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SIMPLE MODELS FOR CHARACTERIZATION OF

M ECHANICAL PROPERTIES BY NANOINDENTATION

Jarosla vMenčík

University of Pardubice, Czech Republic

ÁBSTRACT

Nanoindentation provides information about mechanieal properties from indenter
load and displaeement, measured during loading and unloading. This chapter brings an
overview of important models and formula e used in the evaluation of these
measurements. The main topics are: approximation of load-depth curves, detennination
of eontact stiffness, depth and area , hardne ss and elastie modulus, obtaining of yield
strength and stress-strain curve s from indenration data, information from the work of
indentation, models for the response of coated or surface-treated components, models for
the response of viscoelastie materials and procedures for obtaining their par ameters from
tests under monotonie and harmonie load, as well as for the derermination of viscosity in
creep tests.

1. INTRODUCTION

Nanoindentation , or - generalIy - instrumented indenta tion or depth-sens ing indentation,
provides infonnation about mechanical properties of tested specimens from indenter load F
and displacement h measured duri ng loading and unloading. AH quantities, such as contact
depth and area, hardne ss, elastic modulus , yield strength or parameters of viscoelastic
response, are calculated from the F-h data or F-h-t history using suitable model s. Thus, the
quality of these models is very important for the quality and accurac y of results, A well­
known example is the improvement in the detennination of contact stiffness by applying a
power-law to the unloading curve , as proposed by Oliver and Pharr (1992) , instead of the
previously used linear fit.

This chapter gives an overview of importaut models used in depth-sensing indentation .
Besides the basic fonnulae, also less known approaches and characteristic quantities are
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presented. The main topics are: approximation of load-depth curves, determination of eontaet
stiffness, depth and area , hardness and elastic modulus, work of indentation, yield strength
and stress-strain cnrves, models for the response of eoated or surface-treared components, and
model s for viseoelastie materials, The response of these mate rials, who se testing by
nanoindentation beeomes more and more popular, is diseussed here for monotonie as well as
harmonie load. The chapter ends with models for creep and the detennination ofviscosity .

At first, some general eomments must be made. The models should not be more complex
than necessary - with respect to the purpose of measurement. If one needs to detennine
certain materiá l constant, e.g. elastie modulus, which will serve as a standard, the model
should be as accurate as possible. Often, however , the main aim of measurement is just to
eompare various materials or eonditions of surface treatment, or to assess the influenee of an
external factor, such as tempera ture or magnetic field. In such cases, simpler models may be
used . The choice of suitable characteristics can reduee the number of variables, which must

be known with high aecura cy. Very useful are normalized or non-dimensional quantities.
They are more general than "absolute" ones and make possible eomparison of tests done
under different eonditions. For example, the energy, spent in indentation, corresponds to a
particular load. However, the indentation energy per unit volume of imprint is the same for all
indents created by the same type of pointed indenter in the same homogeneous material.
Another example: indentation response of a coated specimen depends on the properties of the
eoating and substrate, but also on the depth of penetration. lf, however, this depth is related to
the coating thickness, it is posible to combine the results obtained with eoatings of various
thicknesses .

The use of dimensionless quantities has one more advantage. Aecording to the theory of
similarity, the number of non-dimensional quant ities for expressing a physical law is usually
smaller than the number of dimensional quantities. This ean make the empirieal fonnulae
simpler and reduee the uecessary number of experiments, or even allow the eombination of
results from different kinds of tests. More about dimensiona l analysis and similarity can be
found in books, e.g. Barenblatt (1996) or Szirtes (1997), or in a paper and a eomprehensive
review by Cheng and Cheng (1999, 2004), devoted espee ially to indentation measurements.
Also in this ehapter non-dimensional quantites will be used wherever suitable.

In the following sections, model s and fonnulae used in the evaluation of nanoindentation
measurements will be given . As for the principles of depth-sensing indentation, the reader is
referred to the literature, e.g. Doerner and Nix (1986). Oliver and Pharr (1992 and 2004), or a
mono graph by Fischer-Cripps (2002). Also the international standard ISO 14577 ean be
mentioned here. Other works wi ll be quoted in the individuaI sections. As the number of
papers, published on the topic is vast, the author apologizes for using onIy some of them, the
main reason being the effort to keep this overview brief

2. LOAD-DISPLACEl\lENT CURVES

Loading eurve for indentation into homogeneous elastic-pIastic specimens (Figure 1) can
be expressed as

( I )
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F is indenter load, II is indenter displacement (depth of penetration), and h 111 are constants.
For homogeneous elastic materials and a cylindrical punch, 111 = 1. For spherical indenters and
small penetrations, 111 = 1.5 (also for paraboloids), while for pointed indenters (Vickers or
Berkovich (3-sided) pyramid or a cone) , 111 = 2. As the real .pointed" indenters have usually
small blunting at the tip, the measured displacement II is sometimes replaced by the effective
depth of penetration,

with the correction tenn .; obtained by fitting the F(II) curve .

F

o

A

s =dF/dh
I

:8
h

(2)

Figure 1. Loading and unloading curves of an indentation test - a schematic.

The approximation (1) is suitable for elastic-plastic defonnations. (Its relationship to the
elastic modulus and hardness is shown in Section 5.) However, in materials with strain
hardening, in specimens with treated surface (or even with a thin oxidic layer on the surface),
or for indenters whose shape deviates from the ideal one, the exponent 111 can differ from the
above values , and must be found by fitting the measured data. For inhomogeneous specimens
or with time-dependent response, or if discontinuous processes occur (e.g. cracking), the
loading curve can have a more complicated shape .

Unloading curve is usually approximated as

(3)

ku, 1/ and the residual depth IIre> of the imprint after unloading are constants, obtained by
regression fitting the unloading data . The unloading is mostly elastic , and the curve (3) holds
also for reloading, which is elastic. Thus , the curve (3) should correspond to the curve (1) for
elastic loading, with II replaced by (11 - IIre, ) ; the exponents in both fonnulae shou1d be
identical , 111 = 1/. While this is true for spherica1 indenter or cylindrica1 punch under low loads ,
significant differences appear for pointed indenters (e.g. Berkovich), with 1/ ranging usually
between 1.2 and 1.6 (instead of 2.0). As shown by Pharr and Bolshakov (2002) and Oliver
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and Pharr (2004), the reason are plastic defonnations induced in the specimen during loading.
As a cousequence, the unloaded imprint is not exactly pyramidal, but somewhat convex.
During reloading, such surface comes into contact with the indenter gradually, similarly to the
contact of a spherical indenter with a plane, and thus with lower exponent 1/.

The actual unloading curve sometimes deviates from the approximation (3), especially at
its low-load part. A role can be played by adhesion and friction between the indenter and
specimen, by creep, after-effects or irreversible processes during unloading, or by stress­
induced phase transfonnations, leading to jumps in the F(h) curve. For the same reasons, the
calculated residual depth hres can differ from the actual value.

Curves (1) and (3) are expressed in the coordinate system force - displacement. It is also
possible to plot them in nondimensional coordinates, using nonnalized quantities

F llorm = F/Fmax ,hllorlll = hlhlll<1x , or h llorlll = (h - h res)/(hlllax - hres) , (4)

varying between Oand 1. 111e shape of F llonu-hnonu curves is similar to F- h. It is also possible
to express uondimensional depth as (h - hres)/hlll<1x , Nonnalized quantities enable the
comparison of response for various loads or materials.

3. CONTACT STIFFNESS

Two kinds of contact stiffness are used in depth-sensing indentation tests: unloading and
harmonie.

