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THE BALLAST PICK-UP PROBLEM IN HIGH SPEED TRAINS

Angel Sanz-Andres, Fermin Navarro-Medina®

When a high speed train overpasses a critical spextlices a wind speed close to the track large
enough to start the motion of the ballast elemesmigntually leading to the rolling of the stonesl,an
if they get enough energy, they can jump and thetiaie a saltation-like chain reaction. In this
contribution a mathematical model of the initiatiointhe motion is presented. The dynamics of thaest
is formulated taking into account both gravity ametodynamic forces. These aerodynamic forces are th
result of the train-generated-gust impinging on st@nes. Although they are intrinsically non steady
under some conditions a cuasi-steady aerodynamitehoan be employed. Conditions for the start ef th
motion are obtained in terms of the Tachikawa nun{baekind of Froude number). The aerodynamic
characteristics are included in terms of the zeecodynamic moment line of the stone, and the
aerodynamic moment coefficient.
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1 Introduction

The flight of objects carried by the wind, in difé@t configurations, has received a strong intdrgghe
scientific community since old times. In this redjathree related problems can be outlined: eoliasien

[1], flying debris [2], and ballast pick-up by higipeed trains debris [3]. In the case of a higledrain,
when it overpasses a critical speed produces a gpeed close to the track large enough to start the
motion of the ballast elements, eventually leadimghe rolling of the stones and, if they get erfoug
energy, they can jump and then initiate a saltdil@ chain reaction. This chain reaction appeangnv
the stones that have jumped return to the traak ffond impact to the resting stones, transmittivegt

the momentum that the flying stones have obtaimech fthe wind generated by the train. These high
energy impacts give impulse to the hit stones,somde of them start to move, feeding the chain i@act
Sometimes these flying stones reach an height wikitdrger than the lowest parts of the train kstg
them (and the track surroundings) producing comalile damage that are to be avoided e.g. by ligitin
the maximum allowed operational train speed. Irtise@, the mathematical model is presented and the
conditions for the starting and continuation of thetion are discussed. As the problem is a norafine
one, in order to attain some useful analytical ltesa first order solution is obtained that isigdior
small amplitude motion, solution which allows usatmalyze the influence of the initial conditionstive
starting of the motion. A more detailed presentatian be found in [4].
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2 Motion equations

The geometry and the nomenclature of the problebetoonsidered is displayed in Fig. 1. A stonecWhi

is lying on a horizontal wall, can rotate arouneé thoint A, which is the rear contact point, duehe
action of the aerodynamic loads produced by a tie@endent incoming flowJ(t), while restrained by
the action of the gravity forces. A material lin€€ Aotherwise called “chord”, which should be clgarl
outlined in the stone, is used as a referencehfiseveral distinguished directions to be consii€rbe
line LMN, the reference for the aerodynamic loadshe direction of the mean wind that produce® zer
aerodynamic moment with regard to point A. The dyita of the stone is described by the equation of
the angular acceleration produced by the applieguto

8. =|—1Epa/¥pRu2(t) 6,60~ M, gd, cosecm} (1)
wherel is themoment of inertia with regard to point & air density A, plan form areaRk characteristic
stone dimension (e.g. radius of the sphere circtubiag the stone)cn coefficient of aerodynamic
moment with regard to point A, stone masgy acceleration of gravityd.ma distance between the centre
of mass and the pivoting point AGm =8 + dem @ = LB +ocL, andU(t) = U f(t). Up is the time-
averaged incoming speed. The first term insidebitaekets is the aerodynamic moment, with regard to
point A, assuming a quasi-steady behaviour, thugeogng unsteady effects, which is valid if the
residence time is much less than the charactetiste of change of the boundary conditions.

LMN

Fig. 1: Sketch of the configuration considered.id&bn of angles. LMN: zero moment line. cm: centr
of mass. AC: chord of the body.

