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UTILIZING HISTORICAL AND CURRENT TRAVEL TIMES BASED  ON
FLOATING CAR DATA FOR MANAGEMENT OF AN EXPRESS TRUC K FLEET

Rudiger Ebendt, Alexander Sohr, Louis Calvin ToukaTcheumadijeu, Peter Wagner

During the last nine years, a couple of prototyp8 bkpplications based on Floating Car Data
(FCD) of taxi fleets have been developed at GerrAarospace Center (DLR). A core application
is a route guidance and monitoring system baseduorent and historical road segment travel times.
Recently, it has been extended for use in the Germaded project SmartTruck, run by a consortium
consisting of the logistics key player DHL, DLR amke German Research Center for Artificial
Intelligence (DFKI). An important aim of the profewas the use of historical and current traffic
information for energy-efficient, optimized offlir@danning and dynamic re-planning of the tours &flLD
express trucks in Berlin, Germany.

This paper discusses the architecture of the SmakTsystem and the methodology used
to generate historic and current road segmentlttawes from positional data.

Key words: Floating Car Data (FCD), Global Positioning Systg/@PS), traffic monitoring,
map-matching, traffic guidance, traffic planning

1 Introduction

In logistics, a great challenge arises from thedn harmonized strategies to achieve two major
objectives: on the one hand, customers expect fdimgcompanies to accomplish their service atgh hi
level of flexibility and adherence to delivery dat®©n the other hand, there is the need to optithiee
vehicle routes for a high utilization and a reseusaving and energy-efficient execution of the gpemts.

Previous transportation planning systems worked dily lists of pick-up and delivery orders and a
management by ad-hoc plans and static planningrseheThis approach is based on the assumption of
optimal traffic conditions and does not take jamsanstruction sites into account. There is notieado
congestion or accidents and a re-planning proéeanry() is only started in case of a dynamical geaof
the current pick-up orders or the arrival of newers.

In this paper, the basic architecture and imponpamnts of the methodology of a novel transportation
planning system are described. It has been suctigss¢ployed during a pilot project called Smardk,
which was accomplished by a consortium consistinthe logistics key player DHL [4,5], the German
Aerospace Center (DLR) [8] and the German Rese@eter for Artificial Intelligence (DFKI) [9].
Besides the classical input such as pick-up anwatglorders and given transportation restrictidhg,
system also collects vehicle data. This includes @PS positions of the trucks and its current load,

! German Aerospace Center, Institute of Transporiaystems, Department of Traffic Management, Rfthéstraie 2,
12489 Berlin, Germany, tel.: +49 (0)30 67055-0, &#tm{Ruediger.Ebendt, Alexander.Sohr, Louis.Toukb&umadjeu},
Peter.Wagner@dir.de



5" International Scientific Conference , TheoreticaldPractical Issues in Transport “
Pardubice, 11— 12" February, 2010 283

determined by the use of Radio Frequency ldentiboa(RFID) antennas, an RFID reader inside the
vehicle, and RFID parcel labels. It also gathesed-tiene traffic data by use of Floating Car Dat& .

The FCD are obtained from taxi fleets operatingBarlin, Germany, and from the trucks themselves.
Current and historical road segment travel timesdatermined by a system that has been developed at
DLR [8] and has been enhanced and extended fomwitken the project. The delivery of FCD to the
SmartTruck system has been deployed by DLR as @&ewebe interface. The travel times enable the
system to detect congestion and to react to thegeuh traffic situation by calculating optimized,
resource-saving alternative routes. The resultgiglanning process aims at increasing the vehoad |

and at avoiding empty trips, thus decreasing tive@mmental impact.

This paper presents the methodology used to gengratrespective current traffic situation as well
as the historical travel times for every road segmehis task first includes the matching of thevra
positional data onto the road segments of a givgitatiroad map (known as “map-matching”). Therefor
a stream of input trajectories (i.e., sequencesSR$ positions) is entered into a map-matching algar
The GPS positions are affected by errors and n@aesed, e.g., by clouding or multi path signals),
known as the measurement error. For each positioa trajectory, map matching needs to decide to
whom of several eligible candidate segments thesntiposition should be projected onto. It alsodsee
to handle the sampling error: depending on theasiffequency, the vehicle may also pass one or more
intermediate segments between every two such egpgositions. The lower the frequency, the more
passed segments may exist between any such twtspaimd map-matching needs to determine these
segments.

