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THE BALLAST PICK-UP PROBLEM IN HIGH SPEED TRAINS 

Angel Sanz-Andres1,  Fermín Navarro-Medina2 

 

When a high speed train overpasses a critical speed produces a wind speed close to the track large 
enough to start the motion of the ballast elements, eventually leading to the rolling of the stones and,              
if they get enough energy, they can jump and then initiate a saltation-like chain reaction. In this 
contribution a mathematical model of the initiation of the motion is presented. The dynamics of the stone 
is formulated taking into account both gravity and aerodynamic forces. These aerodynamic forces are the 
result of the train-generated-gust impinging on the stones. Although they are intrinsically non steady, 
under some conditions a cuasi-steady aerodynamic model can be employed. Conditions for the start of the 
motion are obtained in terms of the Tachikawa number (a kind of Froude number). The aerodynamic 
characteristics are included in terms of the zero aerodynamic moment line of the stone, and the 
aerodynamic moment coefficient. 
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1 Introduction 

The flight of objects carried by the wind, in different configurations, has received a strong interest by the 
scientific community since old times. In this regard, three related problems can be outlined: eolian erosion 
[1], flying debris [2], and ballast pick-up by high speed trains debris [3]. In the case of a high speed train, 
when it overpasses a critical speed produces a wind speed close to the track large enough to start the 
motion of the ballast elements, eventually leading to the rolling of the stones and, if they get enough 
energy, they can jump and then initiate a saltation-like chain reaction. This chain reaction appears when 
the stones that have jumped return to the track floor and impact to the resting stones, transmitting them 
the momentum that the flying stones have obtained from the wind generated by the train. These high 
energy impacts give impulse to the hit stones, and some of them start to move, feeding the chain reaction. 
Sometimes these flying stones reach an height which is larger than the lowest parts of the train, striking 
them (and the track surroundings) producing considerable damage that are to be avoided e.g. by limiting 
the maximum allowed operational train speed. In section 2, the mathematical model is presented and the 
conditions for the starting and continuation of the motion are discussed. As the problem is a non-linear 
one, in order to attain some useful analytical results, a first order solution is obtained that is valid for 
small amplitude motion, solution which allows us to analyze the influence of the initial conditions in the 
starting of the motion. A more detailed presentation can be found in [4]. 
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2 Motion equations 

The geometry and the nomenclature of the problem to be considered is displayed in Fig. 1. A stone, which 
is lying on a horizontal wall, can rotate around the point A, which is the rear contact point, due to the 
action of the aerodynamic loads produced by a time-dependent incoming flow U(t), while restrained by 
the action of the gravity forces. A material line AC, otherwise called “chord”, which should be clearly 
outlined in the stone, is used as a reference for the several distinguished directions to be considered. The 
line LMN, the reference for the aerodynamic loads, is the direction of the mean wind that produces zero 
aerodynamic moment with regard to point A. The dynamics of the stone is described by the equation of 
the angular acceleration produced by the applied torque:  
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where I is the moment of inertia with regard to point A, ρa air density, AFp plan form area, R characteristic 
stone dimension (e.g. radius of the sphere circumscribing the stone), cm coefficient of aerodynamic 
moment with regard to point A, Mp stone mass, g acceleration of gravity, dcmA distance between the centre 
of  mass and the pivoting point A,  θcm = θL + δLcm,  θL = β +δCL , and U(t) = U0 f(t). U0 is the time-
averaged incoming speed. The first term inside the brackets is the aerodynamic moment, with regard to 
point A, assuming a quasi-steady behaviour, thus neglecting unsteady effects, which is valid if the 
residence time is much less than the characteristic time of change of the boundary conditions.  
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1: Sketch of the configuration considered. Definition of angles. LMN: zero moment line. cm: centre 

of mass. AC: chord of the body. 
 