Unloading contact stiffness S is defined as

s dF

dll
(5)

and it is detennined for the maximum load (Figure 1) by fitting the upper part of the
monotonie unloading curve by Eq.(3) and making the derivative. Unloading contact stiffness
is necessary for the detennination of contact clepth and elastic modulus. 111e determination of
S in elasric-plastic materials is straightforwarcl. With respect to Eq. (3), it can be expressed
from the parameters of unloading curve as

S = 11 F / (h - h res) . (6)

In viscoelastic materials, a correction for delayed defonning must usual1y be macle (cf.
Section 9).

Harmonie contact stiffness Si can be measured by nanoindentation devices, which
superimpose a smal1 harmonie signal (amplitude several nm or a fracrion of a millinewton) on
the monotonically increasing basic loacl (so-cal1ecl Continuous Stiffness Measurement mode,
CSl\'f, or Dynamic Mechanical Analysis, DMA). Basically, Sf is defined as the ratio of the
loacl ancl clepth amplitudes of the smal1 oscillarions,
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(7)

subscript j denotes the exeitation frequency. However, in viseoelastic marerials a lag appears
between the hannonic stress and strain, and this can also be eonsidered in the data processing
(see Section 10).

In the CSM (or DMA) mode, Sf ean be measured during the whole loading process
(Figure 2). Harmonie contact stiffness is suitable for studying the depth distribution of
properties and for materials, whose response depends on time, for example polymers.

In elastie-plastie materials, Sf has the same value as the unloading stiffness S, while in
viscoelastic materials both quantities can díffer, depending on the materíal and excítation
frequeney.

200000

PMMA, Berkovich indenter,
CSM mode , f = 75 Hz150000

~ 100000

CI)

50000

o
O 1000 2000 3000 4000

h (nm )

5000 6000

Figure 2. Harmonie contacr stiffness S as a funetion 01' indenter penetration II into PMMA (after Menčík

et al., 2005).

With respeet to Eq. (1), the depth course of conract stiffness elF/dh in homogeneous
specimens ean be approxímated by a símple function of type

S(h) = 1Jl kd/u
-

1
. (8)

For example, the contacr stiffness for a poínted índenter (m = 2) ís díreetly proportíonal to
depth.

This ean be utilízed in proeessing the data obtained in the CSM (Ol' DNV\) mode. Dle
course of measured harmonie contact stíffness is usually undulated (Figure 2), and so also are
all quantitíes calculated from it, e.g. hannonic elastíe modulus, Fittíng S/ll) by Eq. (8) makes
it smooth, which gíves a smoother course of the derived quantities.
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4. CONTACT DEPTH AND AREA

In depth-sensing indentation into elastic-plastic materials, the contact depth h; (Figure 1)
is determined from the total depth II according to the general fonnula

(9)

where F is the maximum load, and S is the contact stiffness at the beginning ofunloading.
In the mostly used approach, proposed by Oliver and Pha1T (1992), C l = 1 and C2 = 0.75.

According to some authors, these constants work well for stiffer materials, but give
underestimated values for soft materials with substantial plastic flow and pile-up effects. For
them, the following values were recommended (Bec et al., 1996, Fujisawa and Swain, 2006):
C[ = 1.2 and C2 = 1. The contact depth can be nonnalized as 111101111 = h.lh.

The contact area A is calculated from the contact depth h- as

For an ideal pointed indenter (Figure 3a),

A = ira2 = k h 2c ,

(10)

(11)

where a is the contact radius ofthe equivalent cone, related to the contact depth as a = hetana;
a is the semiapical tip angle. For Vickers or Berkovich indentcr, a = 70.30 and k = 24.5. For
spherical indenters (Figure 3b) and small depths of penetration,

(12)

r is the tip radius, For small contact depths, A ~ 2irrhe.

a.

1

k
1'i \
i \
~-"...'13 \
1 \

O ......-+l \
.--/- ---I--------..>'1- '~___._

1
I
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h

b .
Figure 3. Contact geometry: a - poinred indenter, b - spherical indenrer,

Often, the tip shape is not ideal, and indenters must be calibrated by tests on real
materials, Au often used approximation for pointecl indenters is:

4(1 ) - J,-J 2 + C J l . C J li 2 . C' J 114-l-"' lc - \ le -I l c T .2 l e T . 3 l c I • •• (1 3)
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5. HARDNESS AND ELASTIC ~!IODULUS

In depth-sensing indentation tests , hardness is defined as the mean eontaet pressure under
the loaded indenter,

H = P», = F
A

(14)

F is the load aud A is contact area. There are also other definitions of indentation hardness:
more about basic concepts, relation of hardne ss to plastie and elastic properties, etc., can be
found in the classic book by Tabor (1951) and papers by Sakai (1993, 1999). Small-size
effects are treated in Wei and Hutchinson (2003).

Elastic modulus is detennined from the fonnula

E,. (15)

f3 is the correction factor for the indenter shape; f3 = 1 for indenters with circular cross-section

(cylindrical punch , sphere or a cone), and f3= 1.034 for Berkovieh indenter (Oliver and PhaIT,
1992). Conunonly, unloading stiffness (5) is used for S. However, if dynamic properties are
studied using the CSM (DMA) mode, harmonie contact stiffness (7) is inserted into (15) ,
giving so-cal1ed harmonie or eomplex modulus (for detai ls, see Herbert et al. (2008) and
Seetion 10). Fonnula (15) is based on Sneddou's analysis (1965) for penetration of varíous
indenters ínto elastíe half-space. E, means reduced (composíte) modulu s, from which the
specimen modulus E is calculated usíng the formula

1 1- V2
')

1 - vi -
= +

E,. E s, (16)

expressing that the total contact eomplíanee consists of the compliance of the specimen (no

subserípt) and the índenter (subscript i); v is POíSSOl1 'S ratío.
Combinatíon ofEqs. (14) and (15) yíelds a very símple check ofmateríal homogeneity. If

E and H do not change wíth depth, then also the ratio F(h)IS(h) must be constant.
Elastic and plastic properties are, together with the índenter shape, also decisive for the

shape of loadíng curve. The penetratíon of a spherical indenter into elastíc materials ís
descríbed by Eq. (1) with 1Jl = 3/2 and the constant

k, = (4/3) E, ,)/2 , (17)

followíng from the theory for elastic contact of spheres: cf. Johnson (1985); r ís the radius of
indenter tip, and E, is the reduced modulus defíned by Eq . (16). If the deformat ions in a test
are only elastic (i.e. if the loading and unloading curves overlap), Equation (1) with the
constant kl from Eq. (17) can be used clirectly for obtaíning the reduced modulus from the
curve F(h); otherwise Eq. (15) must be used. Poínted índenters usually cause also plastic
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deformatious, so that the loading curve (1) depends on the elastic modulus and hardness.
HaÍ11sw0l1h et a1. (1996) have proposedthe fo11owing relationship:

(18)

with constants cD and \fo For Berkovich or Vickers indenter with the tip semiangle a = 70.3°,

Malzbender et a1. (2000) have derived the values cD = 0.202 and \f = 0.638. Fonnula (18)
fo11ows from the relationship F = kl7?with the total depth h expressed as a sum of the contact
depth IIc and elastic displacement h, of the surface at the perimeter of the contact, II = hc + li;
According to Sneddon (1965), ll, = E F/S, where E = 2(JT- 2)/JT= 0.72 for a conical indenter.
Contact depth is related to the load and hardness via Eq, (14) with A = 24.5 ll /, Combination
ofthese formulae with (14) and (15) a110w one to express the contact stiffness S, and then IIc,

lis, h and kl as a function of F, E, and H. On this topic, see also Oliver (2001) and Pharr et a1.
(2009).

6. 'VORKOFINDENTATION

Useful information can be gained from energies involved in indentation processes.
Mechanical work is proportional to the area below the load-displacement curve (Figure 1).

