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Jaroslay Mencik
University of Pardubice, Czech Republic

ABSTRACT

Nanoindentation provides information about mechanical properties from indenter
load and displacement, measured during loading and unloading. This chapter brings an
overview of important models and formulae used in the evaluation of these
measurements. The main topics are: approximation of load-depth curves, determination
of contact stiffness, depth and area, hardness and elastic modulus, obtaining of yield
strength and stress-strain curves from indentation data. information from the work of
indentation, models for the response of coated or surface-treated components, models for
the response of viscoelastic materials and procedures for obtaining their parameters from
tests under monotonic and harmonic load, as well as for the determination of viscosity in
creep tests.

1. INTRODUCTION

Nanoindentation, or — generally — mstrumented indentation or depth-sensing indentation.
provides information about mechanical properties of tested specimens from indenter load
and displacement /# measured during loading and unloading. All quantities, such as contact
depth and area. hardness, elastic modulus, yield strength or parameters of viscoelastic
response, are calculated from the F-A data or F-h-t history using suitable models. Thus, the
quality of these models is very important for the quality and accuracy of results. A well-
known example 1s the unprovement i the determination of contact stiffness by applying a
power-law to the unloading curve, as proposed by Oliver and Pharr (1992), instead of the
previously used linear fit.

This chapter gives an overview of important models used i depth-sensing indentation.
Besides the basic formulae. also less known approaches and characteristic quantities are
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presented. The main topics are: approxunation of load-depth curves, determination of contact
stiffness, depth and area, hardness and elastic modulus, work of indentation, yield strength
and stress-strain curves, models for the response of coated or surface-treated components, and
models for viscoelastic materials. The response of these materials, whose testing by
nanoidentation becomes more and more popular, is discussed here for monotonic as well as
harmonic load. The chapter ends with models for creep and the determination of viscosity.

At first, some general comments must be made. The models should not be more complex
than necessary — with respect to the purpose of measurement. If one needs to determine
certain material constant, e.g. elastic modulus, which will serve as a standard, the model
should be as accurate as possible. Often, however, the main aim of measurement is just to
compare various materials or conditions of surface treatment, or to assess the influence of an
external factor, such as temperature or magnetic field. In such cases, simpler models may be
used. The choice of suitable characteristics can reduce the number of variables., which must
be known with high accuracy. Very useful are normalized or non-dimensional quantities.
They are more general than "absolute” ones and make possible comparison of tests done
under different conditions. For example, the energy, spent in indentation, corresponds to a
particular load. However, the indentation energy per unit volume of imprint 1s the same for all
indents created by the same type of pointed indenter in the same homogeneous material.
Another example: indentation response of a coated speciinen depends on the properties of the
coating and substrate, but also on the depth of penetration. If, however, this depth is related to
the coating thickness, it is posible to combine the results obtained with coatings of various
thicknesses.

The use of dimensionless quantities has one more advantage. According to the theory of
simularity, the number of non-dimensional quantities for expressing a physical law is usually
smaller than the number of dimensional quantities. This can make the empirical formulae
simpler and reduce the necessary number of experiments, or even allow the combination of
results from different kinds of tests. More about diumensional analysis and similarity can be
found in books, e.g. Barenblatt (1996) or Szirtes (1997), or in a paper and a comprehensive
review by Cheng and Cheng (1999, 2004), devoted especially to indentation measurements.
Also 1 this chapter non-dimensional quantites will be used wherever suitable.

In the following sections, models and formulae used in the evaluation of nanoindentation
measurements will be given. As for the principles of depth-sensing indentation. the reader is
referred to the literature, e.g. Doemer and Nix (1986). Oliver and Phair (1992 and 2004). or a
monograph by Fischer-Cripps (2002). Also the international standard ISO 14577 can be
mentioned here. Other works will be quoted in the individual sections. As the number of
papers, published on the topic is vast, the author apologizes for using only some of them, the
main reason being the effort to keep this overview brief.

2. LOAD-DISPLACEMENT CURVES

Loading curve for indentation into homogeneous elastic-plastic specimens (Figure 1) can
be expressed as

F=kh™; (1)
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F is indenter load, / is indenter displacement (depth of penetration), and 4, m are constants.
For homogeneous elastic materials and a cylindrical punch, m = 1. For spherical indenters and
small penetrations, m = 1.5 (also for paraboloids), while for pointed indenters (Vickers or
Berkovich (3-sided) pyramid or a cone), m = 2. As the real ,,pointed” indenters have usually
small blunting at the tip, the measured displacement / is sometimes replaced by the effective
depth of penetration,

heg=h+ Z; (2)

with the correction term & obtained by fitting the F(4) curve.

hres hc h

Figure 1. Loading and unloading curves of an indentation test — a schematic.

The approximation (1) 1s suitable for elastic-plastic deformations. (Its relationship to the
elastic modulus and hardness is shown in Section 5.) However, in materials with strain
hardening, in specimens with treated surface (or even with a thin oxidic layer on the surface),
or for indenters whose shape deviates from the ideal one, the exponent m can differ from the
above values, and must be found by fitting the measured data. For inhomogeneous specimens
or with time-dependent response. or if discontinuous processes occur (e.g. cracking), the
loading curve can have a more complicated shape.

Unloading curve 1s usually approximated as

F =k, (h=h,)" . (3)

ky, n and the residual depth /s of the imprint after unloading are constants. obtained by
regression fitting the unloading data. The unloading is mostly elastic, and the curve (3) holds
also for reloading, which is elastic. Thus, the curve (3) should correspond to the curve (1) for
elastic loading, with 7 replaced by (7 — lie): the exponents m both formulae should be
identical, m = n. While this is true for spherical indenter or cylindrical punch under low loads,
significant differences appear for pointed indenters (e.g. Berkovich), with » ranging usually
between 1.2 and 1.6 (instead of 2.0). As shown by Phair and Bolshakov (2002) and Oliver
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and Pharr (2004), the reason are plastic deformations induced in the specimmen during loading.
As a consequence, the unloaded imprint 1s not exactly pyramidal, but somewhat convex.
During reloading, such surface comes into contact with the indenter gradually, similarly to the
contact of a spherical indenter with a plane, and thus with lower exponent 7.

The actual unloading curve sometimes deviates from the approximation (3), especially at
its low-load part. A role can be played by adhesion and friction between the indenter and
specimen, by creep, after-effects or irreversible processes during unloading, or by stress-
induced phase transformations, leading to jumps i the F77) curve. For the same reasons, the
calculated residual depth . can differ from the actual value.

Curves (1) and (3) are expressed in the coordinate systein force — displacement. It is also
possible to plot them in nondimensional coordinates, using normalized quantities

Fnorm = F/Flnax > hnorm = h/hmax ., Or hnoml = (h - hres)"f(hmax - hres) » (4)

varying between 0 and 1. The shape of Fjomi—Fmom Curves is similar to F— 4. It is also possible
to express nondimensional depth as (# — hypes)'hpa. Normalized quantities enable the
comparison of response for various loads or materials.

3. CONTACT STIFFNESS

Two kinds of contact stiffness are used in depth-sensing indentation tests: unloading and
harmonic.
Unloading contact stiffness S 1s defined as

dr
= — 5
dh )

and it 1s determined for the maximum load (Figure 1) by fitting the upper part of the
monotonic unloading curve by Eq.(3) and making the derivative. Unloading contact stiffness
1s necessary for the determmination of contact depth and elastic modulus. The determination of
S 1n elastic-plastic materials is straightforward. With respect to Eq. (3), it can be expressed
from the parameters of unloading curve as

S=nF/(h—hes) . (6)

In viscoelastic materials, a correction for delayed deforming must usually be made (cf.
Section 9).

