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VEHICLE SCHEDULING WITH HETEROGENEOUS BUS FLEET 

Stanislav Palúch1, Štefan Peško2 

 
The paper studies vehicle scheduling problem formulated as to minimize the number of vehicles 

with several types of buses. A general mathematical model is presented using graph coloring and bivalent 
linear programming formulation. A suboptimal algorithm is designed and the way is proposed how to 
exploit its result to reduce the corresponding bivalent linear programming model.  
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1 Introduction 

The essential element of regional and/or municipal bus transport is a bus trip  (sometimes called a 
journey). Bus trip is one move of a bus from a starting bus stop to a finishing bus stop. Several additional 
bus stops can occur during this travel however these stops are not important for bus scheduling purposes. 
A trip is defined by four data:  

dp(t) – departure place of the trip t 

ap(t) – arrival place of the trip t 

dt(t) – departure time of the trip t  

at(t) – arrival time of the trip t  

Let’s have two trips: 

=1t  ( ))1(),1(),1(),1( atdtapdp ,   =2t  ( ))2(),2(),2(),2( atdtapdp . 

We will say that the trip 2t  is linkable after trip 1t , or the trip 1t  precedes the trip 2t ,  and we will write 

21 tt p  if 

[ ])2(),1(_)1()2( dpaptimetravelatdt ≥− , 

i.e. if there exists enough time for a bus to transfer from arrival place of the trip  1t  to the departure place 

of the trip 2t  so that it arrives to )2(dp  sufficiently early so that it can make the trip 2t .  
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A running board  of a bus is a sequence of trips kttt ,,, 21 K  such that kttt pKpp 21 . The linkage 

ji tt p
 is penalized by a cost c(i,j) which can express dead mileage expenses, line change penalty, waiting 

time penalty etc. 

A bus schedule is a set of running boards. 

 

Given a set of trips T, we can formulate two fundamental vehicle scheduling problems: 

VSP1: To arrange all trips from T into minimum number of running boards. 

VSP1: To arrange all trips from T into minimum number of running boards with  
             minimum total cost of all linkages. 

There are a lot of additional constraints imposed on running boards. These constraints depend on 
legislation of corresponding country, on the way of driver duties scheduling, regional traditions and can 
even vary from bus provider to bus provider.  

Standard vehicle scheduling assumes that all buses are the same. Practical experiences show that bus 
providers use several types of buses with different size and capacity. In this case the set of trips is divided 
into several subsets according to traffic demand (number of passengers requiring this trip) and according 

to possibility and/or necessity to provide trips with certain bus type. Therefore for every trip it  and every 

bus type b we have one of the following additional constraints: “Trip it  must be assigned to a bus of the 

type b. “, “Trip it must not be assigned to a bus of the type b.“ and “Trip it  can be assigned to a bus of the 
type b.“ Scheduling taking into account these additional constraints will be called a Vehicle Scheduling 
with Heterogeneous Bus Fleet – VSHBF problem.  

Standard vehicle scheduling problem can be transformed to an assigning problem and therefore we 
have a polynomial complexity algorithm for it. However, additional constraints   make VSHBF problem 
hard.  

 

2 Graph  formulation and algorithm for VSP1 

Let T  be a set of trips. Trip digraph of T  is a digraph ( )EVGT ,=  with the vertex set V = T  and with the 

edge set { }jiVjijiE p,,;),( ∈= . The set E contains all ordered pairs ),( ji of trips such that trip j is 

linkable after trip i. Digraph TG  is a transitive acyclic digraph.  Every path in TG  is a feasible running 
board. Hence the problem VSP1 – to arrange all trips from T into minimum number of running boards – 

can be solved in corresponding trip digraph as to cover all vertices of  TG  with minimum number of 
disjoint paths. 

The following auxiliary edge weighted digraph is useful for solving just formulated graph problem: 
( )dEVG AAA

T ,,= , where  

{ } { } { }fsViiViiV A ,;; 21 ∪∈∪∈=  

4321 EEEEE A ∪∪∪=  

where 

                                         { }ViiiE ∈= ;),( 211 , 
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                                        { }jiVjijiE p,,;),( 122 ∈= , 

                                        { }ViisE ∈= ;),( 13 , 

                                        { }VjfjE ∈= ;),( 24 . 

Let L be a large number. Let’s define:  

Led =)(  if 1Ee∈ ,    0)( =ed   otherwise. 