The total work of indentation Wtot (area under the curve OABCO) consists of the plastic
(unrecoverable) energy TYpl (area OACO) and elastic work Wel released during unloading (area
CABC):

(19)

These energies can be obtained by numerical integration of the measuredF(II) values, or
- approximately - by analytical integration ofthe loadingand unloading curves (1) and (3):

(20)
1

11/+ 1

II II

Tf~ot = fF (II)dll .::: fkl IIl1/dh = -- F h
o o

li

fkll (h - hres )1l dh = _1_. F (h - hm )
n +l

h.res

(2 1)

The plastic work is caIculated as

(22)



Simple Models for Characterization ofMechanical Properties by Nanoindentation 135

The F(h) diagram can also be used to extract the energies related to special phenomena
during the indentation, like fonnation of cracks, delamination of a coating, Oľ loacl-incluced
phase transfonnations.

The knowledge of total work also makes possible the detennination of constants in the
loading curve (1) even without the regression fitting:

m k1
F

(23)

The unloading curve, however, depends also on the resiclual depth of penetration, hres,

and its constants must be obtained by regression fitting of the measurecl data. Here, one must
keep in mind that the curves (1) and (3) are approximations only, which characterize the
"average" course of F(h) at the beginning of unloacling, and later can deviate from the actual
shape.

The energies fVrot, Wpl and Wel correspond to a particular test, with particular loacl and
clepth of penetration. More general information is obtained by normalizing them. For
example, it is possible to clefine elasticity index rvel and plasticity index 01Jl as the ratio of the
retumed (el) or clissipated (Pl) energy to the total work of indentation:

The work of indentation can be relatecl to the volume of residua1impression,

(24)

=
~ot

v,'es
(25)

Vres can be calculated from the residual depth and contact area (obtained from harclness as A =

F/H). The simplest situation is for pointed indenters, where Vres ::::: Ahres/3. For them ancl for
icleally plastic materials, hres = Ir and the work per unit indentation volume corresponds to
hardness, lVi = H.

The energies in inclentation processes are also relatecl to clepths. Comparing the curves for
loacling (1) ancl unloading (3), Menčík and Swain (1 994) have introducecl the parameter

.9 = h,·es
h

JI} + 1 Tf'e!
1 - ------ ,

n + 1 n:~OT

(26)

which can be used to characrerize the pennanent damage caused in various materials by
indentation. Ni et a1. (2004) used finite element moclelling ancl derived the following
relationship for indentation with a spherical indenter:

TÝ~OT - TV",
TT'~OT

(27)
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Since the exponents 1J/ and 11 for the loading and unloading curves in spherical indentation are
approximately the same, it is obvious that Eq. (27) is a special case of a more universal
relationship (26).

As the load-unload curves are self-similar for a pointed iudenter and homogeneous

material. {Ve!, {Upl> lVI and ďl do not depend on the load and can be used as material

characteristics, for example in theoretical study of indentation processes or for prediction of
damage by impact. More ideas about energies in indentation processes , including their
relationship to hardness, elastic modulus, plasticity and other properties, can be found, e.g ., in
Sakai (1993, 1999), Ni et al. (2004), Malzbender (2005), Tan (2006), and Chen and Bull
(2009).

7. YIELD STRENGTH AND STRESS-STRAIN CURVES

An important material characteristíc is hardness ll. However, it is no basic material
property. A more general quantity is the yield stress 1'. Even better is the ,, (J - s ' diagram,
saying how the yield stress develops with strain. Numerous authors have dealt with the
detenninat ion of yield stress and stress-strain curves from indentation. Tabor (195 1) and
Johnson (1970) were among the first, followed by Menčík and Swain (1994), Yu and
Blanchard (1996), Mesarovic and Fleck (1999), Herbert et al. (2001, 2006), Ogasawara et al.
(2005), just to name some of them. Stress-strain curves of polymeric materials were treated,
e.g., by Hochstetter et al. (2003). In addition to yield strength, some papers also pre senr
procedures for the determination of strain-hardening exponent, for example Field and Swain
(1993), Kucharski and Mr óz (2001), Ma et al. (2003), Cao and Lu (2004), and Gao (2006).
However, new materials, such as shape -memory alloys, can exhibit even more complicated

response. In this section, onlya simple method for the construction of (J- e curves, based on
Johnson 's approach (1970, 1985), will be described (Menčík, 2006) .

The stress field under any indenter is inhomogeneous, and must be characterized by some

represeutative stress and strain , Oi-ep and t7ep' The mean contact pressure P ill is very suitable for

(Jrep, while the expression for representative strain will depend also on the inden ter shape.
The distribution of stresses under a pointed indenter (Figure 3a) is self-similar, and only

one value ofPIU is obtained for a homogeneous materiál, regardless the indenter elepth. The

representative strain can be expressed as lI'ep = k tan,8, where k is a constanr anel ,8 is the angle

between the specimen surface and the indenter (,8 = 90° - a, where a is the semiapica1 angle;
see Figure 3a). Tabor (1951) has recommeneled k = 0.2, based on the comparison of

indentation anel tensile experiments. For Berkovich or Vickers indenters, ,8= 19.7°, so that the

measured hardness and yield stress Y pertain to a rather high characreristic srrain, t7ep ::: 7%.
Uneler a spherical indenter (Figure 3b) , the mean contact pres sure and strains increase

with the depth of inelenter penetration, and can be useel to construct the stress-strain curves.
The representative strain is usually expressed as the ratio of contact radius a and indenter

raelius r: 1I.ep = kťalr) , where k is a constant (often, k = 0.2 is assumed) . For small penerratious,
the elefonnations are elastic . The maximum shear stress acts below the surface, and plastic
defonnations appear here if the mean contact pressure atta ins PIU ::: 1.11'. As long as the
plastically deformed zone is small anel surrounded by elastically defonneel marerial , the
"Ioad-displacement" curve is the same as in elastic state. With increa sing load, the p1astic
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region grows and the F'-h curve departs gradually from the elastic course. Since some instant ,
plastic deforming spreads up to the free surface around the indenter (fully developed plastic
flow).

The stresses beneath indenter are tri -axial. If the stress-srrain curve, based on indentation

tests, should resemble the common Cf - s diagram for uniaxial load ing, it must be constructed

in coordinates Cfeq- éfep. The equivalent stress Cfeq can be calculated from PIU as

O"eq = P"J<P (Grep ' E , Y, v ...) (28)

the funct ion <I> depends on the degree of defonning (éfep), elastic modulus E, basic value of

yield strength Y and Poisson 's ratio v. Equation (28) is generalization of the well-known
relationship between hardness H (= prrJ and uniaxial yield stress Y III soft metals, H = CY.
where the constraint factor C expresses the fact that the mean contact pressure , needed to

cause plastic flow , must be higher than the yield stress (TabOl', 1951) .
The stress-strain curve (Figure 4) can be consrructed from the data obtained by spherical

indenter for a seri es of loads Ol' using the continuous measurement of properties with depth. It
consists oftwo asymptotes (for smaIl and large strains) and an intermediare part.

0,0200,0150,0100,005

O +----r--___r--~---r--___r--~-__r_-____l

0,000

1400 ~------------------,

1200 O'eql Pm(MPa)

1000

800

400

200

600

Figure4. Equivalent stress (jeq and mean conract pressure P m as functions of representarive srrain crep'

Ideal elastic-plastic material withour strain hardening. E, =210 GPa. Y =400 MPa. spherical indenter.
r = 50 ~ 1111 . (After Menčík. 2006.).

Asytnptote 1 - elastic deformations . As long as the equivalent stress is lower than the
yield streugth, the relat ionship between the equivalenr stress and representarive strain is

linear,

(29)

For elastic contact of a sphere with a plane, the Hertz f0l111Ula can be used:
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(30)

Combination ofEqs. (28) - (30) gives the proportionality constant <D for 6řep = 0.2a/1':

<D =20 / (3n) . (31)

Mesarovic and Fleck (1999) have revealed by extensive FEM modeling that, despite of
the onset of plastic flow at Pm = 1.1 Y, the relationship Pm(6řep) for spherical indentation is
linear as long as Pm < 1.6Y.