Harmonic contact stiffness Sy can be measured by nanomdentation devices, wlich
superimpose a small harmomic signal (amplitude several nm or a fraction of a nullinewton) on
the monotonically mcreasing basic load (so-called Continuous Stiffness Measurement mode,
CSM, or Dynanuc Mechanical Analysis, DMA). Basically, Sy is defined as the ratio of the
load and depth amplitudes of the small oscillations,
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s, = Lo (7)

g

subscript f denotes the excitation frequency. However, in viscoelastic materials a lag appears
between the harnonic stress and strain, and this can also be considered in the data processing
(see Section 10).

In the CSM (or DMA) mode, S, can be measured during the whole loading process
(Figure 2). Harmonic contact stiffness is suitable for studying the depth distribution of
properties and for materials, whose response depends on time, for example polymers.

In elastic-plastic materials, Sy has the same value as the unloading stiffness S, while in
viscoelastic materials both quantities can differ, depending on the material and excitation
frequency.

200000
[ PMMA. Berkovich indenter,

150000 F CSM mode, f = 75 Hz
3
S 100000 1
w L

50000 |-

0 1 I 1 1 1

0 1000 2000 3000 4000 5000 6000
h (nm)

Figure 2. Harmonic contact stiffness S as a function of indenter penetration h into PMMA (after Mencik
etal.. 2005).

With respect to Eq. (1). the depth course of contact stiffness dF/d# in homogeneous
specimens can be approximated by a simple function of type

Sthy=m k™" . (8)

For example. the contact stiffness for a pointed mndenter (1 = 2) 1s directly proportional to
depth.

This can be utilized in processing the data obtained in the CSM (or DMA) mode. The
course of measured harmonic contact stiffness is usually undulated (Figure 2), and so also are
all quantities calculated from it. e.g. harmonic elastic modulus. Fitting S{/) by Eq. (8) makes
it smooth. which gives a smoother course of the derived quantities.
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4. CONTACT DEPTH AND AREA

In depth-sensing indentation into elastic-plastic materials, the contact depth /. (Figure 1)
1s determined from the total depth / according to the general formula

F
h, = ¢h — ¢ 5 (9)

where F is the maximum load, and S 1s the contact stiffness at the beginning of unloading.

In the mostly used approach, proposed by Oliver and Pharr (1992), ¢; = 1 and ¢» = 0.75.
According to some authors, these constants work well for stiffer materials, but give
underestimated values for soft materials with substantial plastic flow and pile-up effects. For
them, the following values were recommended (Bec et al., 1996, Fujisawa and Swain, 2006):
c; =1.2 and ¢> = 1. The contact depth can be normalized as /1,54, = Ac/h.

The contact area A4 is calculated from the contact depth 4. as

A=f(hc). (10)

For an ideal pointed indenter (Figure 3a),

A=rxa=kh?, (1D)
where a is the contact radius of the equivalent cone, related to the contact depth as ¢ = htana:
a is the semniapical tip angle. For Vickers or Berkovich indenter, « = 70.3° and k¥ = 24.5. For
spherical indenters (Figure 3b) and small depths of penetration,

Ad=rna"=n1Qrhe—hd); (12)

r 1s the tip radius. For small contact depths, 4 = 27 7h.
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Figure 3. Contact geometry: a — pointed indenter. b — spherical indenter.

Often, the tip shape is not ideal, and mdenters must be calibrated by tests on real
materials. An often used approximation for pointed indenters 1s:

A =khe + bt + CGh 2+ Ot + (13)
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5. HARDNESS AND ELASTIC MODULUS

In depth-sensing indentation tests, hardness is defined as the mean contact pressure under
the loaded indenter,

H = pm = (1 4)

Z -
F 1s the load and A4 is contact area. There are also other definitions of indentation hardness;
more about basic concepts, relation of hardness to plastic and elastic properties, etc.. can be
found 1n the classic book by Tabor (1951) and papers by Sakai (1993, 1999). Small-size

effects are treated in Wei and Hutchinson (2003).
Elastic modulus is deternnined from the formula

Nroo S
E = — = .
’ 28 a4 (19)

[ 1s the correction factor for the indenter shape; f=1 for indenters with circular cross-section
(cylindrical punch, sphere or a cone), and 5= 1.034 for Berkovich indenter (Oliver and Pharr,
1992). Comunonly, unloading stiffness (5) is used for S. However, if dynamic properties are
studied using the CSM (DMA) mode, harmonic contact stiffness (7) is inserted into (15),
giving so-called harmonic or complex modulus (for details, see Herbert et al. (2008) and
Section 10). Formula (15) is based on Sneddon’s analysis (1965) for penetration of various
indenters into elastic half-space. £, means reduced (composite) modulus, from which the
specimen modulus E is calculated using the formula

- + '1' . (16)

expressing that the total contact compliance consists of the compliance of the specimen (no
subscript) and the indenter (subscript 7); vis Poisson's ratio.

Combination of Eqs. (14) and (15) yields a very simple check of material homogeneity. If
E and H do not change with depth. then also the ratio F(2)/S°(h) must be constant.

Elastic and plastic properties are, together with the indenter shape. also decisive for the
shape of loading cwrve. The penetration of a spherical indenter into elastic materials 1s
described by Eq. (1) with m = 3/2 and the constant

ki=(4/3)E, 7, (17)

following from the theory for elastic contact of spheres: cf. Johnson (1985): r 1s the radius of
indenter tip, and £, is the reduced modulus defined by Eq. (16). If the deformations in a test
are only elastic (i.e. if the loading and unloading curves overlap), Equation (1) with the
constant & from Eq. (17) can be used directly for obtaming the reduced modulus from the
curve F(h). otherwise Eq. (15) must be used. Pomted mndenters usually cause also plastic
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deformations, so that the loading curve (1) depends on the elastic modulus and hardness.
Hainsworth et al. (1996) have proposed the following relationship:

b = EoJE/H +w HJE " (18)

with constants @ and ‘¥'. For Berkovich or Vickers indenter with the tip semiangle « = 70.3°,
Malzbender et al. (2000) have derived the values @ = 0.202 and ¥ = 0.638. Formula (18)
follows from the relationship F = k;#* with the total depth / expressed as a sum of the contact
depth /. and elastic displacement 4 of the surface at the perimeter of the contact, i = h. + hs.
According to Sneddon (1965), i = ¢ F/S, where € = 2(7— 2)/7=0.72 for a conical indenter.
Contact depth is related to the load and hardness via Eq. (14) with 4 = 24.5 4.*. Combination
of these formulae with (14) and (15) allow one to express the contact stiffness S, and then 74,
he, h and k; as a function of F, E, and H. On this topic, see also Oliver (2001) and Pharr et al.
(2009).

6. WORK OF INDENTATION

Useful information can be gained from energies involved in indentation processes.
Mechanical work is proportional to the area below the load—displacement curve (Figure 1).
The total work of indentation W}, (area under the curve 0ABCO) consists of the plastic
(unrecoverable) energy W), (area 0ACO) and elastic work W, released during unloading (area
CABO):

VVfof = Wpl + Wel' (19)

These energies can be obtained by nunerical integration of the measured F(/) values, or
— approximately — by analytical integration of the loading and unloading curves (1) and (3):

h h
|
w = |F(hdh ~ |k h"dh = Fh 2
tot '(I; ( ) '(ll ) -1 > ( 0)

h 1

W, ~ jk (h—h,,)' dh = F(h-h,) @1
h.res nt

The plastic work 1s calculated as

Wy = W — Wy (22
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The F(h) diagram can also be used to extract the energies related to special phenomena
during the indentation, like formation of cracks, delamination of a coating, or load-induced
phase transformations.

