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During the last nine years, a couple of prototype ITS applications based on Floating Car Data 
(FCD) of taxi fleets have been developed at German Aerospace Center (DLR). A core application              
is a route guidance and monitoring system based on current and historical road segment travel times. 
Recently, it has been extended for use in the German funded project SmartTruck, run by a consortium 
consisting of the logistics key player DHL, DLR and the German Research Center for Artificial 
Intelligence (DFKI). An important aim of the project was the use of historical and current traffic 
information for energy-efficient, optimized offline planning and dynamic re-planning of the tours of DHL 
express trucks in Berlin, Germany. 

This paper discusses the architecture of the SmartTruck system and the methodology used                 
to generate historic and current road segment travel times from positional data. 
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1 Introduction 

In logistics, a great challenge arises from the need for harmonized strategies to achieve two major 
objectives: on the one hand, customers expect forwarding companies to accomplish their service at a high 
level of flexibility and adherence to delivery dates. On the other hand, there is the need to optimize the 
vehicle routes for a high utilization and a resource-saving and energy-efficient execution of the transports. 

Previous transportation planning systems worked with daily lists of pick-up and delivery orders and a 
management by ad-hoc plans and static planning schemes. This approach is based on the assumption of 
optimal traffic conditions and does not take jams or construction sites into account. There is no reaction to 
congestion or accidents and a re-planning process (if any) is only started in case of a dynamical change of 
the current pick-up orders or the arrival of new orders. 

In this paper, the basic architecture and important parts of the methodology of a novel transportation 
planning system are described. It has been successfully deployed during a pilot project called SmartTruck, 
which was accomplished by a consortium consisting of the logistics key player DHL [4,5], the German 
Aerospace Center (DLR) [8] and the German Research Center for Artificial Intelligence (DFKI) [9]. 
Besides the classical input such as pick-up and delivery orders and given transportation restrictions, the 
system also collects vehicle data. This includes the GPS positions of the trucks and its current load, 
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determined by the use of Radio Frequency Identification (RFID) antennas, an RFID reader inside the 
vehicle, and RFID parcel labels. It also gathers real-time traffic data by use of Floating Car Data (FCD). 
The FCD are obtained from taxi fleets operating in Berlin, Germany, and from the trucks themselves. 
Current and historical road segment travel times are determined by a system that has been developed at 
DLR [8] and has been enhanced and extended for use within the project. The delivery of FCD to the 
SmartTruck system has been deployed by DLR as a webservice interface. The travel times enable the 
system to detect congestion and to react to the changed traffic situation by calculating optimized, 
resource-saving alternative routes. The resulting re-planning process aims at increasing the vehicle load 
and at avoiding empty trips, thus decreasing the environmental impact.  

This paper presents the methodology used to generate the respective current traffic situation as well 
as the historical travel times for every road segment. This task first includes the matching of the raw 
positional data onto the road segments of a given digital road map (known as “map-matching”). Therefore 
a stream of input trajectories (i.e., sequences of GPS positions) is entered into a map-matching algorithm. 
The GPS positions are affected by errors and noise (caused, e.g., by clouding or multi path signals), 
known as the measurement error. For each position in a trajectory, map matching needs to decide to 
whom of several eligible candidate segments the current position should be projected onto. It also needs 
to handle the sampling error: depending on the signal frequency, the vehicle may also pass one or more 
intermediate segments between every two such reported positions. The lower the frequency, the more 
passed segments may exist between any such two points, and map-matching needs to determine these 
segments. 

This paper describes the map-matching algorithm used within the project SmartTruck, which is based 
on routing by an integration of several multi-source variants of Dijkstra’s algorithm [6]. A mechanism is 
described which allows to always select the most appropriate variant in terms of required solution quality 
and efficiency of the calculation. Next, the paper gives the details of the methodology used to compute 
historical travel times for every road segment. Instead of a simple calculation of average travel times for 
every such segment, a more sophisticated method is used. It takes into account the general tendency that a 
particular road segment has shown in the past.  