The second term in (1) is just the moment of thavity forces, with regard to point A. Eq. (1) cam b
rewritten in dimensionless form by using a dimenkass timer =t/t., based on a characteristic titge

| (2)

M pganA

t. =t =

c crg

wheret.q is the characteristic time of the rotational motaf the body due to the effect of gravity forces,
thus obtaining
g =K, f%(t)c,(8,)-cosd,, (3)

where K/dT =X, and
_1pAU; R
° 2 Mg dg,

(4)
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Ko is the Tachikawa number including the fad®. referred to the mean velocitly. The motion
equation (3) is a highly non-linear one, due tohbi@rms in the right-hand-side of the equation #red
solution should be obtained by using numerical gragdon. However, for gusts of small intensity
compared with the averaged spédg] there is the possibility of analyzing the solatioy using a linear
approximation. The conditions to be fulfilled atime instantt for the body to start the rotation around
point A are: a) equilibrium of applied moment, tigt

Kof 4(to)cm(Blo) = coFenp , from (3), and b) positive acceleratiahi>0 when t > to. Consider that the
body is at rest, with the zero moment line at agl@f (to) = 80 = (o + & and thereforé. (to) = Genp =
Bo+ dem=po+ &L+ Aem Thus

6.0 cosffy + 0. + O e )

fz(t ) — Co — Lcm J
T Ken0)  KeCnlBotOe) (5)

which in the limit for@, ~ Gnp << 1, that is, for high wind velocit)(>> 1), is

, 1
f (tO)D KOCm(eLO) ' (6)

Ec. (3) can be rewritten, assuming a linear vamatf c(a) versus the angle of attack, thatag(4)
= tmel. (Cme is the slope of the curve of variation of aerodgitamoment coefficient vs angle of attack)
as follows

9: = Ko f z(t)cmaeL - COS@L + JLcm )’ (7)

At the starting instant,=to, is § =6 =0 and therefore conditions (5) or (6) holds. Eveoutyh the

stone starts to move &t (which is the classical assumption employed irsiero studies), the successful
continuation of the motion will not be guarante@dtually, only if the gust lasts enough time and th
intensity is large enough the stone will obtain wgto energy to overcome the restoring effect of ityav
forces. In this case, as the stone centre of nemshes the upper position, the gravity restorimgue
disappears, and, if the rotation angle further aases, the restoring character will change to a
destabilizing action, leading to a continuatiortled motion (here called “successful motion”).

However, if the aerodynamic forces are not ablértpulse the stone to reach this higher positios, th
stone will turn back towards its initial positiondathe motion will be frustrated. The determinatidrihe
relationship between the parameters involved tledinds the limit of the initial conditions leadirig
either a frustrated motion or a successful oneagetl on the equation of motion. In a general dase,
determination of initial conditions leading to sassful motions implies the numerical integrationof
with a suitable definition of the wind variatidt).

However, before entering this complex problems ipossible to obtain some very helpful informatign
analyzing a simplified version of the problem ob&al by linearization of (7).

2.1 Linear approximation

The abovementioned linearization can be carriediouhe case that the angles are small, the wind
velocity high enough, and the gust intensity is frm@mpared to mean wind speed, thaf(fy =1 + &
sinat = 1 +&s5inQT , £<< 1, andQ is the dimensionless angular frequency

_ 2

Tt/ (8)

wherete, = 2t/wis the period of the sinusoidal gust. In the chsged << 1, then f%(t) 0 1 + 2¢ sinQT
and the starting condition (5) can be written dlofes
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1+ 2¢ SinQT, = €056 * 9ien) ), 9)
KOCmagLO
that is
cos@,+9,..) . .
K,c @, 6 =——=L0 “Lem/f 1_2¢sinQT )co +0 .,
0~ma ™ L0 1+ 2£ SinQT ( ) Sﬂ_o Lem . (10)
leading to
. 1 K,c_ 6,
£sinQT. ==| 1—-———0"ma 710 ,
° 2[ cos@,, + 3., )] (11)

This condition states that for the starting of thetion to occur, in the frame of this simplified
analysis, the RH&rms should be also small enough. In fact (11lindsfthe condition that should fulfil
the starting instant =Ty, .