The knowledge of total work also makes possible the determination of constants in the
loading curve (1) even without the regression fitting:

m:}ih—l: k,:%_ (23)
WYOT h

The unloading curve, however, depends also on the residual depth of penetration, /.
and its constants must be obtained by regression fitting of the measured data. Here, one must
keep m mind that the curves (1) and (3) are approximations only, which characterize the
“average” course of F(/) at the beginning of unloading, and later can deviate from the actual
shape.

The energies Wy, Wy and W correspond to a particular test, with particular load and
depth of penetration. More general information is obtained by normalizing them. For
example, it is possible to define elasticity index ¢, and plasticity index ey, as the ratio of the
returned (el) or dissipated (pl) energy to the total work of indentation:

w
@ = —»rL = 1 - @y . (24)

rot tot

The work of indentation can be related to the volume of residual impression,

Woor

res

Ves can be calculated from the residual depth and contact area (obtained from hardness as 4 =
F/H). The simplest situation is for pointed indenters, where Ve = Ahe/3. For them and for
ideally plastic materials, /.. = i and the work per unit indentation volume corresponds to
hardness. w, = H.

The energies in indentation processes are also related to depths. Comparing the curves for
loading (1) and unloading (3). Menéik and Swain (1994) have introduced the parameter

g - Mes  _ 1 _ m+1 W, ’ (26)

h n+1 W

rot

which can be used to characterize the permanent damage caused in various materials by
indentation. Ni et al. (2004) used finite element modelling and derived the following
relationship for indentation with a spherical indenter;

9 = hre: _ VK‘O! - IT'{ . (27)

h 7,

tor
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Since the exponents m and » for the loading and unloading curves in spherical indentation are
approximately the same, it is obvious that Eq. (27) 1s a special case of a more universal
relationship (26).

As the load-unload curves are self-sumilar for a pointed indenter and homogeneous
material, @, @y, w; and sdo not depend on the load and can be used as material
characteristics, for example in theoretical study of indentation processes or for prediction of
damage by umpact. More ideas about energies in indentation processes, including their
relationship to hardness, elastic modulus, plasticity and other properties, can be found, e.g., m
Sakai (1993, 1999), Ni et al. (2004). Malzbender (2005), Tan (2006), and Chen and Bull
(2009).

7. YIELD STRENGTH AND STRESS—STRAIN CURVES

An 1mportant material characteristic is hardness H. However, it is no basic material
property. A more general quantity is the yield stress Y. Even better is the ,,0- &° diagram,
saying how the yield stress develops with strain. Numerous authors have dealt with the
determination of yield stress and stress-strain curves from indentation. Tabor (1951) and
Johnson (1970) were among the first, followed by Menéik and Swain (1994), Yu and
Blanchard (1996), Mesarovic and Fleck (1999), Herbert et al. (2001, 2006), Ogasawara et al.
(2005). just to name some of them. Stress-strain curves of polymeric materials were treated,
e.g., by Hochstetter et al. (2003). In addition to yield strength, some papers also present
procedures for the determination of strain-hardening exponent, for example Field and Swain
(1993), Kucharski and Mroz (2001), Ma et al. (2003), Cao and Lu (2004). and Gao (2006).
However, new aterials, such as shape-memory alloys, can exhibit even more complicated
response. In this section. only a simple method for the construction of o— ¢ curves, based on
Johnson's approach (1970, 1985), will be described (Men¢ik, 2006).

The stress field under any indenter is inhomogeneous, and must be characterized by some
representative stress and strain. o, and &.,. The mean contact pressure py, 1s very suitable for
Orep. While the expression for representative strain will depend also on the indenter shape.

The distribution of stresses under a pointed indenter (Figure 3a) is self-sunilar, and only
one value of py, 1s obtained for a homogeneous material, regardless the indenter depth. The
representative strain can be expressed as &ep = & tang, where & 1s a constant and f1s the angle
between the specimen surface and the indenter (8= 90° — &. where « is the semiapical angle;
see Figure 3a). Tabor (1951) has recommended & = 0.2, based on the comparison of
indentation and tensile experiments. For Berkovich or Vickers indenters, f=19.7°, so that the
measured hardness and yield stress ¥ pertain to a rather lugh characteristic strain, gep = 7%.

Under a spherical indenter (Figure 3b). the mean contact pressure and strains increase
with the depth of indenter penetration. and can be used to construct the stress—strain curves.
The representative strain is usually expressed as the ratio of contact radius ¢ and indenter
radius 1. &e, = klair), where k1s a constant (often. & = 0.2 1s assumed). For small penetrations,
the deformations are elastic. The maximun shear stress acts below the surface, and plastic
deformations appear here if the mean contact pressure attains py, = 1.1Y. As long as the
plastically deformed zone is small and swrounded by elastically deformed material, the
“load-displacement” curve is the same as in elastic state. With increasing load, the plastic
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region grows and the £~/ curve departs gradually from the elastic course. Since some instant,
plastic deforming spreads up to the free surface around the indenter (fully developed plastic
tlow).

The stresses beneath indenter are tri-axial. If the stress-strain curve, based on mdentation
tests, should resemble the comimon ¢ — & diagram for uniaxial loading, it must be constructed
in coordinates owq— &ep. The equivalent stress ozq can be calculated from py, as

O-eq = pm/q)(grep’Ev Y, V) ; (28)

the function © depends on the degree of deforming (&.p), elastic modulus £, basic value of
yield strength Y and Poisson’s ratio v. Equation (28) 1s generalization of the well-known
relationship between hardness H (= py,) and uniaxial yield stress Y in soft metals, # = CY,
where the constraint factor C expresses the fact that the mean contact pressure, needed to
cause plastic flow, must be higher than the yield stress (Tabor, 1951).

The stress-strain curve (Figure 4) can be constructed from the data obtained by spherical
indenter for a series of loads or using the continuous measureinent of properties with depth. It
consists of two asymptotes (for small and large strains) and an intermediate part.

1400

1200 { Ceq, P m(MPa)
1000 -
800 - Pm
600 -

400 A /
200 - Erep (-)

O T T T T T T T
0,000 0,005 0,010 0,015 0,020

Figure 4. Equivalent stress ¢, and mean contact pressure p,, as functions of representative Strain e,
Ideal elastic-plastic marerial without strain hardening. E, = 210 GPa. ¥ = 400 MPa. spherical indenter.
#= 50 nm. (After Men¢ik, 2006.).

Asvmptote 1 — elastic deformations. As long as the equivalent stress 1s lower than the
yield strength, the relationship between the equivalent stress and representative strain is
linear,

o, = E&,,, . (29)

For elastic contact of a sphere with a plane, the Hertz formula can be used:
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Py = —EZ . (30)
v

Combination of Eqs. (28) — (30) gives the proportionality constant @ for &gep = 0.2a/r:
®=20/(37). (31)

Mesarovic and Fleck (1999) have revealed by extensive FEM modeling that, despite of
the onset of plastic flow at py, = 1.1Y, the relationship pm(&ep) for spherical indentation is
linear as long as p,, < 1.6Y.

Asvmptote 2 — soft materials, full plastic flow. In soft materials (E/H > 40), the fully
plastic flow is developed soon. In this case, the constraint factor is a constant, @ = 3, and the
yield stress is calculated as

Y(grep) - o-eq(grep) ~ pm(grep)/3 . (32)

Note. Some authors use the value @ = 2.9, the difference being about 3%.

