1211102 LSLSLSL ∪∪= and generally for every positive integer n we have 
)()()( 2101 nnnn LSLSLSL ∪∪=+ .    (4) 

To obtain the coordinate functions (1) for the polygonal line Ln we express the 
values (2) of the parameter t as 
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where the numerators take the values 0,1 or 2, or, which is the same, as the number 
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Fig. 3. Approximations of graphs of coordinate functions. 

 
 

The polygon Ln thus can be taken as the image of the unit interval 
]1,0[),( ∈= ttfz n ,       (6) 
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where the vertices 
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





 +

nn

kk
3

1,
3 , 

.13,,0 −= nk K  The real and imaginary parts of (6) are the functions )(tx nϕ= , 
)(ty nψ= , respectively. Their graphs for 5=n  are depicted on Fig. 3. Both graphs give 

a good visualisation of the shape of coordinate functions of the Sierpiński triangle 
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 for ]1,0[∈t . The graphs show some form of 
self-similarity of φ(t) and ψ(t) (although not strict) and fine structure and can be 
therefore taken as examples of fractal curves. 

4. Conclusion 
Coordinate functions of Peano, Osgood and other special types of curves were 

studied long before the emergence of the fractal theory (see for example [1, p. 51 ff.]). 
However, their significance grew considerably as they served as examples of self-
affine and other fractal curves. Functions whose graphs are fractal curves are useful to 
study various phenomena, including, for example, behaviour of stock markets. It has 
been observed that the graphs of price variations may contain patterns that are scale-
independent and can be thus regarded as statistically self-similar fractal curves. Models 
based on the fractal theory have been used to describe the behaviour of financial 
markets and to explain the existence of extreme fluctuations of prices. The Sierpiński 
triangle is one of the best known fractals and found its way even into areas outside 
mathematics.  
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