The structure of the paper is as follows: after Section 1, this introduction, an overview and a brief 
description of the components of the SmartTruck system is given in Section 2. Section 3 describes the 
details of the map-matching and routing algorithm. Section 4 introduces the method used to compute 
historical travel times for every road segment. Section 5 briefly describes how to generate the respective 
current traffic situation. Finally, in Section 6, the work is concluded with the results obtained.  

2 System Architecture 

The starting point of the transportation planning process is the download of the pick-up and delivery data 
for the current day. The next steps are conducted by software components provided by DHL’s technology 
partner infoware [12]: this includes the geo-coding of delivery addresses, the transferal of the geo-
positions to the routing server, and the calculation of the transit times between approximately 3000 
addresses in Berlin. This is accomplished by use of different travel time matrices for the respective times 
of the day (thereby distinguishing the rush-hour traffic from that during off-peak times). The travel times 
are historical travel times computed and periodically updated for every road segment at DLR. The 
approach that has been chosen for their calculation is described in detail in Section 4. 

The transit times are then passed over to the Pick-up and Delivery route planning server which is 
provided by DHL’s technology partner Quintiq [15]. They serve as the basis for the sophisticated 
optimization process, assigning the addresses to the vehicles in optimized stop sequences.  
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In contrast to previous planning approaches, the system is capable of considering the current traffic 
situation. Dynamical re-planning adapts the initial schedule to avoid routes affected by congestion and 
identified construction sites. The re-planning process is initiated in response to a significant change in the 
traffic condition: DLR continuously obtains position reports from around 500 taxis in Berlin and 
computes current travel times for every road segment. They are reported to the traffic server. Whenever a 
significant discrepancy to the respective historical travel times (which have been transmitted to the server 
by DLR before) is detected, the traffic server reports this to the route planning server. If appropriate, the 
route planning server decides to initiate the recalculation of the transit time matrices. In this case the 
recalculation is based on the current travel times that just have been reported, i.e. they override the 
historical travel times. Fig. 1 depicts an overview of the architecture of the SmartTruck system with the 
outlined Dynamic Routing and Dispatch Application (DRADA) as its core.  

 

 

Fig. 1: architecture of the SmartTruck systém 

 

The trucks are equipped with on-board units with an integrated navigation system. Once the 
optimized routes for the day have been transferred by the route planning server over wireless links, it 
gives directions to the drivers. By this, the times for familiarization of drivers on routes that are new to 
them can be reduced dramatically. Each parcel has an RFID label. After each pick-up and delivery stop, 
the information about the current truck load is updated via RFID antennas and an RFID reader inside the 
truck. Additionally, each driver is equipped with a mobile device with an integrated scanner. Via the on-
board unit and wireless links, the updated load status is reported back to the planning server. The on-
board computers are supplied by Motorola [13]. 

Besides the outlined system structure, there are also application servers that implement additional 
services like e.g. an online address correction and a service that sends SMS messages for pick-up to 
customers. They are coordinated via an intelligent process management server which is is provided by 
DFKI. 
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3 Map-Matching and Routing 

The map-matching problem is that of relating vehicle tracking data (i.e., trajectories) to the road 
network. It has to deal with the sampling error as well as with the measurement error (see Section 1). To 
tackle the problem of the sampling error, i.e. of unknown intermediate segments passed during the 
vehicle’s transit between two position reports, the approach followed here uses a routing algorithm. By 
this it also ensures that the computed vehicle path is consistent with topological and other constraints due 
to the particular connection of road segments. For example, the path cannot jump from a highway to a 
local road unless a suitable connection between the two, such as an exit ramp, exists and, for this reason, a 
respective routing can be found. 