Intermediate part — elastic-plastic deformations. For hard materials (£/H < 40), or for
small representative strain &, compared to the elastic strain capacity &y = Y/E of the material,
the plastically deformed zone is small and swrounded by a relatively large elastic region. The
elastic strains are not negligible compared to plastic ones. The constraint factor @ depends on
the ratio of the representative strain (imposed by the indenter) to the material strain capacity,
&epl &v. The simplest expression for @ is based on the model of an mnfinite elastic—plastic body
with a spherical cavity under internal pressure, as developed by Johnson (1970); see also his
monograph (1985) or Fischer-Cripps (2002):

® =4 + B ln(Cg,..ep l&y) (33)

where 4, B and C are constants. If & 1s not known in advance, it is easier to determine the
yield stress Y(&.,) directly from the expression (Mencik and Swain, 1994, Mencik, 2006)

. .
M = A + Bhl(Cga,.ep} (34)
Y(grep) Yo y

with the constants: 4 = 4/3. B = 2/3. and C = 5/3 for g.p = 0,2a/r (or 0.2 tang for Berkovich
indenter). Equation (34) must be solved for ¥ numerically (for given py,. &, and E); this can
be done using solver, present m various software. The procedure could be improved, for
example by considering the mfluence of Poisson’s ratio, as given m the ornginal Jolmson’s
model of the expanding cavity (1970). or by mmplementing the extended model by Gao
(2006). which respects strain hardening, indenter shape and the size of the imprint.

When constructing the stress-strain curve, it is reasonable first to plot oz in wider ranges
of &ep using approximations (30) — (34). and then to find their appropriate limits. The constant
@ for elastic deformations (= 20/37) should be used for p, < 1.6Y. An example of curves
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Pm(&ep) and Ceq(&ep), obtained for given material data, 1s depicted in Figure 4. Vice versa, 1t 1s
also possible to obtain material parameters from the empirical pp(&ep) curve (Mencik, 20006).
Approximation of the curve ceq(&ep) OI its part by the expression

Y(e) = Y(&/5)" (35)

enables the determination of strain-hardening index x for elastic-plastic materials.
From other recent works on this topic, Ogasawara et al. (2005), Basu et al. (2006), and
Wang and Rokhlin (2006) can be mentioned.

8. MODELS FOR THE RESPONSE OF COATED OR
SURFACE-TREATED COMPONENTS

Nanoindentation is very suitable for the determination of mechanical properties of
coatings or treated surfaces. However, the response during indentation is influenced by the
properties of both the coating and substrate. The measured £ or A values change from the
values corresponding to the coating or surface alone (for negligible depth of penetration), to
the substrate value for the penetration depths much larger than the thickness of the coating or

filin (Figure 5).
a
250 — 7J |
A 7
200 USRS e
© - .A—:“._L_——‘- —————— . T T
Q e (TbFe+Fe)/ Si
S 150 .
TR N
| TbFe+Fe)/ gl
100 Q.“"“tm-.*,h‘_(__ej e)_izass
50 1 1 1 | 5 1 1 I 1
0 1 2 3 4 5
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Figure 5. Apparent elastic modulus E” as a function of indenter penetration info a coating (TbFe+Fe) on
a stiffer substrate (Si) and on a more compliant substrate (glass). a — contact radius. s — substrate, f -
film (coating) of thickness t. (Adapted from Menc¢ik et al.. 1997).
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Thus, the penetration should be much smaller than the coating thickness, especially when
the coating is harder or stiffer than the substrate. Often it is recommended that the depth of
penetration should not exceed 1/10 of the film thickness, for the substrate mnfluence to be
negligible. This 1s a difficult task, particularly for thin films. Moreover, the apparent elastic
modulus is influenced from the beginning of indentation. Therefore, the response is usually
measured for various depths, and the genuine coating property is obtained by extrapolating
the measured values to zero depth. The devices working in the CSM (DMA) mode are
especially useful, as they can yield the necessary series of E(h) or H(h) values i one test. The
coating or film properties are best determined with pointed indenters, where the umpression
shape does not depend on the depth of penetration.

The apparent value of property “X" (hardness, elastic modulus, etc.). measured for the
indenter penetration into depth &, can generally be expressed as

X(&) = A wil ) = Xswy(2) , (36)

where Xt and X; are the values corresponding to the film (or surface) and substrate, and w(&)
and w(&) are non-dimensional weight factors, characterizing the influence of the coating and
substrate on the indenter response at depth & This depth can be measured in length unifs;
hiowever, it is better to use the relative depth, expressed as &= i/t or a/t, where A, f and a are
the depth of penetration, film thickness and contact radius.

Another. only formally different, expression 1s

X&) = X0 + X[l - ©&)]. (37)
where
. X&) - X
O¢) = ——————= 3
© Yo, (38)

1s a dumensionless weight function, which decreases from 1 for £=0 (or # = 0) to zero for &£
— (or I » ¢). Thus, knowing the substrate property .X; from independent measurements, one
can obtain the coating property X; as a regression constant by fitting the X(&) values for
various depths by the expression (37) with a suitable function ®@.

Several weight functions have been proposed. For elastic modulus, Doerner and Nix
(1986) used a sumple exponential function,

D) = 1 - exp[- (6] . (39)

where £ = #/h. and b 1s a constant obtained by fitting the measwed E(S) values. The authors
used compliances 1/E¢ and 1/E, for Xy and X; in Eq. (37) — according to the idea of coating
and substrate acting as two Springs in series.

Mencik et al. (1997) tested several functions for the modulus, and recommended the
expression based on the theoretical analysis of a layered elastic medium by Gao et al. (1992):
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2 1 1 +&2 |
d, = —arctan & + —— (1-2v)¢é I —=— - .
G T ] Zﬂ'(l—V) ( )v ;2 1+ {;2 J . (40)

=]

&= t/a and vi1s Poisson’s ratio; X in Eqs. (37) and (38) corresponds to elastic modulus. The
suitability of this function 1s demonstrated in Figure 6. Some other expressions can be found
in Mencik (1996] and Mencik et al. (1997). As illustrated in the previous Figure 5, the
accuracy in the determination of film modulus can be increased by making the tests for the
film deposited on a stiffer substrate and on a more compliant one; the genuine modulus will
lie between both empirical E¢ values.

1.0
[D_ 0.8 t . o o % +8 < X
. %o Gao
u’ 06 s
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= [ %
[ﬁ' 0.4 ro ]
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Figure 6. Gao’s function (40) plotted together with the measured values of apparent elastic modulus for
14 various combinations ,,material + substrate™: a — radius of contact, t — film thickness: subscripts f
and s denote the filin and substrate. respectively. (After Mencik et al.. 1997).

When determining coating hardness, two cases with basically different response can be
distmguished: soft coating on a hard substrate, and a hard coating on a ductile substrate.
While the plastic deformations are limited to the coating in the former case, a hard coating on
a soft substrate deforms elastically and plunges into a relatively larger volume of plastically
deformed substrate, and, eventually, breaks. There are many papers about the topic. The
simplest empirical approximations were proposed by Bhattacharya and Nix (1988):

U, = e + 2 (41)

for hard films on softer substrates. and

Y

P =fx-x) +(r-y, ')EI "
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for soft films on hard substrates; ¢; and ¢, are constants, &= A/, and Xz, X; are Hr and H,.

-

Korsunsky et al. (1998) proposed the following weight function:

DSy = . (43)

1+ k&E?

where £= A/t and k 15 a fitting parameter.
Two other approximations are based on physical models. Jonsson and Hogmark (1984)
proposed the weight functions in Eq. (36) using the “area-law of mixtures”:

we=As/d . ws=A /4, (44)

where A 1s the projected area of contact, Ay is its part where the indenter load is carried by the
film, and 4 1s the contact area around A¢, where the load is carried by substrate; 4¢ + 4, = 4.
This model was developed originally for a brittle film on a ductile substrate, with easy
distinguishable 4¢ and A..