Asytnptote 2 - soft materials, full plastic j7ow. In soft materials (E/H > 40), the fully
plastic flow is developed soon. In this case, the constraint factor is a constant, <D ::::: 3, and the
yield stress is calculated as

(32)

Note. Some authors use the value <D = 2.9, the difference being about 3%.
Intennediate part - elastic-p lastic defonnations. For hard materials (E/H < 40), or for

small representative strain 6řep compared to the elastic strain capacity ey = Y/E of the material,
the plastically defonned zone is small and surrounded by a relatively large elastic region. The
elastic strains are not negligible compared to plastic ones. The constraint factor <D depends on
the ratio of the representative strain (imposed by the indenter) to the material strain capacity,
6řep!ey. The simplest expression for <D is based on the model of an infmite elastic-plastic body
with a spherical cavity under internal pressure, as developed by Johnson (1970); see also his
monograph (1985) or Fischer-Cripps (2002):

(33)

where A, Band Care constants. If 8y is not known in advance, it is easier to determine the
yield stress Y(éfep) directly from the expression (Menčík and Swain, 1994, Menčík, 2006)

(34)

with the constants: A ::::: 4/3, B ::::: 2/3, and C :::' 5/3 for Erep = 0,2a/r (or 0.2 tan,B for Berkovich
indenter). Equation (34) must be solved for Y numerically (for givenPill' ti'ep aud E); this can
be done using solver, present in various software. The procedure could be improved, for
example by considering the influence of Poisson's ratio, as given in the original Johnson's
model of the expanding cavity (1970), Ol" by implementing the extended model by Gao
(2006), which respects strain hardening, indenter shape and the size of the imprint.

When constructing the stress-strain curve, it is reasonable first to plot CJeq in wider ranges
of ti'ep using approximations (30) - (34), and then to find their appropriate limits. The coustanr
<D for elastic deformarions (= 20/3/T) should be used for Pm s:; 1.6Y. Au example of curves
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PIl1(éi'ep) and O"eq(éi-ep), obtained for given material data , is depicted in Figure 4. Vice versa , it is

also possible to obtain material parameters from the empirical Pm(éi-ep) curve (Menčík, 2006 ).

Approximation of the curve O"eq(éi-ep) or its part by the expression

Y(s ) (35)

enables the detennination of strain-hardening index x for elastic-plastic materials.

From other recent works on this topic, Ogasawara et al. (2005), Basu et al. (2006), and
Wang and Rokhlin (2006) can be mentioned.

8 .l\'loDELS FOR THE RESPO NSE OF COATED OR

S URFACE-TREATED C OlVIPONENTS

Nanoindentation is very suitable for the detennination of mechanical properties of
coatings or treated surf aces, However, the response during indentation is influencecl by the
properties of both the coating and substrate. 111e measured E Ol" H values change from the

values corresponding to the coating or surface alone (for negligible clepth of penetration), to
the substrate value for the penetration clepths much larger than the thickness of the coating or
film (Figure 5).
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Figure 5. Apparent elastic modulus E' as a function of indenter penetration into a coating (TbFe+Fe) on
a stiffer substrate (Si) and on a more compliant subsrrate (glass). a - contact rádius. s - substráte. 1'­
mm (coaring) 01' thickness t. (Adapted from Menčík er al.. 1997).
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Thus, the penetration should be much smaller than the coating thickness, especially when
the coating is harder Ol' stiffer than the substrate. Often it is reconunended that the depth of
penetration should not exceed 1/1O of the film thickness, for the substrate influence to be
negligible. This is a difficult task, particularly for thin films. Moreover, the apparent elastic
modulus is influenced :fi:om the beginning of indentation. Therefore, the response is usua11y
measured for various depths, and the genuine coating property is obtained by extrapolating
the measured values to zero depth. The devices working in the CSM (DMA) mode are
especia11y useful, as they can yield the necessary series of E(h) or H(h) values in one test. The
coating Ol' film properties are best detennined with pointed indenters, where the impression
shape does not depend on the depth of penetration.

The apparent value of property "X" (hardness, elastic modulus, etc.), measured for the
indenterpenetration into depth .;, can genera11y be expressed as

X(;> =XrWR;> + Xs W s(;> , (36)

where Xc and Xs are the values corresponding to the film (or surface) and substrate, and WR~
and ws(~ are non-dimensional weight factors, characterizing the influence of the coating and
substrate on the indenter response at depth .;. This depth can be measured in length units;
however, it is better to use the relative depth, expressed as .; = hlt Ol' alt, where h, t and a are
the depth of penetration, film thickness and contact radius.

Another, only fonna11y different, expression is

where

(37)

<D (~)
X(~) - X s= _ -.:....__....::.... (38)

is a dimensionless weight function, which decreases from 1 for '; = O(Ol' h = O) to zero for .;
-+'l) ( Ol' II » t). Thus, knowing the substrate property Xs from independent measurements, one
can obtain the coating property Xr as a regression constant by fitting the X(9 values for
various depths by the expression (37) with a suitable function <D.

Several weight functions have been proposed. For elastic modulus, Doerner and Nix
(1986) used a simple exponential function.

<1> (; ) = 1 - exp [- (b;) ] , (39)

where .; = tlh, and b is a constant obtained by fitting the measured E(~ values. The authors
used compliances l/Er and l/Es for X1-and Xs in Eq. (37) - according to the idea of coating
and substrate acting as two springs in series.

Menčík et al. (1997) tested several functions for the modulus, and reconunended the
expression based on the rheoretical analysis of a layered elastic medium by Gao et al. (1 992):
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<P G
? 1 [ 1+ ~ 2 ~ ]= -=-arctan~ + (1 - 2v) ~ ln ~ - ~
ff 2ff(1 - v) ~2 1+( (40)

;= t/a and v is Poissons ratio ; X in Eqs. (37) and (38) corresponds to elastic modulus. The
suitability of this function is demonstrated in Figure 6. Some other expressions can be found
in Menčík (1996] and Menčík et al. (1997). As illustrated in the previous Figure 5, the
accuracy in the detennination of film modulus can be increased by making the tests for the
film deposi ted on a stiffer substrate and on a more compliant one; the genuine modulus will
lie between both empirical Ef values.
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Figure 6. Gao's function (40) plotted together with the measuredvalues of apparent elastic modulus for
14 various combinations .rnaterial + substráte": a - radius of contact. t - film thickness: subscripts f
and s denote the film and substrate. respectively. (After Menčík et a1.. 1997).

When detennining coating hardness , two cases with basically different response can be
distinguished: soft coating on a hard substrate, and a hard coating on a ductile substráte.
While the plastic defonnations are limited to rhe coating in the former case, a hard coating on
a soft substrate defonns elastically and plunges into a relatively larger volume of plastic ally
defonned substrate, and, evenmally, breaks. There are many papers about the topic. Dle
simplest empirical approximations were proposed by Bhattacharya and Nix (1988):

(41)

for hard films on softer substrates, and

(42)
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for soft films on hard substrates; Cl and Cl are constants, r; = hlt, and Xf, Xs are Hf and H;
Korsunsky et al. (1 998) proposed the following weight function:

<1>(';) =
1 (43)

where r; = hl t and k is a fitting parameter.
Two other approximations are based on physical models. Jonssou and Hogmark (1984)

proposed the weight functions in Eq. (36) using the "area-law of mixtures":

wf =Af /A , Ws = As/A , (44)

where A is the projected area of contact, A f is its part where the indenter load is carried by the
film, and As is the contact area around Af, where the load is carried by substrá te: Af + As= A.
This model was eleveloped originally for a brittle film on a ductile substráte, with easy
distinguishable A f and A s.