The second term in (1) is just the moment of the gravity forces, with regard to point A. Eq. (1) can be 
rewritten in dimensionless form by using a dimensionless time T = t/tc, based on a characteristic time tc 
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where tcrg is the characteristic time of the rotational motion of the body due to the effect of gravity forces, 
thus obtaining 
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where dX/dT = X’, and 
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K0 is the Tachikawa number including the factor R/dcmA, referred to the mean velocity U0. The motion 
equation (3) is a highly non-linear one, due to both terms in the right-hand-side of the equation and the 
solution should be obtained by using numerical integration. However, for gusts of small intensity 
compared with the averaged speed U0, there is the possibility of analyzing the solution by using a linear 
approximation. The conditions to be fulfilled at a time instant t0 for the body to start the rotation around 
point A are: a) equilibrium of applied moment, that is,  

K0f 
2(t0)cm(θL0) = cosθcm0 , from (3), and b) positive acceleration 0Lθ ′′ >  when  t > t0. Consider that the 

body is at rest, with the zero moment line at an angle θL(t0) = θL0 = β0 + δCL and therefore θcm(t0) = θcm0 = 
θL0 + δLcm = β0 + δCL + δLcm. Thus 
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which in the limit for θL0 ~ θcm0 << 1, that is, for high wind velocity (K0 >> 1), is 
2
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Ec. (3) can be rewritten, assuming a linear variation of cm(α) versus the angle of attack, that is, cm(θL) 
= cmαθL (cmα is the slope of the curve of variation of aerodynamic moment coefficient vs angle of attack) 
as follows 

2
0 ( ) cos( )L m L L LcmK f t c αθ θ θ δ′′ = − + , (7) 

At the starting instant, t = t0, is ' ' ' 0L Lθ θ= =  and therefore conditions (5) or (6) holds. Even though the 
stone starts to move at t0 (which is the classical assumption employed in erosion studies), the successful 
continuation of the motion will not be guaranteed. Actually, only if the gust lasts enough time and the 
intensity is large enough the stone will obtain enough energy to overcome the restoring effect of gravity 
forces. In this case, as the stone centre of mass reaches the upper position, the gravity restoring torque 
disappears, and, if the rotation angle further increases, the restoring character will change to a 
destabilizing action, leading to a continuation of the motion (here called “successful motion”). 
However, if the aerodynamic forces are not able to impulse the stone to reach this higher position, the 
stone will turn back towards its initial position and the motion will be frustrated. The determination of the 
relationship between the parameters involved that defines the limit of the initial conditions leading to 
either a frustrated motion or a successful one is based on the equation of motion. In a general case, the 
determination of initial conditions leading to successful motions implies the numerical integration of (7) 
with a suitable definition of the wind variation f(t). 
However, before entering this complex problem, it is possible to obtain some very helpful information by 
analyzing a simplified version of the problem obtained by linearization of (7). 

2.1 Linear approximation 

The abovementioned linearization can be carried out in the case that the angles are small, the wind 
velocity high enough, and the gust intensity is small compared to mean wind speed, that is f(t) = 1 + ε 
sinωt =  1 + εsinΩT ,  ε << 1, and Ω  is the dimensionless angular frequency  

cn crgt t

πΩ 2
= , (8) 

where tcn = 2π/ω is the period of the sinusoidal gust. In the case that ε << 1, then   f 2(t) � 1 + 2 ε sinΩT 
and the starting condition (5) can be written as follows 
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This condition states that for the starting of the motion to occur, in the frame of this simplified 
analysis, the RHS terms should be also small enough. In fact (11) defines the condition that should fulfil 
the starting instant T = T0 . 

The motion can be studied by considering small amplitude deviations θ from a mean value θLm such 
that θL = θLm (1 + εθ), where θLm is the solution of the equilibrium ' '( 0)Lθ = when ε = 0, that is 

K0cmαθLm – cos (θLm + δLcm) = 0 ,  or   
0

1
Lm

mK c α

θ � , (12) 

provided that  θLm + δLcm << 1. Eq (7) then can be rewritten as 
 

0 ( 2sin ) sin ( )Lm m Lm Lm Lcm LmK c Tαθ εθ θ ε θ θ δ εθ θ′′ = + Ω + + , (13) 

and, neglecting Ο( ε 2) terms one obtains 
2 sink h Tθ θ′′ − = Ω , (14) 

where   k2 = K0cmα + sin(θLm + δLcm)    and   h = 2K0cmα. The homogenous solution of (14) contains 
exponential terms that lead to fast increasing values (or decreasing values) of θL with the exception of a 
particular solution 