The auxiliary digraph ( )dEVG AAA
T ,,=  is still acyclic. Every path in 

A
TG  uniquely defines a path in 

TG  and vice versa. 

A semipath in a digraph is an alternating sequence of vertices and edges of the form  

kkk vevevev ,,,,,,, 112211 −−K , where ),( 1+= iii vve or ),( 1 iii vve +=  and where every vertex occurs  at most 
once. (Roughly speaking – a semipath in a digraph is a path in which edges can be used in reverse 
direction.) The length of a semipath is the sum of costs of edges used in direction minus the sum of costs 
of edges used in reverse direction. 

 

Algorithm 1: 

Step1: Find a shortest  (s,f ) – path in A
TG . Mark the edges of that pas as used,  

             all other edges as unused 

Step2: While the set 1E  contains an unused edge do:  

           Find a shortest  (s,f ) – semipathpath in A
TG .  

           Mark edges with right direction of that pas as used. 
           Mark edges with reverse direction of that pas as unused. 

Step3: Edges from 2E define trip linkages from what corresponding bus schedules  
           can be constructed. 

 

The resulting bus schedule doesn’t optimize the total cost of bus schedule. In the case that one wants 
to optimize total linkage cost it suffices to set  

=)(ed  linkage cost of corresponding trips for all 2Ee∈  . 

However, practical experiences show that it doesn’t suffice to minimize linkage cost since legislation, 
regional tradition and bus operators demand additional requirements. Unfortunately the resulting 
scheduling problem is no longer polynomial after implementation of consequential objectives and 
constraints. That’s why we have developed a sophisticated neighborhood search procedure based on 
multiple application of assignment problem which can find a suboptimal solution for very complex 
objective function. This procedure requires an optimum starting solution from the point of view of VSP1 
– i.e. with optimum number of buses.   

3 Graph  coloring formulation for VSP1 

Let T  be a set of trips. Collision graph of T  is a graph ( )HVGC ,= , with the vertex set V = T  and with 

the edge set  

{ }EijandEjiVjijiH ∉∉∈= ),(),(,,;),( . 
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The set H is the set of such pairs of trips which cannot be serviced by one bus – incompatible trips. 

Every independent set in CG  represents a feasible running board and vice versa. Hence to find an 

optimum solution of VSP1 means to find an optimum coloring of  CG . 

Suppose that { }nV ,,2,1 K= . Let ijx
 be a decision variable, 

1=ijx
 if and only if the trip i is in the 

running board j , otherwise 
0=ijx

. Denote by n the number of trips in T, let m be an upper bound of 
number of buses. Then VSP1 can be formulated as follows: 

 

Mathematical model 1:  

      Minimize ∑∑
= =

n

i

m

j
ijjx

1 1

 

Subject to:    1
1

=∑
=

m

j
ijx    for  all  Vi ∈  

                 1≤+ jkik xx    for  { }mk ,,2,1 K∈   

                                           and for all Vji ∈,  such that  Hji ∈),(               

                  { }1,0∈ijx    for   Vi ∈ , Vj ∈  

Constraints in the first row say that every trip is exactly in one bus schedule. Constraints in the 
second row say that incompatible trips cannot be in the same bus schedule.  

Denote by )(iV  the set of all neighbors of the vertex Vi ∈ . The set )(iV  is in fact the set of all trips 
incompatible with the trip j. The large number of constraints in the second row can be reduced and we 
obtain the following mathematical model: 

 

Mathematical model 2:  

       Minimize ∑∑
= =

n

i

m

j
ijjx

1 1

 

Subject to:  

                      1
1

=∑
=

m

j
ijx    for     ni ,,2,1 K=  

        nxnx
iVj

jkik ≤+ ∑
∈ )(

   for    ni ,,2,1 K= ;  mk ,,2,1 K=      

                    { }1,0∈ijx    for   ni ,,2,1 K= ;  mj ,,2,1 K=  

This formulation converts polynomial problem VSP1 into NP-hard graph coloring problem therefore 
it has no practical nor important theoretical meaning. We introduce it as a first step for Vehicle 
Scheduling with Heterogeneous Bus Fleet – VSHBF problem, which is by our conjecture a hard problem. 
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4 Graph coloring formulation for heterogeneous fleet case 

Denote by )(iF  the set of vehicles which can provide the trip i.  Mathematical model is different from the 
last one only in the first constraint which says that the trip i has to be serviced by the desired bus type.   