The approach followed here combines an incremental with a global strategy. First, an incremental 
position-by-position, edge-by-edge strategy is applied forwards: a trajectory is represented by an (ordered) 
sequence of transits between a pair of positions subsequently reported (i.e., the “from-position” and the 
“to-position”). Perpendiculars are dropped to all candidate segments that are within a certain distance (the 
“matching radius”) to the first position of a given pair of position reports. Each candidate segment is split 
into two auxiliary segments at the foot of perpendicular, where an auxiliary vertex is established. Each 
auxiliary vertex serves as starting and end point of the augmented auxiliary segments, respectively, and is 
an eligible starting point of a routing for the transit between the given two reported positions (i.e., a 
“from-node”). Next, the same is done for the second reported position. The resulting auxiliary vertices are 
the eligible end points for the desired routing (i.e., the “to-nodes”).  

Then, for the two sets of eligible starting and end points, multi-source variants of Dijkstra’s algorithm 
[6] are used to determine a set of candidate routings for the given transit. This problem reduces to SPSP 
(single-pair shortest path) which is solved by solutions to the classical SSSP (single-source shortest-path) 
problem. Thus, a fast method for SSSP is invoked subsequently on the consecutive transits: the to-
position of the previous transit becomes the from-position of the next transit, the to-nodes become the 
next from-nodes. The best paths to them are preserved. Their path costs are passed over to the next 
routing as starting costs for the new from-nodes. By this it is guaranteed that the routing process remains 
aiming at finding a minimum cost path for the whole trajectory. 

Second, a backwards global strategy follows that combines the routings for the subsequent transits to 
a globally optimal routing for the whole trajectory. Instead of a fixed-depth look-ahead or a limited back-
tracking to evaluate the quality of different paths (e.g. see [3]), the method minimizes over all possible 
paths in the road network that are matching a given trajectory. By construction, it suffices to simply 
backward-chain the minimum cost paths, starting at the best end-node of the last routing, iterating the 
backward chaining until it ends at one of the eligible start nodes of the first transit of the trajectory.  

To address the problem of measurement errors, various quality and error measures can be 
incorporated into the cost function (e.g., the weak Fréchet distance, e.g. [1]). To account for the sampling 
error, the cost function also targets at shortest/fastest paths between the reported positions. The routing 
algorithm also makes use of historic travel speeds as obtained by off-line map-matching of historic 
trajectory data (for the details, see Section 4). For on-line map-matching, the trajectory develops in real 

time and is not available at once. Therefore, a small number k  of recently received position reports and 
the corresponding unconfirmed matches are maintained in a buffer. They can be used to decide whether 
an earlier match should be altered, based on the newly arrived track points. In this, matched trajectory data 
can be passed on to other parts of the FCD processing long before the trajectory is available completely, 

thus reducing the experienced delay to k reporting intervals only.  

Of note is that all data are filtered for bad GPS signals and implausible values in the data sources and 
the calculated results. This includes the exclusion of non-representative data. These occur when taxis are 
allowed to use special bus lanes or the taxis are picking up / dropping off a passenger (see also [16]). 
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A component of the map-matcher dispatches the routing request for a transit to one of several 
available Dijkstra-variants. The dispatcher’s choice is based on the air distance between the from-position 
and the to-position. The average air distance again depends on the frequency of position reports. The 
frequencies can differ significantly: e.g. for the express trucks in Berlin and the taxi fleets in Hamburg the 
system gets a position report every 30 seconds, whereas there is only one report every two minutes for 
some of  the taxi fleets in Berlin.  

The dispatcher speeds up the routing process at zero or a very small loss in quality: for Hamburg, 
Germany, the method with the largest average loss, a novel integration of weighted A* of Pohl [14] into 

the algorithm εA  of Ghallab and Allard [10], has an average loss in quality of less than four ‰. The 
available variants differ in the base algorithm (plain Dijkstra-algorithm [6], A* [11], weighted A* or the 

novel modified εA ) or in the implementation of the priority queue of open nodes which is based on 
linked lists or on a Fibonacci-heap [7]. 