Burnett and Rickerby (1987) proposed the weight functions for hardness as the ratio of
influenced voluines in the coating and substrate:

we=VilV . we=V,/V (45)

Vs and V5 is the volume of plastically deformed material in the film and substrate; V'= Ve + V
1s the total deformed volume. This approach is more suitable for ductile films on hard
substrates. Several methods have been proposed for the determination of V; and V; from the
indentation dimensions, film thicknesses and mechanical properties of the coating and
substrate.

Further information and references on the determination of mechanical properies of
coatings and layered systems can be found in papers by Malzbender and de With (2000), Rar
et al. (2001), Saha and Nix (2002), Bec et al. (2006), Huber et al. (2006), Page and Bull
(2006), Wer et al. (2009), and Sakai (2009).

9. VISCOELASTIC-PLASTIC MATERIALS —
RESPONSE TO MONOTONIC LOAD

Deformations of many materials depend not only on the load magnitude. but also on ifs
duration and time course. Such materials are called viscoelastic or viscoelastic-plastic. Their
properties may be obtained by nanoindentation. but proper quantities must be used for the
characterization, and the arrangement of tests must respect the tune-dependence of response.

For example. the mdenter continues penetrating into the specimen even under constant
load (Figure 7), so that hardness (14) 1s no more a constant. but decreases with the time under
load, H = H(#). After unloading. recovery (or backcreep) often occurs. Moreover, due to
delayed response, the unloading part of the =/ curve is often distorted — more convex than
for elastic materials (dotted curve in Figure 8).
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t

Figure 7. Characteristic response of viscoelastic-plastic materials to load (a schematic). h — depth of
penetration (generally. displacement). t — time. Left part depicts delayed deforming and creep under
constant load. right part depicts the course of deformations after unloading.

Figure 8. Typical loading and unloading indentation curves for elastic (elast.) and viscoelastic (v.-el.)
material: a schematic. F - load. h — indenter penetration.

As a consequence. the apparent contact stiffness S, determined from the slope of
unloading curve, 1s higher than the actual value. This can lead to errors in the determination
of contact depth and area and all quantities depending on them.

The influence of viscoelastic after-effects can be reduced m various ways. Often, a dwell
is inserted between the loading and unloading. According to Chudoba and Richter (2001), the
effect of delayed deformation on the unloading curve may be neglected if the creep velocity
has decreased so that the depth of penetration grows less than 1% per minute. The influence
of creep at the end of dwell can also be mitigated by using the effective contact stiffness S, as
proposed by Feng and Ngan (2002):

S S |Fu| 5
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Sapp 18 the apparent stiffness, obtained from the unloading curve by the standard procedure
described 1n Section 3 (Sapp 1s denoted S there); }}d 1s the indenter velocity at the end of dwell,

and F, 1s the load decrease rate at the beginning of unloading.

T E;

E 7 n Ey
= -

T |

a. b. C.

Figure 9. Rheological models: a — Kelvin-Voigt body. b — Maxwell body. ¢ — Standard Linear Solid.
E — elastic modulus. n — viscosity. t — relaxation (or retardation) time.

A disadvantage of this approach is that the indenter depth at the beginning of unloading
(after the dwell) is larger than at the end of loading. This results in larger contact area and
lower apparent hardness. Therefore, it is recommended to use relatively fast loading followed
nmmediately by fast unloading (Cheng and Cheng, 2005). Nevertheless, it 1s generally
insufficient to characterize aterials, which flow under load, only by a single value of
hardness or elastic modulus. Also a special characteristic, the strain-rate sensitivity index m
(Goble and Wolff, 1993), based on the relationship o «<o,™, as observed for the steady-state
creep 1n some materials, has only limited use. Better are standard rheological models, created
from springs and dashpots (Figure 9), which are universal and can also be used in commercial
software for the finite element analysis.

9.1. Models for Linear Viscoelastic Response

The basic elements are a spring and a dashpot. In a spring, the strain is directly
proportional to stress, while in a dashpot, proportionality exists between the stress and strain
rate. A simple combination is the Kelvin-Voigt body (Figure 9a), suitable for modelling of
delayed deforming by decreasing rate. The Maxwell body (Figure 9b) can characterize the
processes of stress relaxation. For modelling of real bodies. more complex models are often
necessary, for example Standard Linear Solid (Figure 9¢). The pertinent equations can be
found in monographs. such as Findley et al. (1976). Tschoegl (1989) or Haddad (1995).
Therefore, only the expressions relevant to indentation testing will be given here.

The formulae for viscoelastic response to indentation can be derived using the analogy
between elastic and viscous deforming (cf. Section 11). This approach was first applied by
Radok (1957) and Lee and Radok (1960), who utilised the elastic solutions of contact
problems. but replaced the elastic constants by a viscoelastic integral operator: see also
Johnson (1985).

The relationship between the non-decreasing indenter load and the depth of penetration
into viscoelastic material can be expressed generally as
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(=K w(F J1). A7)

where m and K are constants characterizing the indenter geometry. For a flat cylindrical
punch of diameter 2r, m = 1 and Kp = 1/(2r). For a spherical indenter, m = 3/2 and K¢ =
3/(4Nr), where r is the indenter tip radius. For pointed indenters (conical, Berkovich or
Vickers), m = 2 and K¢ = /(2 tana); « 1s the semiangle of indenter tip or of equivalent cone.
w(F, J, f) 1s a response function depending on the load magnitude and history and on so-
called creep compliance function J(7) for the pertinent material model (see later). For constant
load F acting after step change from 0, the response function i simply equals the product of
load and creep compliance function,

w(n)=FJ), (48)
so that
(N =KFJ). (49)

If the load varies (monotonically), the response function w(F, J, 1) for linearly
viscoelastic materials is obtained as

W)= [ It —)[dF Jduldu (50)
0

15 a dummy variable for integration.

The simplest model for reversible delayed deforming consists of a spring in series with a
Kelvin-Voigt body. The creep compliance function for this standard linear solid (SLS. Figure
9¢), 1s

J)=Cy+ Cy [l —exp(—t/1)]. (51

Co and C, are compliance constants; C, corresponds to the instantaneous component of
deformation and C; to the delayed deformation; 7; is the time constant of the system
(retardation time), related to the compliance C, of the spring and dynamic viscosity 7, of the
dashpot in the Kelvin-Voigt body as r; = »,C,. At the instant of loading, J(0) = C,, while for
very long time, J(t—=) = Co + (.

More complicated reversible response can be modelled by adding more Kelvin-Voigt
bodies (Figure 10):

J=Co+Z Ci[l-exp(-t/5)].5=nC,j=12...n. (52)

Often also irreversible deformations appear, which can be: 1) time-independent plastic
deformations, caused by high stresses under concentrated load. or: 2) time-dependent creep.
known, for example, in asphalt or glasses and metals at relatively high temperatures. The
tune-independent plastic deforming is characterized by a slider in Figure 10.
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Figure 10. General Standard Linear Solid. C — compliance, E — elastic modulus. Y - yield strength. H -
hardness. ¢, — viscous compliance. t — retardation time.