Burnett and Rickerby (1 987) proposed the weight functions for hardness as the ratio of
influenced volumes in the coating and substrate:

Wf = Vf /V, Ws = V, /17 ; (45)

Vf and V, is the volume of plastically defonned material in the film and substráte; V = Vf+ Vs
is the total defonned volume. This approach is more suitable for ductile films on hard
substrates. Several methods have been proposeel for the detennination of Vf and Vs from the
indentation climensions, film thicknesses and mechanical properties of the coating and
substrate.

Further infonnation and references on the detennination of mechanical properies of
coatings and layereel systems can be found in papers by Malzbender and de With (2000), Rar
et al. (2001), Saha and Nix (2002), Bec et al. (2006), Huber et al. (2006), Page and Bull
(2006), Wei et al. (2009), and Sakai (2009).

9. VISCOELASTIC-PLASTIC ~/IATERIALS­

RESPONSE TO ~IIONOTONIC LOAD

Defonnations of many materials depenelnot only on the load magnirude, but also on its
duration anel time course, Such materials are called viscoelastic or viscoelastic-plastic. Their
properties may be obtained by nanoindentation, but proper quantities must be useel for the
characterization, anel the arrangement of tests must respect the time-dependence of response.

For example. the indenter continues penetrating into the specimen even under constant
load (Figure 7), so that hardness (14) is no more a constanr, but decreases with the time uneler
loael, H = H(t). After unloading, recovery (or backcreep) often occurs. Moreover, due to
elelayed response, rhe unloading part of rhe F-h curve is often distorred - more convex than
for elastic materials (dotted curve in Figure 8).
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h

t

Figure 7. Characteristic response ofviscoelastic-plastic material s to load (a schematic). h - depth of
penetration (generally, displacernent). t - time. Left part depicts de1ayed deforming and creep under
constant load. right part depicts the course of defonnations after unloading.

F

h

Figure 8. Typical loading and unloading indentat ion curves for elastic (elast.) and viscoelastic (v.-el.)
material: a schematic, F -load. h - indenter penerration.

As a consequence, the apparent conract stiffness S, detennined from the slope of
unloading curve, is higher than the actual value. This can lead to errors in the determination
of contact depth and area and a11 quantities depending on them.

The influence of viscoelastic after-effects can be reduced in various ways. Often, a dwe11
is inserted between the loading and unloading. According to Chudoba and Richter (2001), the
effect of delayed defonnation on the unloading curve may be neglected if the creep velocity
has decreased so that the depth of penetration grows less than 1% per minute. The influence
of creep at the end of dwell can also be mitigated by using the effective conracr stiffness S, as
proposed by Feng and Ngan (2002):

1 1 lid- =-- +-_ .
S «; I~II '

(46)
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Sapp is the apparent stiffness , obtained from the unloading curve by the standard procedure

described in Section 3 (Sapp is denoted S there) ; /;d is the indenter velocity at the end of dwell ,

and Fu is the load decrea se rate at the beginning ofunloading.

!J
r

a. b. c.

Figure 9. Rheological models: a - Kelvin-Vo igt body. b - Maxwell body . c - Standard Linear Solid.
E - e1astic modulus. II - viscosity. r - relaxarion (or retardation) time.

A disadvantage of this approach is that the indenter depth at the beginning of unloading
(after the dwell) is larger than at the end of loading. This results in larger contact area and
lower apparent hardness . Therefore, it is recommended to use relat ively fast loading followed
immediately by fast unloading (Cheng and Cheng , 2005). Nevert heless, it is generally
insufficient to characterize materials , which flow under load, only by a single value of
hardne ss Ol' elastic modulus. Also a special characteristic, the strain-rate sensitivity index 111

(Goble and Wolff 1993), based on the relationship a et:: a/l1
, as observed for the steady-state

creep in some materials, has only limited use. Better are standard rheologicalmodels, created
from springs and dashpots (Figure 9), which are universal and can also be used in commercial
software for the finite element analysis.

9.1. Models for Linear Viscoelastic Response

The basic elements are a spring and a dashpot. In a spring , the strain is directly
proportiona l to stress, while in a dashpot, proportionality exists between the stress and strain
rate. A simple combination is the Kelvin-Voigt body (Figure 9a), suitable for modelling of
delayed deforming by decreasing rate . The Maxwell body (Figure 9b) can characterize the
processes of stress relaxation. For mode lling of real bodies, more complex models are often
necessary, for example Standard Linear Solid (Figure 9c). The pert inent equations can be
found in monographs, such as FincUey et al. (1976). Tschoegl (1989) Ol' Hadd ad (1995).
Therefore, only the expressions relevant to indentation testing will be given here.

The fonnulae for viscoelastic response to indentation can be derived using the analo gy
between elastic and viscous defonning (cf. Section l l). This appro ach was first applied by
Radok (1957 ) and Lee and Radek (1960). who utilised the elastic solutions of contact
problems. but replaced the elastic constants by a viscoelastic integral operátor ; see also
Johnson (1985).

The relationship between the non-decreasing indenter load and the depth of penetration
into viscoelastic material can be expressed generally as
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(47)

where 111 and K are constants characterizing the indenter geometry. For a flat cylindrical
punch of diameter 21', 111 = 1 and Kp = 1/(21'). For a spherical indenter, 111 = 3/2 and Ks =

3/(4--Jr), where r is the indenter tip radius. For pointed indenters (conical, Berkovich or
Vickers), /ll = 2 and Ke = rc/(2 tana); a is the semiangle of indenter tip or of equivalent cone.
lfI(F, J, t) is a response function depending on the load magnitude and history and on so­
called creep compliance function J(t) for the pertinent material model (see later). For constant
load F acting after step change from O, the response function lfI simply equals the product of
load and creep compliance function,

lfI(t) = F J(t),

so that

hm (t) = K F J(t) .

(48)

(49)

If the load varies (monotonically), the response function lfI(F, J, t) for linearly
viscoelastic materials is obtained as

lfI(t) = ÍJ (t -lI)[dF/dll] dll
o

(50)

II is a dununy variable for integration.
The simplest model for reversible delayed defonning consists of a spring in series with a

Kelvin-Voigt body. The creep compliance function for this standard linear solid (SLS. Figure
9c), is

(51)

Co and Cl are compliance constants; Co corresponds to the instantaneous component of
defonnation and Cl to the delayed defonnation; fl is the time constant of the system
(retardation time), related to the compliance Cl of the spring and dynamic viscosity '71of the
dashpot in the Kelvin-Voigt body as fl = '71 Cl' At the instant ofloading, J(O ) = Co, while for
very long time,J(t~Y)) = Co+ Cl.

More complicated reversible response can be modelled by adding more Kelvin-Voigt
bodies (Figure 10):

(52)

Often also irreversible defonnations appear, which can be: 1) time-independent plastic
defonnations, caused by high stresses under concentrated load, or: 2) time-dependent creep,
known, for example, in asphalt or glasses ancl metals at relatively high temperatures. The
time-independentplastic defonning is characterized by a slider in Figure 10.
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Co, Eo Y, Ho ev

Figure 10. General Standard Linear Solid. C - compliance. E - elastie modulus. Y - yield strength. H­
hardness. ev- viseous compliance, T - retardation time.