The motion can be studied by considering small @og# deviationsd from a mean valuél , such
thatd = 4 (1 +¢6), whered , is the solution of the equilibriun®, =0)whene = 0, that is

KOCmga_m — COS a_m + 5Lcn~b = O y or HLm a %, (12)

0~ma

provided that4 m + dcm << 1. Eq (7) then can be rewritten as
engg" = KOCrmng‘g(g-i- ZSinQT)+ Sin 6Lm+5Lcmr0 Llﬁ’ (13)

and, neglecting( ¢ ?) terms one obtains
g -k*6= hSiI"IQT, (14)

where K = KoCmng + SiN@m + diem)  and h = 2KoCme. The homogenous solution of (14) contains
exponential terms that lead to fast increasingasl{or decreasing values) éf with the exception of a
particular solution

6= @sinT  ; 6=—"

(15)

and the minus sign represents a 180° delay bettheesxcitation term and the response. Note thati§€l5
the forced response to the driving term in the RiH@4), which is an oscillation like the incomirfgpw
fluctuation, but with an amplitude reduced by thetbrh/(Q? + k%), and delayed 180°. Therefore, the high
frequency terms involved in the wind gusts do nalite a noticeable response. In fact, (14) reprssan
kind of strange low pass divergent filter with a frequency af) = k. The general solution of (14) is

6(T) = C exp(kT)+ C expf KT} o7 i 2

sim T, (16)

Note that, to avoid a positive exponential growdhstability region can be defined by stating that
C; < 0. Negative values of exponential term represenidalen decrease of the angle towards the support
(frustrated motion). In the case that the stonatigest afl = Ty, that is g, =0, the stability condition is
reduced to

. QcosQT,
ﬁ(sm(ﬂo +Lj

+90 <0, (17)

which can be rewritten as
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2 Lo 202 Q2
Bl2l0ml= o X T (18)

with & < 0, which means tha&, (defined asfl o = 8.n(1+ ¢&)) should be smaller thafi,, by an amount
¢|&|. That is, in physical variables the condition)(@é8n be rewritten as

0 <q =1 (1_ 2sj: M ,9d;m (1_ 25)
Lo L fim KOCI'TW \/ﬁ %paA:pUOz an] m (19)

Therefore, the larger the amplitude of speed vianatargee) the larger is the difference betweép
and 4. If the angle at the initial positiofio is lower thand ,, the aerodynamic force does not produce a
moment large enough until the speed has overpalssadean value by an amousinQT.

The condition to maintain a continuous oscillatisr® = &im, Which makes null the contribution of
the positive exponential ternE{ = 0). If & > &im then a positive contribution of this exponentiin
appears, leading to a divergent solution. Note tiatinear analysis presented here is a conseevatie
in predicting the stable region, as the gravitycéoconsidered is larger than the real one, becaiute
assumption thaf3 is small enough. The stabilizing torque due tovigyain the linear approximation is
larger than the real one wh@rapproaches/2. The limit cases for the gust effect are:

- Limit L) long duration gusX — 0 (tcn>> terg), BiimL = Bm (1-2¢), and

- Limit §) short duration gust — o (tcn<< terg), Biims = @m =1/ Ko Cma)-

In the case of long duration gusts, the effeches $ame as that of a quasi steady flow, that &s, th
instantaneous speed can be taken as a permaneqdt spel then the effect on aerodynamic moment is
1+2¢, therefore, the limit value is the equilibriumrmatximum speed. In the case of short duration gust,
the limit angle is due to the mean value of th@dgmamic force, as the dynamical system (14) §ltut
the high frequencies of the gust. Eq. (19) carelbeitten as

2¢ 2¢
logg . =-logK + | 1- 0 = logK -—— loge,
090 jim 09 KoCrg Og( mj 00K Gy m oge (20)

The extreme casésandS can be displayed as two straight lines in a |digaric plot (see Fig.2). The
limit caseS is a fixed line while casé depends on the value ef The region between both lines
represents suitable configurations for the startihguccessful motion (K is not known). The vertical

distance between the two lines isl@g &/(1+ X)*? aprox.

Loa(B, iim)
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Fig. 7. Variation of the limit anglé i, with the parametefocm,. Long- (limitL, X = 0); and short-
duration gust (limitS, X = o).



5" International Scientific Conference , TheoreticaldaPractical Issues in Transport “
Pardubice, 11— 12" February, 2010 135

3

Conclusions

The study of the effect of wind on bodies lying @filat floor has been presented, the main paramseter
influencing the phenomenon of the starting of thetion have been identified, and the relationship
among them that leads to a successful motion has bbtained. Two limits exits, for long and short
duration gusts, respectively. The study coverethis paper has been carried out under technical and
financial support from Talgo. The authors woulceliio thank David Perez Rodriguez and Emilio Garcia
for fruitful discussions and suggestions.
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