Its characteristic (yield strenth Y or hardness H) is confained together with the
characteristic for instantaneous elastic response (F) in the compliance constant Cj.
Combination of Eq. (18) and (1) with Eq. (49), written for a pointed indenter and the
instantaneous part of deformation (ie. J(r) = Cp), gives the following approximate
relationship between C, and elastic-plastic parameters (Mencik et al., 2009):

2t 1 2
Co = ?“ — (cD E./H +¥ H/E,.) , (53)

P

Time-dependent irreversible viscous deformation can be characterized by a dashpot of
viscosity 77, arranged in series with the other bodies (Figure 10). The creep compliance
function for the dashpot alone is

JO)=cyt, (54)

where ¢y 1s the viscous compliance. If this dashpot is connected in series with the general
standard linear solid (52), the creep compliance function 1s

J@)=Co+ et + 2G[1 —exp(-t/7)]} . (55)

Formula (55) is universal. Specific response can be described by leaving only some
elements in the model. The first two terms alone (C, + ¢, #) correspond to the Maxwell body
(Figure 9b). In a special case the model (55) contains only the spring C, and characterizes
instantaneous (time-independent) deformations. For fully reversible elastic deformations, the
compliance C, can be expressed by means of elastic modulus:

1—1° -

the term (1 — v') accounts for the triaxial state of stress around the indenter: the relationship
for uniaxial stress would be C, = 1/E. Equation (56) is valid for a 1igid indenter. If the
indenter cannot be considered stiff compared to the specimen. the expression E/(1 — v*) must
be replaced by reduced modulus E, defined by Eq. (16). Analogously to Eq. (56). also the
compliances of other Kelvin-Voigt bodies could be expressed as reciprocals of modul, € =
l;"'Ej.
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The viscous compliance ¢y in Egs. (54), (55) is related to dynamic viscosity 77 as

ev=(1-w2n), (57)

as it follows from the condition of compatibility of Eq. (57) with (49) and (56) and from the
fact that 77 expresses the proportionality between shear stress and strain rate.
The load response of viscoelastic materials 1s often modelled by the finite element

method. In elastic-plastic analysis, Young modulus £ and Poisson’s ratio v are mostly used.
Some FEM programs also work with the shear modulus G and bulk modulus XK, which are
related to the elastic modulus and Poisson’s ratio as follows:

G=E2(1+ V], K=E[3(1-2v]. (58)

The finite element method enables analysis of viscoelastic materials and parts as well.
Cominercial computer codes, such as Ansys, Marc or Abaqus, use Prony series, defined as

W1) = ZB; exp(- 15) (59)
B, and 7, are constants. The creep compliance function (52) can then be written as

J(t) = B + 2B exp(- #/7) , where B,= Cy+ 2C;, and By =- (.. (60)
Compliances of Kelvin-Voigt bodies can be given in nondimensional form, as well:

J() = Bx [1 + ZD; exp(— t/1})] , with D;= Bj/B. . (61)

If the software for viscoelastic analysis uses shear modulus G and bulk modulus X, these
quantities may also be expressed in a form of series:

G() = G + 2G; exp(— #16;) . K(t) = K + 2K exp(— #/7x3) . (62)

Generally, G and K can have different time course and different number of terms in the
series. Often, various simplifying assumptions are used: e.g. incompressibility (v = 0.5) or
constant Poisson s ratio (1= const). and only the time dependence of G or E is assumed.

9.2. Determination of Model Parameters

The constants m spring-and-dashpot models must be determined by experiment. for
example by fitting the time course of indenter penetration 2™(r) by Eq. (47) with a suitable
creep compliance function J(z). Various procedures have been proposed during the last twenty
years. Among the first authors, Lucas et al. (1997), Strojny et al. (1998) and other given in
Moody et al. (1998) can be named. Formulae for flat punch indentation were proposed by L.
Cheng et al. (1998, 2000) and Strojny and Gerberich (1998), while pointed mdenters were
dealt by Shimizu et al. (1999), Cheng and Cheng (1999, 2005a). Zhang et al. (2005) and Oyen
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and Cook (2003). Methods for spherical indenters were developed by L. Cheng et al. (1998)
and Oyen (2005, 2006). L. Cheng et al. (2005) brings closed-form forinulae for relaxation
testing and creep testing by spherical indenters. Formulae for all three indenter shapes are
given in Sakai and Shimizu (2001), while Cheng and Cheng (2005b) have derived solution
for axisymumetric indenters of arbitrary profile. Huber and Tyulyukovskiy (2004) and
Tyulyukovskiy and Huber (2006) developed a procedure for identification of viscoplastic
properties, using neural networks. Further papers can be found in the proceedings edited by
Baker et al. (2001) and Wall et al. (2005), and soine will be mentioned later 1n this section.

The methods for determination of viscoelastic parameters under monotonic loading can
be divided into two basic groups: with constant load and constant load rate. Here only the
case with constant load will be described, which is based on the theory from the previous
section and leads to simple, but universal formulae, applicable for various indenter shapes.

For constant load after a step change, Eq. (49) can be used directly. Unfortunately, the
load increase from O to the nominal value always lasts some time, and this influences the
following response under constant load, more at the beginning (Lee and Knauss, 2000).
However. if the load grows by constant rate and the duration of load increase is short
compared to the retardation time, Equation (49) may be used also, just with slightly modified
creep compliance function, as it will be shown further.

For ramp loading with constant load rate, dF/dt = R = const, Equation (50) gives

w(n= R_f[J(t —w)du - (63)
0
The response under constant load following the ramp loading 1s then

‘R

w(= RJ J(t—u)du . (64)
0

where fg (= F/R) is the duration of load increase. Equation (64), valid for ¢ > fg, was obtained
by superposition of two integrals (63) for loads growing by constant rate R: the first load
starts at + = 0, while the other, acting in the opposite direction. staits at time #z. Thus, for 7 >

fr, the load is constant, F (f = tr) = Rt — R(t — tr) = Rtr. The application of Eq. (64) on the
general standard linear solid (55) gives for 7> #g:

W =F {Co+ T G [1-pexp(- 1/} =FJ (). (65)
where p; 1s so-called ramp correction factor, as mtroduced by Oyen (2005, 2006):
£ =(5/1) [exp(tr /1) — 1] . (66)

The modified creep compliance function J'(#) in Eq. (65) differs from Eq. (52) only by
the factors p, at exponential terms. For fast loading. with short load increase compared to the
retardation times (#r « 7,), the ramp correction factor g 1s close to 1: it attains 1.025 for /7 =
0.05 and 1.05 for z/7; = 0.1. and grows rapidly for higher ratios 7z /7;.
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The response function for the universal model (55) 1s (Mencik et al.. 2009):
w(=F{Cote (t—1x/2)+ X[l - pexp(—t/n)]} =FJ () (67)

the term —#g/2 expresses the fact that the viscous component of the penetration at the end of
the load-increase period (z = tr) corresponds only to the average force growing from 0 to .

The response function (65) or (67) 1s then nserted into Eq. (47). The constants can be
obtained by minimizing the sum of the squared differences between the measured and
calculated 4™(f) values. However, the actual procedure must be modified. In Eq. (67). several
termns appear, which do not depend on time: Cj, cyfg/2 and C;. Regression analysis cammot
determine them individually, but only as a whole; otherwise incorrect values could be
obtained. Moreover, the terms Cjp; also occur here, with the still unknown ramp correction
factors p,. From a curve-fitting point of view, Equation (65), divided by F, corresponds to the
Prony series (60) with B; = — Cjp and B = Co + LCj. After obtaining the constants By, B; and
7 from the measured data, the constants p, Cp and Cj can be calculated. The number of
elements in the model can be verified from the duration of backcreep after unloading. The
procedure is described in Mencik et al. (2009), and the quality of fit is illustrated in Figure 11.