This paper describes the map-matching algorithrd usthin the project SmartTruck, which is based
on routing by an integration of several multi-sauv@riants of Dijkstra’s algorithm [6]. A mechaniss
described which allows to always select the mopt@griate variant in terms of required solution lgya
and efficiency of the calculation. Next, the pagefes the details of the methodology used to comput
historical travel times for every road segmenttdad of a simple calculation of average travel sirfor
every such segment, a more sophisticated methagew. It takes into account the general tenderatyath
particular road segment has shown in the past.

The structure of the paper is as follows: afterti®acl, this introduction, an overview and a brief
description of the components of the SmartTruckesgsis given in Section 2. Section 3 describes the
details of the map-matching and routing algoritt®ection 4 introduces the method used to compute
historical travel times for every road segment.tidacs briefly describes how to generate the respec
current traffic situation. Finally, in Section &etwork is concluded with the results obtained.

2 System Architecture

The starting point of the transportation plannimggess is the download of the pick-up and delizta

for the current day. The next steps are conducyesbfiware components provided by DHL'’s technology
partner infoware [12]: this includes the geo-codifgdelivery addresses, the transferal of the geo-
positions to the routing server, and the calcutatid the transit times between approximately 3000
addresses in Berlin. This is accomplished by usdiftédrent travel time matrices for the respectivees

of the day (thereby distinguishing the rush-hoaffit from that during off-peak times). The travehes

are historical travel times computed and perioticapdated for every road segment at DLR. The
approach that has been chosen for their calculaidescribed in detail in Section 4.

The transit times are then passed over to the Wpcknd Delivery route planning server which is
provided by DHL’s technology partner Quintig [15They serve as the basis for the sophisticated
optimization process, assigning the addressestodhicles in optimized stop sequences.
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In contrast to previous planning approaches, tlséegy is capable of considering the current traffic
situation. Dynamical re-planning adapts the inisahedule to avoid routes affected by congestiah an
identified construction sites. The re-planning gsxis initiated in response to a significant cleanghe
traffic condition: DLR continuously obtains posiioreports from around 500 taxis in Berlin and
computes current travel times for every road segnidrey are reported to the traffic server. Wheneve
significant discrepancy to the respective histdricavel times (which have been transmitted todee/er
by DLR before) is detected, the traffic server mpohis to the route planning server. If appraesighe
route planning server decides to initiate the @dation of the transit time matrices. In this cdlse
recalculation is based on the current travel tirtiest just have been reported, i.e. they override th
historical travel times. Fig. 1 depicts an overvieirthe architecture of the SmartTruck system il
outlined Dynamic Routing and Dispatch Applicati@RADA) as its core.

Dynamical Dispatch and Routing Application (DRADA)

Route planning server
truck vehicle

current load
GPS position

pick-up & delivery
addresses

optimized tour
navigational directions|
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FCD FCD

traffic condition
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Fig. 1: architecture of the SmartTruck systém

The trucks are equipped with on-board units with iategrated navigation system. Once the
optimized routes for the day have been transfebyethe route planning server over wireless links, i
gives directions to the drivers. By this, the tinfesfamiliarization of drivers on routes that arew to
them can be reduced dramatically. Each parcel hd&8FD label. After each pick-up and delivery stop,
the information about the current truck load is ated via RFID antennas and an RFID reader insige th
truck. Additionally, each driver is equipped withrebile device with an integrated scanner. Viadhe
board unit and wireless links, the updated loatustés reported back to the planning server. The on
board computers are supplied by Motorola [13].