Its characteristic (yield strenth Y or hardness H) is contained together with the
characteristic for instantaneous elastic response (E ) in the compliance constant Co.
Combination of Eq. (l 8) and (1) with Eq. (49), written for a pointed indenter and the
instantaneous part of defonnation (i.e. J(t) = Co), gives the following approximate
relationship between Co and elastic-plastic parameters (Men č ík et al., 2009 ):

Co = 2 tan a _ 1_ ( cI> ~e, /H + 'JI ~H / EI' Y.
Jr E l'

(53)

Time-dependent irreversible viscous deformation can be characterized by a dashpot of

viscosity '7, arranged in series with the other bodies (Figure 10). The creep compliance
function for the dashpot alone is

J(t) = Cv l, (54)

where Cl' is the viscous compliance. If this dashpot is connected in series with the general
standard linear solid (52), the creep compliance funct ion is

J(l) = Co+ Cv t + 2:q [1 -exp(- t / fj)]} . (55)

F0ľ111Ula (55) is universal. Specific response can be described by leaving only some
elements in the model. The first two tenns alone (Co+ Cl' t) correspond to the Maxwell body
(Figure 9b). In a special case the model (55) contains only the spring Co and characterizes
instantaneous (time-independent) defonnations. For fully reversible elastic deformations, the
compliance Cocan be expressed by means of elastic modulus :

Co =

')

I - v-

E
(56)

the tenn (l - lJ) accounts for the triaxial srate of stress around the indenter: the relat ionship
for uniaxial stress would be Co = 1/E. Equation (56) is valid for a rigid indenter. If the

indenter cannot be considered stiff compared to the specimen, the expression E/(1 - lJ) must
be replacecl by reduceclmodulus EI' defined by Eq. (16). Analogously to Eq , (56), also the
compliances of other Kelvin-Voigt bodies could be expressed as reciprocals of moduli, q =

l/Ej.
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The viscous compliance ev in Eqs. (54), (S5) is related to dynamicviscosity '7as

ev = (1 - v)/(2 '1) , (57)

as it follows from the condition of compatibility of Eq. (57) with (49) and (S6) and from the
fact that '7expresses the proportionality between shear stress and strain rate.

The load response of viscoelastic materials is often modelled by the finite element
method. In elastic-plastic analysis, Young modulus E and Poisson"s ratio vare mostly used.
Some FEM programs also work with the shear modulus G and bulk modulus K, which are
related to the elastic modulus and Poisson"s ratio as follows:

G = EI[2 (1 + v)] , K =EI[3 (1 - 2 ll)] . (58)

The finite element method enables analysis of viscoelastic material s and parts as well.
Commercial computer codes, such as Ansys, Marc or Abaqus, use Prony series, defined as

y(t) = LBj exp(- tI ~) ;

Bj and ~ are constants. The creep compliance function (S2) can then be written as

J(t) = Boo + LBj exp(- tl Tj) , where Boo = Co+ Lq ,and Bj = - q .

Compliances of Kelvin-Voigt bodies can be given in nondimensional fonn. as well:

J(t) = Boo [1 + LDj exp(- tl ~)] , withD, = B/BCI) .

(59)

(60)

(61)

If the software for viscoelastic analysis uses shear modulus G and bulk modulus K, these
quantities may also be expressed in a fonn of series:

G(t) = Gx + LGj exp(- tl fGj ) , K(t) =Koc + I.Xj exp(- tl fKj) . (62)

Generally, G and K can have different time course and different number of tenns in the
series. Often, various simplifying assumptions are used; e.g. incompressibility ( 11 = 0,5) or
constant Poisson"s ratio ( v = const), and only the time dependence of G or E is assumed.

9.2. Determination of Model Parameters

The constants in spring-and-dashpot models must be detennined by experiment, for
example by fitting the time course of indenter penetration Itfil(t) by Eq. (47) with a suitable
creep compliance function J(t). Various procedures have been proposed during the last twenty
years. Among the first authors, Lucas et al. (1 997), Strojny et al. (1998) and other given in
Moody et al. (1998) cau be named. Fonnulae for fiat punch indentation were proposed by L.
Cheng et al. (1998, 2000) and Strojny and Gerberich (1 998), while pointed indenters were
dealr by Shimizu et al. (1999), Cheng and Cheng (1999, 200Sa), Zhaug et al. (200S) and Oyen
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and Cook (2003). Methods for spherical indenters were developed by L. Cheng et a1. (1998)
and Oyen (2005, 2006). L. Cheng et a1. (2005) brings closed-fonn formulae for relaxation
testing and creep testing by spherical indenter s. Formulae for all three indenter shapes are
given in Sakai and Shimizu (2001), while Cheng and Cheng (2005b) have derived solution
for axisynunetric indenters of arbitrary profile. Huber and Tyulyukovskiy (2004) and
Tyulyukovskiy and Huber (2006) developed a procedure for identification of viscoplastic
properties, using neural networks. Further papers ean be found in the proeeedings edited by
Baker et a1. (2001) and Wahl et a1. (2005), and some will be mentioned later in this section.

The methods for determination of viscoelastic parameters under monotonie loading ean
be divided into two basic groups: with constant load and constant load rate. Here only the
case with eonstant load will be described, which is based on the theory from the previous
section and leads to simple, but universa1fonnulae, applicable for various indenter shapes.

For constant load after a step change , Eq. (49) can be used directly. Unfortunately, the
load increase from O to the nominal value always lasts some time, and this inf1uences the
following response under constant load, more at the beginning (Lee and Knauss, 2000).
However, if the load grows by constant rate and the duration of load increase is short
compared to the retardation time, Equation (49) may be used also, just with slightly modified
creep compliance function, as it will be shown further.

For ramp loading with constant load rate, elF/dt = R = COnst, Equat ion (50) gives

t
lf/(t) = R fJ(f- U)du .

ó

The response under constant load following the ramp loading is then

!R

lf/(t) = Rf J (t - u)du ,
o

(63)

(64)

where ts: (= FIR) is the duration ofload increase. Equation (64), valid for 12 te. was obtained
by superp osition of two integrals (63) for loads growing by constant rate R: the first load
starts at t = O, while the other, aeting in the opposite direction, starts at time tR. Thus, for t >

tv: the load is constant, F (t ~ tR) = Rt - R(t - 10 = RtR. The application of Eq. (64) on the
general standard linear solid (55) gives for f 2 tR:

lf/(t) = F { Co + L q [1 - I~ exp(- t / Z)]} = F J '(t) ,

where /1is so-called ramp correction factor, as introdueed by Oyen (2005. 2006):

(65)

(66)

The modified creep compliance function I (/) in Eq, (65) differs from Eq, (52) only by

the factors /-"1 at exponential tenns. For fast loading, with Sh011 load increase compared to the

retardation times (fR« lj) , the ramp correction factor I~ is close to 1: it attains 1.025 for tR/Z) =

0.05 and 1.05 for tR! Tj = 0.1. and grows rapidly for higher ratios fR I fj.
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The response function for the universalmodel (55) is (Menčík et al., 2009):

lf/(t) = F { Co + ev (t - tRf2) +L:q [1 - fJJ exp(- t / lj)]} = F J' '(t) : (67)

the tenn -tRf2 expresses the fact that the viscous component of the penetration at the end of
the load-increase period (t = tR) corresponds only to the average force growing from Oto F.

The response function (65) Ol' (67) is then inserted into Eq. (47). The constants can be
obtained by minimizing the sum of the squared differences between the measured and
calculated hlll(t) values, However, the actual procedure must be modified. In Eq. (67), severa1
tenns appeal', which do not depend on time: Co, c.JR/2 and q. Regression analysis cannot
detennine them individually, but only as a whole ; otherwise incorrect values could be

obtained. Moreover, the tenns qPj aIso occur here, with the still unknown ramp correction
factors iJ] . From a curve-fitting point ofview, Equation (65), divided by F, corresponds to the

Prony series (60) with Bj = - qfJJ and Boo = Co+ Iq. After obtaining the constants Be.Bj and
Tj from the measured data, the constants iJ], Co and q can be calculated. The number of
elements in the model can be verified from the duration of backcreep after unloading. The
procedure is described in Men čík et a1. (2009), and the quality of fit is illustrated in Figure 11.