If a new material is investigated, it 1s reasonable to fit the experimental /(f) data by
various creep compliance functions and choose the model with the best fit. The optimum
parameters in each model can be found using a special program or a solver present in
universal software such as Excel or Matlab. For models with only a few constants (n < 4),
solver easily finds the “best” parameters (Cp, C), 7...). With more constants, various
,optimum‘ values of parameters are sometimes found depending on their starting values used
in the search.
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Figure 11. Penetration of Berkovich indenter into PMMA under constant load: measurement and
approximation (spring + 3 Kelvin-Voigt bodies in series). Both curves (of ,.Jogarithmic™ character)
overlap: the relative differences [Are; = (measwred — Reatcutated)/ Nimeasurea) d0 110t €xceed several tenths of a
percent.
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The differences between J(r) curves for individual fits are often negligible. It is thus
possible to choose fix retardation times 7, scaled in decades; for example r; = 1's, =10,
73 =100 s, etc. Solver then must seek only the constants Cy, (. etc. In such case, one should
remember that they are no frue physical constants, but parameters in the model, valid only for
some range of loading time. Generally, the test for obtaining a model should last as long as
the time-dependent processes or as the duration of load action in the assumed application.
Thermal stability of the measuring device is sometimes the limiting factor.

If several iodels give acceptable results, the “optimum‘ model can be chosen with
respect to its future use. Generally. it should not be more complicated than necessary. Useful
1s the knowledge of typical properties of Kelvin-Voigt bodies. Every K-V body, with the
response described by expression Cj[1 — exp(- #/7)], is active within about two orders of time:
roughly for 0.03 < #/7; < 3.0. For example, 1 — exp(-0.03) = 0.03. Therefore, for #7 < 0.03,
the body hardly started reacting, and till this tume it behaves as if it were stiff. On the other
hand. 1 — exp(=3) = 0.95, so that for #/7; > 3 nearly the full deformation is reached. and the
resultant response (/1) correponds to the spring of compliance Cj alone.

Slightly different approaches to the determination of parameters in rheological models by
indentation can be found, e.g., in Giannakopoulos (2006), Lu et al. (2003), Zhang et al.
(2005), and Dub and Trunov (2008).

10. VISCOELASTIC MATERIALS — RESPONSE TO HARMONIC LOAD

Typical of viscoelastic materials exposed to harmonic (sinusoidal) load is the shift
between stress and strain (Figure 12) and dissipation of energy. Both phenomena depend on
the material and also on frequency. The pertinent characteristics can be obtained by
indentation devices, which use small additional harmonic load (CSM or DMA mode). In this
section, basic definitions will be presented, as well as formulae for principal rheological
models.

The response of viscoelastic materials to harmonic load is usually described by two
quantities: phase angle and modulus. The phase angle & (Figure 10) expresses the shift
between stress and strain.

olt) | o(t)
‘9(t) P
//
/
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Figure 12. Response of a viscoelastic material to harmonic loading (a schematic). o(1) — stress. (1) —
strain, t — time. 8 — shift between o and .
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The modulus, which characterizes the material stiffness, consists of two components:
storage modulus £, which is in phase with the strain, and the loss modulus £, which 1s 90°
out of phase with strain; see, e.g., Haddad (1995) or Herbert et al. (2008):

oo=(E'+1E)g=Eg. tan S=E /E": (68)

0y and & 1s the stress and strain amplitude, and 7 1s 1tnaginary unit; tan &, called loss factor, 1s
a measure of damping in linear viscoelastic materials. Storage modulus, together with loss
modulus, form complex dynamic modulus of amplitude

E'= JE?+E? = 6y/ey E'=E cos 6 E =E sin& (69)

In the o — ¢ coordinate system, one loading cycle 1s depicted by an ellipse. The energy,
stored in a volume unit of material during a half cycle 1s

U=%E &, (70)
and the energy dissipated in a volume unit during a complete cycle, is
Us=7E" & . (71)

The phase angle & and complex modulus E* depend on the excitation frequency. The
response of a material can be described by a rheological model, whose parameters are
obtained by fitting the values of E'(w) and tan& w), measured at various frequencies; o =
27 f 1s angular frequency and / is frequency. The formulae expressing tan & and E as
functions of frequency depend on the model and will be shown here for several important
cases (Haddad, 1995), (Mencik et al., 2004).

10.1. Principal Models

Kelvin-Voigt body (K-V, Figure 9a)
The strain e1s the same in the spring and the dashpot. The total stress o equals the sum of
the stress m the spring (in phase with the strain) and the stress m the dashpot (preceding the

strain by 90°), so that it precedes ‘the strain by some phase angle o The body 1s also
characterized by complex modulus £” or compliance (= 1/EY).

tnd = o7  E'= El+tan’s = Eyl+ (w0’ -, (72a.b)

r1s the retardation time, calculated as 7= 1/G.
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Maxwell bodv (M, Figure 9b)

The stress o 1s the same 1n the spring and dashpot. The total strain ¢ 1s the sum of the
strain in the spring (in phase with the stress) and in the dashpot (lagging behind the stress by
90°). The resultant strain is delayed by the angle &. The other characteristic is the complex
modulus £* or compliance C* (= 1/E"):

tans =1/wr, E = E'/,/1+tan2 S = E'/,/H(m)2 . (73a.b)

Standard Linear Solid (SLS, Figure 13)

The same stress off) acts in both the spring and Kelvin-Voigt body. The total strain &)
equals the vector suin of the strain in the spring ,,0° (in phase with the stress) and the strain of
the K-V body, which lags behind the stress by the angle &, given by Eq. (72). The resultant
phase angle (Figure 13b) and complex modulus can be obtained from the formulae (Mencik et
al., 2004):

E, 1+ (wr)* E, E l+(or)*)’ (742)

<2 2
| 1 1 1
N e e
E Ey E 1+ (wr)

L LzJ . (74b)
Ey 1+ (w1)

The terms E, and E, correspond to stiffnesses of individual springs. Similarly to Section
9, they may be replaced by compliances, defined as C* = 1/E", C, = 1/E,, and C; = 1/ E,.

As 1t follows from Eqs. (74), single standard linear solid can describe the changes in
response only in a limited range of frequencies. For relatively slow processes, with (1) « 1,
the resistance of the dashpot is negligible compared to that of the spring £, and the whole
body behaves as the springs Eo and E; in series. For relatively high frequencies, (@17)° » 1, the
resistance of the dashpot is very high. so that the Kelvin-Voigt body becomes stiff and the
whole SLS body behaves as the spring £y alone. Thus. more model bodies must usually be
combined 1n order to describe the response 1 a wider mterval of frequencies.
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Figure 13. Standard linear solid: 3, — shift between stress and strain in the Kelvin-Voigt body. § - the
resultant shift.
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General Standard Linear Solid (GSLS)
This body is obtained by adding more Kelvin-Voigt bodies to the standard linear solid
(Figure 14a). The resultant phase angle and complex modulus are (Mencik et al., 2004):

- 1 wT; 1 1 1
tan & = et =Y (75a)
—~ E, 1+(or,) E, “~E;, 1+(wr,)
2

- I _—_
E [ Zl: E; 1+(a)r) ] (Z E; 1+ (or;)’ ] -' (750)

where Ej 1s the elastic modulus of the , lonely* spring: the index 7 in the sums varies from 1 to
the number » of Kelvin-Voigt bodies. (The moduli can be replaced by compliances C; = 1/E;.)

This nodel 1s suitable if the systemn is excited by harmonic force and the displacement 1s
measured. If the system is excited by harmonic displacement and the force is measured as the
response, the Maxwell variant of general standard linear solid (Figure 14b) can be more
appropriate. For this case,

\
L 1
fan o = (ZE 1+(a)r) ]/[EO+ZEZ 1+((07,-)2J ’ (763)

7 7

(76Db)

E=||E+ ZE_ (r) ] H Y E———
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For n = 1, the model is reduced to the Maxwell variant of single standard linear solid.

g, B B L Eo [ ]
0 [5) Ty o EII
£ ‘Ez

a. b.

Figure 14. General standard linear solid. a — Kelvin-Voigt variant. b — Maxwell variant.