Besides the outlined system structure, there ae application servers that implement additional
services like e.g. an online address correction arsgrvice that sends SMS messages for pick-up to
customers. They are coordinated via an intelliggntess management server which is is provided by
DFKI.
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3 Map-Matching and Routing

The map-matching problem is that of relating vehitiacking data (i.e., trajectories) to the road
network. It has to deal with the sampling erromadl as with the measurement error (see Sectioid).
tackle the problem of the sampling error, i.e. oknown intermediate segments passed during the
vehicle’s transit between two position reports, dpproach followed here uses a routing algorithym. B
this it also ensures that the computed vehicle gationsistent with topological and other constsague
to the particular connection of road segments. d&xample, the path cannot jump from a highway to a
local road unless a suitable connection betweebtwbgesuch as an exit ramp, exists and, for thasoa, a
respective routing can be found.

The approach followed here combines an incrememithl a global strategy. First, an incremental
position-by-position, edge-by-edge strategy is i@gplorwards: a trajectory is represented by ad€ad)
sequence of transits between a pair of positiobsesjuently reported (i.e., the “from-position” ahe
“to-position”). Perpendiculars are dropped to alhdidate segments that are within a certain distéhe
“matching radius”) to the first position of a giveair of position reports. Each candidate segneeaplit
into two auxiliary segments at the foot of perpentir, where an auxiliary vertex is establishedchEa
auxiliary vertex serves as starting and end pdinh® augmented auxiliary segments, respectivelg,ia
an eligible starting point of a routing for theris& between the given two reported positions, (ee.
“from-node”). Next, the same is done for the secaqmbrted position. The resulting auxiliary vericae
the eligible end points for the desired routing.(ithe “to-nodes”).

Then, for the two sets of eligible starting and poahts, multi-source variants of Dijkstra’s alghm
[6] are used to determine a set of candidate rgsitfor the given transit. This problem reduces RSB
(single-pair shortest path) which is solved by 8ohs to the classical SSSP (single-source shepsisi
problem. Thus, a fast method for SSSP is invokdesesguently on the consecutive transits: the to-
position of the previous transit becomes the fraaHpon of the next transit, the to-nodes beconee th
next from-nodes. The best paths to them are prederiheir path costs are passed over to the next
routing as starting costs for the new from-nodesthss it is guaranteed that the routing processaias
aiming at finding a minimum cost path for the whuobgectory.

Second, a backwards global strategy follows thathines the routings for the subsequent transits to
a globally optimal routing for the whole trajectotystead of a fixed-depth look-ahead or a limibedk-
tracking to evaluate the quality of different pafesy. see [3]), the method minimizes over all guss
paths in the road network that are matching a givajectory. By construction, it suffices to simply
backward-chain the minimum cost paths, startinghatbest end-node of the last routing, iterating th
backward chaining until it ends at one of the elgistart nodes of the first transit of the trapegt

To address the problem of measurement errors, variguality and error measures can be
incorporated into the cost function (e.g., the wEedchet distance, e.g. [1]). To account for theang
error, the cost function also targets at shoristiést paths between the reported positions. Titengo
algorithm also makes use of historic travel speasisobtained by off-line map-matching of historic
trajectory data (for the details, see Section 4). ¢h-line map-matching, the trajectory developseal

time and is not available at once. Therefore, allsmanber K of recently received position reports and
the corresponding unconfirmed matches are mairdaime buffer. They can be used to decide whether
an earlier match should be altered, based on théy merived track points. In this, matched trajegtdata
can be passed on to other parts of the FCD prowessng before the trajectory is available compete

thus reducing the experienced delayteporting intervals only.

Of note is that all data are filtered for bad GRfaals and implausible values in the data sournds a
the calculated results. This includes the exclusibnon-representative data. These occur when taris
allowed to use special bus lanes or the taxis iakeng up / dropping off a passenger (see also)[16]
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A component of the map-matcher dispatches the ngutequest for a transit to one of several
available Dijkstra-variants. The dispatcher’s clkedi based on the air distance between the frontiqos
and the to-position. The average air distance adapends on the frequency of position reports. The
frequencies can differ significantly: e.g. for tepress trucks in Berlin and the taxi fleets in Hang the
system gets a position report every 30 secondsreabedhere is only one report every two minutes for
some of the taxi fleets in Berlin.