Run Times of Dijkstra-Variants
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Fig. 2: run times of several Dijkstra-variants for longer distances 

 

Figure 2 shows the average run time1 of the respective Dijkstra-variations when applied to randomly 
generated origin-destination pairs in Hamburg. The pairs have been binned with respect to their air 
distance, one bin for every 500 meters, and such that 10.000 pairs resided in every bin from 0 to 20 km.  

When looking at the longer distances, the implementations using a Fibonacci-heap outperform the 
list-based ones, and A* outperforms plain Dijkstra. Weighted A* (applying a weight of 2.11 =+ ε ) 
performs very fast, despite its list-based implementation of the priority queue used here, and list-based 

εA , while faster than list-based Dijkstra, is not outperforming the other variations. Summarized, the 

results for the longer distances are not surprising. 

                                                           
1 The experiments were conducted on a machine with an Intel® Core™2 Duo CPU running at 2.4 GHz 



5th International Scientific Conference „Theoretical and Practical Issues in Transport “ 

 Pardubice, 11th – 12th February, 2010              287   
 

 

Run Times of Dijkstra-Variants

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

1,8

2

1 2 3 4

No. of 500 meter bin

C
P

U
 s

ec
on

ds

Dijkstra/list Dijkstra/Fibonacci-heap A*/list A*/Fibonacci-heap WA*(0.2) modified A_epsilon  

Fig. 3: run times of several Dijkstra-variants for smaller distance 

 

The benefit from the list-based methods and εA  becomes apparent when looking to the shorter 

distances. As Figure 3 shows for distances from 0 to 2 km, the list-based methods are significantly faster 
since the Fibonacci-heap has a high overhead cost. Modified εA  performs as good as weighted A*. εA  

performs depth-oriented search as long as it can be guaranteed that the resulting solution cost will not 
deviate more than by a factor of ε+1  from the minimum solution cost (ε  was set to 0.2 in the 
exeriments). This strategy turned out to be most effective when working with short distances. The trends 
observed in this experiment with purely synthetic origin-destination pairs can also be observed in reality: 
as a result of the different signal frequencies, map-matching by A* using a Fibonacci-heap as priority 
queue (using Pohl’s weighted variant, whenever the small loss in quality is negligible) dominates in 
Berlin, whereas in Hamburg the modified εA  method even outperforms weighted A* and yields the 

smallest run times. In Berlin, the outlined dispatching strategy reduces run time of routing by 
approximately 30%. 

4 Obtaining Historic Travel Times from Floating Car Data 

In Section 3, the approach chosen to match the GPS position reports to the digital road map has been 
described. Thereby, sampling errors are encountered: the vehicle may pass one or more intermediate 
segments between every pair of reported GPS positions. As a consequence, instead of knowing the travel 
time for a particular segment, usually only the transit time between two reported positions (measured as 
the lag between the time stamps of subsequent position reports) is known. However, this often is the 
accumulated travel time for a whole sequence of segments passed by the observed vehicle (the lower the 
signal frequency, the larger the length of this sequence will tend to grow). Instead of simply passing on 
the total travel time of such a sequence to its segments (e.g., with respect to their respective segment 
lengths), an iterative, self-adapting approach is used that takes into account the general tendency that a 
particular road segment has shown in the past. 

Let us assume for a moment, that historical travel speeds/times are already known for every road 
segment. Since the travel time for a passed road segment, segmentt , is not given, it must be estimated. A first 

idea would be to pass on transitt to the segments passed by the vehicle during a transit with respect to the 

individual segment length, i.e. 
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Here, the average transit speed transittransittransit / tlv = . However, the fact that road segments do not only 

differ with respect to their length but also with respect to their shape, number and width of lanes and 
parameters of road geometry and construction, is not taken into consideration by Eq. (1).  All these factors 
have an effect on the historical travel time profile of a particular road segment. Therefore, a different 
formula is used. Let segmentv