If a new material is investigated, it is reasonable to fit the experimental h(t) data by
various creep compliance functions and choose the model with the best fit. The optimum
parameters in each model can be found using a special program Ol' a solver present in
universa1 software such as Excel Ol' Matlab . For models with only a few constants (11 :::; 4),

solver easily finds the "best" parameters (Co, Cl, Tl . . .). With more constants, various
"optimum" values of parameters are sometimes found depending on their starting values used
in the search.
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Figure 11 . Penetration of Berkovich indenter into PMMA under constant load: measurement and
approximation (spring + 3 Kelvin-Voigt bodies in series). Both curves (of .Jogarithmic" character)
overlap: the relative differences [~rd = (hme",ured - hcalculated)/hmeasured] do not exceed severa1 renths of a
percent.
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The differences between J(t) curves for individual fits are often neg1igible. It is thu s

possible to choose fix retardation times fj , scaled in decades; for example rl = 1 s, ti = l Os.

r3= 100 s, etc . Solver then must seek only the constants Co, Cl, etc . In such case, one should
remember that they are no true physica1 constants, but parameters in the model, valid only for
some range of loading time . Generally, the test for obtaining a model should last as long as
the time-dependent processes or as the duration of load action in the assumecl application.
Thennal stability of the measuring device is sometimes the limiting factor.

If several models give acceptable results, the "optimum" model can be chosen with
respect to its future use . Generally, it should not be more complicated thannecessary. Useful
is the knowledge of typical properties of Kelvin-Voigt bodies. Every K-V body, with the

response described by expression q[l- exp(- tl 1J )], is active within about two orders of time :

roughly for 0.03 < t I fj < 3.0. For example, 1 - exp(-D.03) ;::; 0.03. Therefore, for tl fj < 0.03,

the body hardly start ed reacting , and till this time it behaves as if it were stiff. On the other

hand, 1 - exp(-3 ) ;::; 0.95, so that for tt t, > 3 nearly the full defonnation is reached, and the
resultant response (h) correponds to the spring of compliance q alone.

Slightly different approaches to the detennination of parameters in rheological models by
indentation can be found, e.g., in Giannakopoulos (2006), Lu et al. (2003), Zhang et al .
(2005), aud Dub and Trunov (2008).

10. VISCOELASTIC lVIATERIALS - RESPONSE TO H ARIVIONlC LOAD

Typical of viscoelastic materials exposed to harmonie (sinusoida1) load is the shift
between stress and strain (Figure 12) and dissipation of energy, Both phenomena depend on

the material and also on f ..equency. The pertinent characteristics can be obtained by
indentation devices, which use small additional hannonic load (CSM or DNfA mode). In this
section, basic definitions will be presented, as well as fonnulae for principal rheologica l

models.
The response of viscoelastic materials to hannonic load is usually described by two

quant ities : phase angle and modulus. The pha se ang le e5 (Figure 10) expresses the shift

between stress and stra in.

CT(t)
B (t) ...

r'
,/

/
/

O
t

Figure 12. Response of a viscoelastic marerial to harmonie loading (a schematic). cr(t) - stress. e(t) ­
srrain. t - time, <5 - shift between Cl and e.
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The modulus, which characterizes the material stiffness, consists of two components:
storage modulus E ', which is in phase with the strain, and the loss modulus E " , which is 90°
out ofphase with strain; see, e.g., Haddad (1995) Ol' Herbert et a1. (2008):

(jo= (E ' + i E ' ) 50 = E*~ , tan ď= E " / E ' ; (68)

(joand 50 is the stress and strain amplitude, and i is imaginary unit; tan S, called loss factor, is
a measure of damping in linear viscoelastic materials. Storage modulus, together with loss
modulus, fonu complex dynamic modulus of amplitude

E* ~E' ') E" ') / * *= + = 0"0 &0 ; E ' = E cos (), E ' . = E SlIl S. (69)

In the a - e coordinate system, one loading cycle is depicted by an ellipse. The energy,
stored in a volume unit of material during a half cycle is

(70)

and the energy dissipated in a volume unit during a complete cycle, is

(71)

The phase angle li and complex modulus E* depend on the excitation frequency. The
response of a material can be described by a rheological model, whose parameters are
obtained by fitting the values of E*({u) and tan~ (u), measured at various frequencies; {u =

ž n] is angular frequency and f is frequency. The fonnulae expressing tan S and E* as
functions of frequency depend on the model and will be shown here for several important
cases (Haddad, 1995), (Menčík et a1. , 2004).

10.1. Príncípal Models

Kelvill-Voigt body (K- T~ Figllre 9aj

The strain e is the same in the spring and the dashpot. The total stress a equals the sum of
the stress in the spring (in phase with the strain) and the stress in the dashpot (preceding the
strain by 90°), so that it precedes the strain by some phase angle S. The body is also
characterized by complexmodulus E* or compliance C* (= lIE*).

(72a,b)

t is the retardation rime. calculatedas t = l]/G.
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Maxwell body (M, Fig ure 9b)

The stress (J is the same in the spring and dashpot. The total strain 6 is the sum of the

strain in the spring (in phase with the stress) and in the dashpot (lagging behind the stress by

90°). The resultant strain is dela yed by the angle 5. The other characteristic is the complex

modulus E+or compliance c* (= lIE*):

tan 8 = 1/ Cu t: , E* = E/J1+ tan 2 s (73a,b)

Standard Linear Solid (SLS, Figure 13)

The same stress oCt) acts in both the spring and Kelvin-Voigt body. The total strain 4t)
equals the vector sum of the strain in the spring ,,0" (in phase with the stress) and the strain of

the K-V body, which lags behind the stress by the angle DI, given by Eq. (72). The resultant
phase angle (Figure l3b) and complex modulus can be obtained fi:om the fonnul ae (Menčík et

a1. ,2004):

(74a)

(74b)

!Jl

The tenns Eo and EI correspond to stiffnesses of individua1 springs. Similarly to Section
9, they may be replaced by compliances, defined as C* = lIE*, Co= lIEo, and Cl = II E I .

As it follows from Eqs. (74) , single standard linear solid can describe the changes in

response only in a limited range of frequencies. For relatively slow processes , with ( {vii « 1,

the resistance of the dashpot is negligible compared to that of the spring E I , and the whole

body behaves as the springs Eoand EI in series. For relatively high frequencies , ({vr)2» 1, the
resis tance of the dashpot is very high, so that the Kelvin-Voigt body becomes stiff and the

whole SLS body behaves as the spring Eo alone . Thus, more model bodies must usnally be
combined in order to describe the response in a wider interval of frequencies.

a. b.

Figure 13. Standard linear solid: Ol - shift berween stress and strain in rhe Kelvin-Voigt body. 8 - rhe
resultant shift.
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Genem! Standard Linear Solid (GSLS)
This body is obtained by adding more Kelvin-Voigt bodies to the standard linear solid

(Figure 14a). The resultantphase angle and complexmodulus are (Menčík et a1. , 2004):

(75a)

= (75b)

whereEo is the elastic modulus of the .Jonely" spring; the index i in the SlUlls varies from I to
the number 11 ofKelvin-Voigt bodies. (The moduli can be replacedby compliances q = l/Ej .)

This model is suitable if the system is excited by harmonie farce and the displaeement is
measured. If the system is exeited by harmonie displacement and the force is measured as the
response, the Maxwell variant of general standard linear solid (Figure 14b) ean be more
appropriate. For this case,

,- [~ E mf; Jj[E ~E 1 Jtan é - L...J ; ') O+ L...J i ')
; 1+ (rUf;t ; 1+ (mfit '

For 11 = 1, the model is reducedto the Maxwellvariant of single standard linear solid.

(76a)

(76b)

a. b.

Figure 14. Generál standard linear solid. a - Kelvin-Voigt variant. b - Maxwellvariant.