The dispatcher speeds up the routing process atarea very small loss in quality: for Hamburg,
Germany, the method with the largest average bs&vel integration of weighted A* of Pohl [14] ant

the aIgorithmAf of Ghallab and Allard [10], has an average lossjuality of less than four %.. The
available variants differ in the base algorithma(plDijkstra-algorithm [6], A* [11], weighted A* othe

novel modifiedAf) or in the implementation of the priority queue aigen nodes which is based on
linked lists or on a Fibonacci-heap [7].

Run Times of Dijkstra-Variants
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Fig. 2: run times of several Dijkstra-variants lmnger distances

Figure 2 shows the average run tinoé the respective Dijkstra-variations when appliedandomly
generated origin-destination pairs in Hamburg. Plags have been binned with respect to their air
distance, one bin for every 500 meters, and suathlit.000 pairs resided in every bin from 0 to 80 k

When looking at the longer distances, the implert@ns using a Fibonacci-heap outperform the
list-based ones, and A* outperforms plain Dijkstvdeighted A* (applying a weight ol+&= 1@
performs very fast, despite its list-based impletagon of the priority queue used here, and listeoh
A ., while faster than list-based Dijkstra, is nottmerforming the other variations. Summarized, the

results for the longer distances are not surprising

! The experiments were conducted on a machine withtal® Core™2 Duo CPU running at 2.4 GHz
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Fig. 3: run times of several Dijkstra-variants $onaller distance

The benefit from the list-based methods afvid becomes apparent when looking to the shorter

distances. As Figure 3 shows for distances from ® km, the list-based methods are significantbtda
since the Fibonacci-heap has a high overhead Fostified A, performs as good as weighted AA.,

performs depth-oriented search as long as it cagubeanteed that the resulting solution cost wall n
deviate more than by a factor 4f+ £ from the minimum solution costs( was set to 0.2 in the
exeriments). This strategy turned out to be mdscg¥e when working with short distances. The di®n
observed in this experiment with purely synthetigio-destination pairs can also be observed itityea
as a result of the different signal frequenciespsmeatching by A* using a Fibonacci-heap as priority
queue (using Pohl's weighted variant, whenever gfmall loss in quality is negligible) dominates in
Berlin, whereas in Hamburg the modifiedl, method even outperforms weighted A* and yields th

smallest run times. In Berlin, the outlined dispatg strategy reduces run time of routing by
approximately 30%.

4 Obtaining Historic Travel Times from Floating Car Data

In Section 3, the approach chosen to match the @R8ion reports to the digital road map has been
described. Thereby, sampling errors are encountehedvehicle may pass one or more intermediate
segments between every pair of reported GPS positis a consequence, instead of knowing the travel
time for a particular segment, usually only thensititime between two reported positions (measased
the lag between the time stamps of subsequentigqosiports) is known. However, this often is the
accumulated travel time for a whole sequence omgegs passed by the observed vehicle (the lower the
signal frequency, the larger the length of thisusege will tend to grow). Instead of simply passimy

the total travel time of such a sequence to itsneeds (e.g., with respect to their respective segme
lengths), an iterative, self-adapting approachseduthat takes into account the general tenderatyath
particular road segment has shown in the past.

Let us assume for a moment, that historical trapeleds/times are already known for every road
segment. Since the travel time for a passed rogu esat, t is not given, it must be estimated. A first

segment!

idea would be to pass ap,to the segments passed by the vehicle during aitraith respect to the
individual segment length, i.e.
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’t“ _ Isegment (l)
=
seomen Vtransit
Here, the average transit spegg..; = l,ansi/ tvansi- HOWEVET, the fact that road segments do not only

differ with respect to their length but also withspect to their shape, number and width of lanés an
parameters of road geometry and construction,tisaken into consideration by Eq. (1). All theaetbrs
have an effect on the historical travel time peofif a particular road segment. Therefore, a differ
formula is used. Le¥, denote the historical segment travel speed ang|gt,, denote the historical

segment

segment travel time. Then

t _ Isegment W (2)
segment — | ~ segment
Vsegment
where we definen,, .., as
W _ tsegment - vsegment (3)

segment — ~
tsegment

V,

segment

The weightw,..... expresses the ratio of the currently observecetrame and the travel time that

would be expected by the observations of the daisice the weightw, depends ort (or,

egment segment

alternatively, onv,...), i.e., on exactly the unknown quantity that ibjsat to estimation, the weight