[t is important to note that both variants of (general) standard linear solid are equivalent
and can describe the same response (Gross, 1953). If the constants for one variant (e.g.
Kelvin-Voigt) are known. it is possible to obtain the values of constants in the conjugated
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(here Maxwell) variant of GSLS (with the same number of elements), just by fitting the E*((o)
and tan X ) curves by the expressions for this body (Mencik et al., 2004).

10.2. Determination of Model Parameters

The values of parameters in the chosen spring-and-dashpot model must be found by
experiment. Some indentation devices superimpose a little harmonic signal on the basic load
(CSM or DMA mode) and give, as the output, the complex dynamic modulus and phase
angle. The measurements are done for several frequencies, and the £(w) and tan& @) values
are fitted by the above expressions for this body. The least squares method can be used, with
a suitable nonlinear curve-fitting program. Both curves, E*(w) and tan & (), must be fitted. If
only one function (e.g. tand) were fitted, the fit could be very good, but the obtained constants
sometumnes do not fit the other function (E*) well. It can be recommended to fit tand first, then
E’. then again tan &, etc. Often 2 — 6 steps are sufficient.

The number of Kelvin-Voigt bodies in the model should be chosen with respect to the
course of tan{ @) in the investigated frequency range; it can loosely correspond to the number
of steps or peaks in the curve tanX ) in this interval. (One should be aware of limited range
of frequencies available at nanoindentation devices.) For relatively low frequencies ( G«
1), the K-V body may be replaced by the spring £; alone (approximately for @ < 0.1/7). For
relatively high frequencies, the body may be removed from the model. This is possible for all
K-V bodies with 7; > 10/ @. Generally, the viscoelastic properties of a certain K-V body play a
role i the range about 0.1 < @7, < 10. As the stiffness of a K-V body changes continuously, it
1s possible to choose fix retardation times 7, scaled in decades; for example 7, =15, =105,
13 = 100 s, etc. Solver then must seek only the constants Eo, £, etc.

Several general notes must also be made here regarding the indentation measurement of
hardness and elastic modulus under harmonic load. If they should be credible, they must be
accompanied with the information about all conditions of measurement, including the
duration of load increase and the dwell before unloading, as they all influence the results.

Hardness, defined as the mean contact pressure (14), is calculated from the contact area
obtained via contact depth /.. According to Eq. (9), the contact depth depends on the total
depth (which depends on the duration of loading), and thus also on the contact stiffness. One
must keep in mund that two contact stiffnesses can be obtained in the tests: the unloading
contact stiffness S, calculated according to Eq. (5), and harmonic contact stiffness Sy
characterizing the response to harmonic load and calculated according to Eq. (7). The contact
depth /4. must always be calculated using the unloading contact stifftness. The additional
harmonic oscillations i the CSM (DMA) mode are very small and virtually do not mfluence
the F-h curve (Oliver and Pharr, 1992). Hardness (14) 1s thus independent of the excitation
frequency (Mencik et al., 2005), though this fact may look strange. As a simple alternative
measure of apparent stiffening of viscoelastic materials at lugher frequencies, the index of
sensitivity to harmonic load may be used. defined by Mendcik et al. (2005) as the ratio of the
harmonic and unloading contact stiffness for the same contact depth:
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This index can be used to evaluate the influence of frequency or other factors, or to
compare various materials.
Elastic modulus under harmonic load depends on the excitation frequency,

N Jr S

El'. f T ST (78)
28 Ja

The contact area 4 must again be calculated using the monotonic unloading contact
stiffness, while Syin the numerator is the harmonic contact stiffness Fo//io for the same contact
depth. Some nanoindentation devices give the in-phase component of the expression Fy/hq
(,extracted” from the measured F, and h, values in the device with respect to its inner
compliance and damping). In such case, the modulus, calculated according to Eq. (78),
corresponds to the storage modulus £°. One must therefore be sure what quantities he or she

will work with. More about testing under harmonic load can be found, for example, in
Herbert et al. (2008), Mencik et al. (2005), Huang et al. (2005), or Odegard et al. (2005).

11. CREEP AND VISCOSITY

The term creep denotes very slow liteversible deforming under constant load. It appears
i metals, glasses or ceramics at high temperatures, but also in polymers, soft metals and
some other materials at common temperatures; examples are bitumen or lead. In principle, all
solids can be regarded as visco-elastic-plastic, with the individual components of deformation
depending on the material, loading conditions and environment. This holds also for the initial
stage of creep. Fortunately, in the steady-state stage of creep the delayed elastic processes
have ceased and the deforming continues only due to viscous flow, so that the response can

be characterized by viscosity. The dynamic viscosity 7 is the proportionality constant
between shear stress 7and shear strain rate:

y = dy/dt = t/n . (79)

This Newton's law for viscous liquids 1s analogous to Hooke's law for elastic solids. y=
7/G. with ¢ corresponding to ¥, and » corresponding to shear modulus G. This visco-elastic

analogy enables direct use of known solutions for elastic problems to the analysis of slow
viscous deforming. just by replacing the strains by strain rates. or the characteristic
deformation v of an elastic body by the velocityzof deforming a similar viscous body, and

replacing the shear modulus by dynamic wviscosity. If a body 1s deformed only by viscous
flow, and if the stress is constant, also the velocity of deforming is constant and the total
deformation (or increase in deformation) during time 7 is simply » = o 7. otherwise it is

obtained as:

¥ :J‘j.:(‘r) dr (80)
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where the instantaneous velocity y (f) depends on the instantaneous stress o(f). Formulae with

elastic solutions for many simple bodies and load cases can be found, e.g., in Roark (1989).

Dynamic viscosity 77 can be measured by various methods, including indentation. The
sunplest approach uses constant load and measures indenter displacement 4(¢) as a function of
tune. Again, forinula (47) can be used. For practical reasons, Maxwell body (spring and
dashpot 1n series, Figure 9b) 1s most suitable, with the creep compliance function

J=Co+opt. (81)

(o characterizes all deformations that do not depend on time, i.e. the instantaneous and
delayed elastic deformations, plastic deformations, and also viscous deformations that have
occurred before the beginning of creep measurement.

The viscous compliance ¢, in indentation tests is related to the dynamic viscosity 77 by
Eq. (§7). Combination of Eqs. (49), (81) and (57) gives

l-v

(1) = KF[C.0 + r} = ko + Kyt . (82)

2n

where ko and 4, are regression constants, and m and K are constants for indenter geometry,
defined at the beginning of Section 9; for a pointed indenter, m = 1.5 and X = n/(2 tana).
After fitting the 7™(¢) data by linear regression function (82), the dynamic viscosity is
obtained as

n=KF(1-v/Q2k); (83)

if incompressibility (v = 0.5) is assumed, n = KF/(4k;). From papers about viscosity
measurement by mdentation, Cseh et al. (1997) and Sakai and Shimizu (2001) can be
recommended.

CONCLUSION

Today. nanoindentation (instrumented indentation) enables the determination of many
important material characteristics, such as elastic modulus and hardness. yield strength and
stress-strain curves for elastic-plastic materials, but also parameters in rheological models for
viscoelastic response. Indentation devices and methods have been developed permanently.
and more and more sophisticated procedures for analysis appear, often in combination with
the finite element modeling and other tools. Nevertheless, very often simple models and
methods are quite sufficient (also because they are sometimes based on a very elaborate
analysis). However, one must be avare of the lunited validity of a particular model. This
chapter has brought an overview of various simple models, with the explanation how they
were dertved and what are their lumits. In this way it can help in the choice of a suitable
model and formulae and test conditions. The text was accompanied by numerous references,
which can facilitate further study.
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