It is importanr to note that both variants of (general) standard linear solid are equivalent
and can describe the same response (Gross, 1953). If the consrants for one variant (e.g.
Kelvin-Voigt) are known, it is possible to obtain the values of constants in the conjugated
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(here Maxwell) variant of GSLS (with the same number of elements), just by fitting the E*((o)
and tan ~(o) curves by the expressions for this body (Menčíket al ., 2004).

10.2. Determination of Model Parameters

The values of parameters in the chosen spring-and-dashpot model must be found by
experiment, Some indentation devices superimpose a little hannonic signal on the basic load
(CSM or DMA mode) and give , as the output, the complex dynamic modulus and phase

angle . The measurements are done for severaI frequencies, and the E*((o) and tan~(o) values
are fitted by the above expressions for this body. The least squares method can be used, with

a suitable nonlinear curve-fitting program. Both curves, E*((o) and tan 5((0) , must be fitted. If

only one function (e.g. tané) were fitted , the fit could be very good, but the obtained constants

sometimes do not fit the other function (E*) well. It can be recommended to fit tan5 first, then

E*, then again tan 5, etc . Often 2 - 6 steps are sufficient.

The number of Kelvin-Voigt bodies in the model should be chosen with respect to the

course oftan~(o) in the investigated frequency range; it can loosely correspond to the number

of steps or peaks in the curve tan~(o) in this interval. (Dne should be aware of limited range

of frequencies available at nanoindentation devices .) For relatively low frequencies ( (0
2 f/-«

1), the K-V body may be replaced by the spring E, alone (approximately for (O < 0.1/ ll ). For
relatively high frequencies, the body may be removed from the model. This is possible for all

K-V bodies with ll > 10/(0. Generally, the viscoelastic properties of a certain K-V body play a

role in the range about 0.1 < (Or; < 10. As the stiffness ofa K-V body changes continuously, it

is possible to choose fix retardation times ll , scaled in decades; for example f l = 1 s, ti = l Os,

f3 = 100 s, etc. Solver then must seek only the constants Eo, El , etc .
Several general notes must also be made here regarding the indentation measurement of

hardness and elastic modulus under harmonie load . If they should be creclible, they must be
accompanied with the infonnation about all conclitions of measurement, inclucling the
duration of load increase and the dwell before unloading, as they all influence the results.

Hardness, defined as the mean contact pressure (14), is calculated from the contact area
obtained via contact depth h. , Accorcling to Eq . (9), the contact depth depends on the total
depth (which depends on the duration of loading), and thus also on the contact stiffness. One
must keep in mind that two contact stiffnesses can be obtained in the tests: the unloading
contact stiffness S, calculated according to Eq. (5), and hannonic contact stiffness Sj;
characterizing the response to hannonic load and calculated according to Eq . (7). The contact
depth h; must always be calculated using the unloading contact stiffness. The additional
harmonie oscillations in the CSM (DIvL-\.) mode are very smal l and virtually do not influence
the Fsh curve (Oliver and Pharr, 1992). Hardness (14) is thus independent of the excitation
frequency (Men č ík et al. , 2005), though this fact may look strange. As a simple altemative
measure 01' apparent stiffening of viscoelastic marerials at higher frequencies, the index of
sensitivity to harmonie load may be used, defined by Menčík et al. (2005) as the ratio of the

harmonie and unloacling contact stiffness for the same contact depth:

(77)
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This index can be used to evaluate the influence of frequenc y Ol' other factors, Ol' to
compa re various materials.

Elastic modulus under harmonie load depends on the excitation frequency,

'"E,..j (78)

The contact area A must again be calculated using the monotonie unloading contact
stiffness, while Sf in the numerator is the harmonie contact stiffness Fo/ho for the same contact
depth . Some nanoindentation devices give the in-phase component of the expression Fo/ho
("extracted" from the measured Fo and ho values in the device with respect to its inner
compliance and damping). In such ease , the modulus, calculared according to Eq. (78),
corr esponds to the storage modulus E' . One must therefore be sure what quantities he Ol' she
will work with. More about testing under harmonie load can be found, for example, in
Herbert et a1. (2008), Menč ík et a1. (2005), Huang et a1. (2005), Ol' Odega rd et a1. (2005) .

ll. CREEP AND VISCOSITY

The term creep denote s very slow irreversible defonning under constant load . It appears
in metals, glasses Ol' ceramics at high temperatures, but also in polymers , soft metals and
some other materials at common temperarures: examples are bitumen Ol' lead. In principle, all
solids can be regarded as visco-elastic-plastic, with the individua1components of defon nation
depending on the materiál, loading conditions and environment. TI1Ís holds also for the initial
stage of creep. Fortunately, in the steady-state stage of creep the delayed elastic proc esses
have ceased and the defonning continues only due to viscous flow, so that the response can

be characterized by viscosity. The dynamic viscosiry '7 is the proportionality constant

between shear stress rand shear strain rate :

r = dr/dl = r/'l . (79)

TI1Ís Newtou' s law for viscous liquids is analogous to Hookes law for elastic solids, y =

r/G, with f corr esponding to 1, and '7corresponding to shear modulus G. This visco-elastic

analogy enables direct use of known solutions for elastic problems to the analysis of slow

viscous defonning, just by replacing the strains by strain rates. Ol' the characteristic
defonnation .l' of an elastic body by the velocity ifl; of defonning a similar viscous body, and

replacing the shear modu lus by dynamic viscosity . If a body is deformed only by viscous
flow, and if the stress is constant. also the velocity of defonning is constant and the total

defonnation (01' increase in defonnation) during time t is simply .l' = 6>, t: otherwise it is

obrained as:

y = f.-i ,(t) dt , (80)
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where the instantaneous velocity x (t) depends on the instantaneous stress o(t) . F0l111Ulae with

elastic solutions for many simple bodies and load cases can be found , e.g., in Roark (1989 ).

Dynamic viscosity 17 can be measured by various methods, including indentation. The
simplest approach uses constant load and measures indenter displacement h(t) as a function of
time. Again, fonnula (47) can be used. For practical reasons, Maxwell body (spring and
dashpot in series, Figure 9b) is most suitable, with the creep compliance function

J(t) = Co+ Cy t . (81)

Co characterizes all deformations that do not depend on time , i.e. the instantaneous and
delayed elastic deformations , plastic defonnations. and also viscous defonnations that have
occurred before the beginning of creep measurement.

The viscous compliance Cv in indentation tests is related to the dynamic viscosity '7 by
Eq . (57). Combination ofEqs. (49), (81) and (57) gives

h'"(t ) = K F ( Co + 1- II tJ = ko + kl t ,
2'7

(82)

where ko and kl are regression constants, and 111 and K are constants for indenter geometry,

defined at the beginning of Section 9; for a pointed indenter, 111 = 1.5 and K = rr/(2 tan a ).
After fitting the h!U(t) data by linear regression function (82), the dynamic viscosity is
obtained as

(83)

if incompressibility ( ll = 0.5) is assumed, 17 = KFI(4kl ) . From papers about viscosity
measurement by indentation, Cseh et al. (1997) and Sakai and Shimizu (2001) can be
recommended.

CONCLUSION

Today, nanoindentation (instn unented indentation) enables the derermination of many
import ant material characteristics, such as elastic modulus and hardness, yield strength and
stress-strain curves for elastic-plastic materials, but also parameters in rheological models for
viscoelastic response. lndentation devices and methods have been developed permanently,
and more and more sophisticated procedures for ana1ysis appea r, often in combination with
the finire element modeling and other tools. Nevertheless, very often simple models and
methods are quite sufficient (also because they are sometimes based on a very elaborate
analysis). However , one must be avare of the limited validity of a particular model. This
chapter has brought an overview of various simple models, with the explanation how they
were derived and what are their limits. In this way it cau help in the choice of a suitable
model and formulae and test conditions. The text was accompanied by numerous references.
which can facilitate further study.
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