θ = θssinΩT        ;   
2s

h

k
θ −=

Ω +2
, (15) 

and the minus sign represents a 180º delay between the excitation term and the response. Note that (15) is 
the forced response to the driving term in the RHS in (14), which is an oscillation like the incoming  flow 
fluctuation, but with an amplitude reduced by the factor h/(Ω2 + k2), and delayed 180º. Therefore, the high 
frequency terms involved in the wind gusts do not excite a noticeable response. In fact, (14) represents a 
kind of strange low pass divergent filter with a cut frequency at Ω = k. The general solution of (14) is 

1 2 2 2
( ) exp( ) exp( ) sin
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T C kT C kT T

k
θ = + − − Ω
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Note that, to avoid a positive exponential growth, a stability region can be defined by stating that      
C1 ≤ 0. Negative values of exponential term represent a sudden decrease of the angle towards the support 
(frustrated motion). In the case that the stone is at rest at T = T0, that is 0 0θ ′ = , the stability condition is 
reduced to  
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which can be rewritten as  
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with θ0 < 0, which means that θL0 (defined as θL0 = θLm(1+ εθ0)) should be smaller than θLm by an amount 
ε|θ0|. That is, in physical variables the condition (18) can be rewritten as 
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(19) 

Therefore, the larger the amplitude of speed variation (large ε) the larger is the difference between θL0 
and θLm. If the angle at the initial position θL0 is lower than θLm, the aerodynamic force does not produce a 
moment large enough until the speed has overpassed the mean value by an amount εsinΩT0. 

The condition to maintain a continuous oscillation is θ0 = θ0lim, which makes null the contribution of 
the positive exponential term (C1 = 0). If θ0 > θ0lim then a positive contribution of this exponential term 
appears, leading to a divergent solution. Note that the linear analysis presented here is a conservative one 
in predicting the stable region, as the gravity force considered is larger than the real one, because of the 
assumption that β is small enough. The stabilizing torque due to gravity in the linear approximation is 
larger than the real one when β approaches π/2. The limit cases for the gust effect are:  

- Limit L) long duration gust  X → 0 (tcn >>  tcrg), θLlimL = θLm (1−2 ε), and 
- Limit S) short duration gust X → ∞ (tcn <<  tcrg), θLlimS = θLm = 1 / (K0 cmα). 
In the case of long duration gusts, the effect is the same as that of a quasi steady flow, that is, the 

instantaneous speed can be taken as a permanent speed, and then the effect on aerodynamic moment is 
1+2ε, therefore, the limit value is the equilibrium at maximum speed. In the case of short duration gust, 
the limit angle is due to the mean value of the aerodynamic force, as the dynamical system (14) filters out 
the high frequencies of the gust. Eq. (19) can be rewritten as 
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2 2
log log log 1 log log

1 1
L m mK c K c e

X X
α α

ε εθ  = − + − − − + + 
� , (20) 

The extreme cases L and S can be displayed as two straight lines in a logarithmic plot (see Fig.2). The 
limit case S is a fixed line while case L depends on the value of ε. The region between both lines 
represents suitable configurations for the starting of successful motion (if X is not known). The vertical 
distance between the two lines is 2ε log e/(1+ X)1/2 aprox. 

 
 
 
 
 
 
 
 
 
 
 

Fig. 7. Variation of the limit angle θLlim with the parameter K0cmα. Long- (limit L, X = 0); and short- 
duration gust (limit S, X = ∞). 
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3 Conclusions 

The study of the effect of wind on bodies lying on a flat floor has been presented, the main parameters 
influencing the phenomenon of the starting of the motion have been identified, and the relationship 
among them that leads to a successful motion has been obtained. Two limits exits, for long and short 
duration gusts, respectively. The study covered in this paper has been carried out under technical and 
financial support from Talgo. The authors would like to thank David Perez Rodriguez and Emilio García 
for fruitful discussions and suggestions. 

Reference literature 

1. BAGNOLD, R.A., The physics of blown sand and desert dunes, Chapman and Hall, London. 1941 

2. BAKER, C.J., The debris flight equations, J.  Wind Eng. Ind. Aerodyn. 2007, 95, pp. 329−353. 
3. KWON, H.B., PARK, C.S., An experimental study on the relationship between ballast-flying 

phenomenon and strong wind under high-speed train. Proceedings of 7th World Congress on Railway 
Research. Montreal, Canada, 2006, June 6. 

4. SANZ-ANDRES, A., NAVARRO-MEDINA, F., The initiation of motion of a lying object caused by 
wind gusts, J.  Wind Eng. Ind. Aerodyn. (in review). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