Weegment MUSt be estimated. For this purpose, the idebeofueight as ratio of current and expected travel

time is transferred to the set of segments pasgéuebvehicle during a transit:
t

— _“transit
Wt

ransit — P
25

stransit

(4)

is used as an estimator fer,.... This simplification is justified as long as a @&

driving e.g. twice as fast as would be expectethffostory, does this more or less constantly dutirey
whole transit. The final estimation used for thgreent travel time then is

I (5)
r _ | "segment
tsegment - {\7 thransit

segment

Next, w,

ransit

The historical segment travel speeds are compoteevery hour of the week (i.e/[24= 16peed
values are computed for every road segment). Tonaglish this, GPS trajectories collected during a
longer period (e.g. several months) are map-mat¢sesl Section 3). Statistics are computed based upo
the estimated segment travel times, each computéd nespect to the transit between a pair of
consecutive position reports. The following defonis are needed for a formula describing the
computation of these statistics: legansits{, ] dgnote the set of transits that pass road segineithin

week houri (1<i<168). Let t;(t) be the travel time for road segmentestimated as described in Eq.
(1) to Eq. (5) with respect to trandit Further, letl,(t )denote the length of the section travelled on

segmentj during transitt. Finally, v(i, j ) denotes the historical travel speed on segmewithin week
houri (1<i <168 . Thenv(i, j )is computed as
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IPIDING ®)

—~7r -\ _ 1<i<l168 j tOtransits(,j)
v(i, j) =

> S 340

1<i<168 j tOtransits(,j)

This strategy is based on the assumption thatrigatdravel speeds/times are already given foreve
road segment. Requiring them in advance is esdigrdidhen and egg” problem. As a remedy, the stati
average speed attribute provided for every segmatigital road maps is used in a first iteratids. soon
as a first set of travel times is computed with @g.to (5), the statistics expressed in Eq. (6) lva based
on them to compute the first “real” set of histatitravel speeds. The iteration then restarts forave
the current set of historical values and it is feated as soon as the relative changes in thericisto
speed values stay below a pre-defined thresholg@rdantice, this iteration converged to historica¢ed
values that were amenable to a successful valid§2ioafter only two rounds.

5 Generating a Current Traffic Situation based on Flating Car Data

Section 4 already gave the methodology of calauja¢istimated travel times for every road segmeme. T
availability of historic travel speeds for everygedbased on e.g. the trajectory data of the lastnienths
facilitates the calculation of realistic currerdavtel times. Of course, current travel speeds cawbbened
by v, = /t

segment — 'segment’ “segment’

There is a second aspect where historic traveldspaee important for the calculation of current
travel times or speeds: when determining the ctitramel speeds with FCD, this is done on the bakis
the position reports which come in asynchronouBhus a mechanism must be in place which modifies
the previous speed value in response to a new sgad based on the arriving position reports. The
methodology for this mechanism includeging of the speed values determined in the recent pait:
newly arriving position reports help to ,refreshiet older information about the traffic state onieg
road segment, an aging formula will continuouslydifothe previously determined speed value such tha
it approaches its historic speed value as timegsdsg. This is particularly important on side roadeere
the number of taxi or truck vehicles travellingesftis much lower than on arterial roads. Consedyent
speed values must be subject to aging for a lopgeod in time.

After measurement activities with test drivers ianhburg, Germany, the measured travel speeds
have been compared to the current travel speedsneldtby the FCD system. As a result, the current
travel speeds generated by the FCD system coudddzessfully validated [2].

6 Conclusion

We gave the architecture and the basic methodabdgynovel transportation planning system for atfle
of express trucks. It has been successfully deplayeBerlin, Germany. The system gathers real-time
traffic data by use of Floating Car Data (FCD)oasained from the express trucks and from taxitflee
The derived current and historical road segmentetriimes enable the system to detect congestidri@an
react to the changed traffic situation by calculgibptimized, resource-saving alternative routes.
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