)
 denote the historical segment travel speed and let segmentt
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 denote the historical 

segment travel time. Then 
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where we define segmentw  as 
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The weight segmentw  expresses the ratio of the currently observed travel time and the travel time that 

would be expected by the observations of the past. Since the weight segmentw  depends on segmentt  (or, 

alternatively, on segmentv ), i.e., on exactly the unknown quantity that is subject to estimation, the weight 

segmentw  must be estimated. For this purpose, the idea of the weight as ratio of current and expected travel 

time is transferred to the set of segments passed by the vehicle during a transit:  
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Next, transitw  is used as an estimator for segmentw . This simplification is justified as long as a vehicle 

driving e.g. twice as fast as would be expected from history, does this more or less constantly during the 
whole transit. The final estimation used for the segment travel time then is 
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The historical segment travel speeds are computed for every hour of the week (i.e., 168247 =⋅  speed 
values are computed for every road segment). To accomplish this, GPS trajectories collected during a 
longer period (e.g. several months) are map-matched (see Section 3). Statistics are computed based upon 
the estimated segment travel times, each computed with respect to the transit between a pair of 
consecutive position reports. The following definitions are needed for a formula describing the 
computation of these statistics: let ),transits( ji  denote the set of transits that pass road segment j within 

week hour i  )1681( ≤≤ i . Let )(t tj  be the travel time for road segment j , estimated as described in Eq. 

(1) to Eq. (5) with respect to transit t . Further, let )(l tj  denote the length of the section travelled on 

segment j  during transit t . Finally, ),(v ji
)

 denotes the historical travel speed on segment j  within week 
hour i )1681( ≤≤ i . Then ),(v ji

)
 is computed as  
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This strategy is based on the assumption that historical travel speeds/times are already given for every 
road segment. Requiring them in advance is essentially a “hen and egg” problem. As a remedy, the static 
average speed attribute provided for every segment in digital road maps is used in a first iteration. As soon 
as a first set of travel times is computed with Eq. (1) to (5), the statistics expressed in Eq. (6) can be based 
on them to compute the first “real” set of historical travel speeds. The iteration then restarts to improve 
the current set of historical values and it is terminated as soon as the relative changes in the historical 
speed values stay below a pre-defined threshold. In practice, this iteration converged to historical speed 
values that were amenable to a successful validation [2] after only two rounds.  

5 Generating a Current Traffic Situation based on Floating Car Data 

Section 4 already gave the methodology of calculating estimated travel times for every road segment. The 
availability of historic travel speeds for every edge based on e.g. the trajectory data of the last few months 
facilitates the calculation of realistic current travel times. Of course, current travel speeds can be obtained 
by segmentsegmentsegment / tlv = . 

There is a second aspect where historic travel speeds are important for the calculation of current 
travel times or speeds: when determining the current travel speeds with FCD, this is done on the basis of 
the position reports which come in asynchronously. Thus a mechanism must be in place which modifies 
the previous speed value in response to a new speed value based on the arriving position reports. The 
methodology for this mechanism includes aging of the speed values determined in the recent past: until 
newly arriving position reports help to „refresh“ the older information about the traffic state on a given 
road segment, an aging formula will continuously modify the previously determined speed value such that 
it approaches its historic speed value as time passes by. This is particularly important on side roads where 
the number of taxi or truck vehicles travelling often is much lower than on arterial roads. Consequently, 
speed values must be subject to aging for a longer period in time. 

After measurement activities with test drivers in Hamburg, Germany, the measured travel speeds 
have been compared to the current travel speeds obtained by the FCD system. As a result, the current 
travel speeds generated by the FCD system could be successfully validated [2].  

6 Conclusion 
We gave the architecture and the basic methodology of a novel transportation planning system for a fleet 
of express trucks. It has been successfully deployed in Berlin, Germany. The system gathers real-time 
traffic data by use of Floating Car Data (FCD), as obtained from the express trucks and from taxi fleets. 
The derived current and historical road segment travel times enable the system to detect congestion and to 
react to the changed traffic situation by calculating optimized, resource-saving alternative routes. 
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