   

Mathematical model 3:  

     Minimize ∑∑
= =

n

i

m

j
ijjx

1 1

 

Subject to:  

                      1
)(

=∑
∈ iFj

ijx    for   Vi ∈  

        nxnx
iVj

jkik ≤+ ∑
∈ )(

   for Vi ∈ ;    { }mk ,,2,1 K∈      

                    { }1,0∈ijx    for   Vi ∈ ;  Vj ∈  

 

5 Two bus type problem 

In the two bus type problem we have two types of trips and two types of buses. The trips of the first type 
are crowded trips requiring service by high capacity buses  of the first type like hinged buses (we will call 
them maxibuses). The rest of trips are ordinary trips of the second type requiring ordinary buses. Ordinary 
trip can be serviced by maxibus too, but this is not a desirable instance and should occur only if necessary.  

The simplest attitude to this problem is to decompose it into two independent scheduling problem -  
one for crowded trips and maxibuses and one for ordinary trips and ordinary buses. However, this attitude 
needn’t be optimal since maxibuses can service several ordinary trips what can decrease the number of 
ordinary buses. Nevertheless just mentioned decomposition gives us the exact number of necessary 
maxibuses and a upper bound of ordinary buses. 

Let us partition the set of trip T  into two subset  - the first the set of must-trips and the set of  may-
trip. Algorithm 1 can be modified in order to give a bus schedule with minimum number of vehicles 
containing all must-trips and maximum possible number of may-trips.  Here is the following 
modification: 

 

1. For all 1Ee∈   set  2)( Led = , if ),( 21 iie =  where i is a must-trip, 

                                            Led =)( ,  if ),( 21 iie =  where i is a may-trip 

2. Modify Step2 of Algorithm 1 as follows: 

Step2: While the set 1E  contains an unused edge ),( 21 iie =  where i is  
               a must-trip do: 

 

We will refer to such modified algorithm as Algorithm 2 . 

Several may-trips remain not scheduled after finishing Algorithm 2. 
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Now we are prepared to formulate an algorithm for exact minimization of maxibuses and suboptimal 
minimization of ordinary buses. 

 

Algorithm 3: 

Step1: Declare all crowded trips as must-trips and all other trips as may-trips. 

             Run Algorithm 2.  

Step2: Declare all unscheduled trips from the Step1 as must-trips and all ordinary    
             trips as may-trips. 

             Run Algorithm 2.  

             The result is the set of running boards for all ordinary buses with several  
              unscheduled ordinary trips which do not increase the number of  
              maxibuses.  

Step3: Run Algorithm 1  for all crowded trips and all unscheduled ordinary trips 
             from the Step2. 
             The result is the set of running boards for maxibuses containing all  
              must-trips and all till now unscheduled may-trips. 

 

This algorithm was used for many real world computation with great success. Unfortunately, several cases 
occurred  when Algorithm 3 gave more ordinary buses then the exact minimum. 

 

Therefore we proposed the following procedure: 

 

• Run Algorithm 1  for all crowded trips from  T .  
The result is the exact minimum number of maxibuses Mn . 

• Run Algorithm 1  for all trips from  T  regardless of the trip and bus type. 
The result is a lower bound ALLnLB _  of all buses.  

Since Mn  is exact minimum of maxibuses, we have a lower bound of ordinary buses 

MALLO nnLBnLB −= __  . 

• Run Algorithm 1  for all ordinary trips. 
The result is a lower bound OnUB _  of ordinary  buses in two bus type schedule. Upper bound of 

all buses is MOALL nnUBnUB += __ . 

 

The values Mn ,  OnUB _  can be used to reduce the size of Model 3 by reducing the sizes of sets 
)(iF . 

The lower bound ALLnLB _  can be used in the following way. If the degree of a ordinary trip  i  (i.e. 

the number of incompatible trips with the trip i) is less than ALLnLB _  it can be colored by one of colors 

from the set { }ALLnLB _,,2,1 K  regardless of coloring of its neighbors. Therefore such trip can be 

removed from the graph CG .  A sequence of such removal can reduce the problem size significantly. 
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Similarly a crowded trip can be removed from the graph CG  if its degree is less than Mn . In practice 

ALLM nLBn _<<  that’s why such reduction will be probably negligible. 
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