Oponentský posudek na disertační práci
Ing. Jana Bourka

“UV stabilizace disperzantů pro inkousty Ink-jet tiskáren”.

Zhoršování vlastností materiálů působením viditelného a především ultrafialového záření (fotodegradaci) je obecným problémem. Ten je aktuální i pro potštěné materiály, v daném případě pro tisky aplikované inkjetovou technologií na papír. Jednou z cest, jak fotodegradaci tisků bránit, je přidání UV stabilizátorů do tiskových inkoustů. Stabilizátory mohou být zakomponovány do systému různými způsoby. Mezi nimi vynikají jejich zakotvení pomocí chemické (kovalentní) vazby použité v oponované disertační práci.

Konkrétní obsah předkládané práce spočíval ve studiu účinnosti dvou UV stabilizátorů, typu UV absorberu (UVA) a stericky bráněného aminu (HALS), chemicky navázaných na metakrylátní kopolymery a inkorporovaných do žlutých inkoustů, obsahujících Pigment Yellow 74, ve formě specifických aditiv nebo disperzantů. Práce vznikla ve spolupráci se SYNPO a.s., Pardubicí v rámci řešení výzkumného projektu, jehož zahraniční zadavatel je utajen. Autorovým úkolem bylo formulovat z dodaných kopolyméřů s navázaným UV stabilizátorem a pigmentům finální inkousty, potisknout jimi inkjetovou technologií různé typy substrátů, vyvinout a aplikovat metodiku urychlené fotodegradace, vylepšit způsob hodnocení exponovaných vzorků a vyhodnotit účinnost stabilizace.

Doktorand řešení zadané problematiky zvládl na patřičné vědecké úrovni a adekvátním způsobem je popsal v předkládané disertační práci. V úvodu je zdůrazněn význam a aktuální problémy inkjetového tisku a následně je ve 2. kapitole stanoven vlastní cíl práce. Je otázkou, zda je nutno již v této kapitole podrobně operovat s termíny (Tab. 2.1. a 2.2.), které jsou v práci teprve později definovány a detailně rozvěřeny. Ve 3. a 6. kapitole autor poměrně vyváženě shrnuje současný stav technologie inkjetového tisku, používané komponenty tiskových inkoustů, obecné aspekty fotodegradace a UV stabilizace a problematiku hodnocení fotostability.

Experimentální část (kap. 7) je poměrně rozsáhlá a popisy použitých materiálů i metod jsou velmi detailní, s vyjímkou syntéz použitých kopolyméřů, kde některé podrobnosti musely být vynechány z důvodů utajení. Z této části je také zjevně značný rozsah doktorandem provedené experimentální práce.

K experimentální části mám následující otázky, výhryady a poznámky:

- Protože zjevně nebyl k dispozici klasický Xenotest, nejlépe simulující vliv denního světla, bylo prováděno ozařování středotlakou rtuťovou výbojkou v zařízení, které je primárně určeno pro UV vytvrtování (str. 54). Sám autor vyslovuje obavu (str. 56), že emise této výbojky v oblasti pod 300 nm (nepoměrně více zastoupená oproti spektrálnímu profilu denního světla) může mít výrazný degradaciní účinek. Nebylo možné zaření pod 300 nm (zvláště výraznou čáru 254 nm) od filtrovat (například
vložením běžného skla mezi zdroj a ozařovaný vzorek) a tím simulovat mnohem realističtější podmínky studia fotostabilitní?

- V části 7.6. je autor veden dobrým úmyslem ukázat, že pro primární fotochemický krok ve fotodegradačních procesech je rozhodující překryv emisního spektra použitého zdroje záření a absorbčních spekter jednotlivých složek ozařovaného systému. Nicméně normovaná spektra na Obr. 7.10 (str. 60) neříkají nic o tom, kolik záření na dané vlnové délce je ve skutečném systému jeho jednotlivými složkami absorbováno. To je důležitém koncentrace, molárního extinčního koeficientu složek a optické dráhy, tedy Lambert-Beerovým zákonem. Věta „Spektrální čára 366 nm nepřekrývá absorbční spektrum žádné složky systému, pouze přibližně 30% absorpci pigmentu a UV stabilizátora“ (str. 61) je tedy spíše zavádějící, protože záření této vlnové délky může být systémem při dostatečně vysoké koncentraci alespoň částně z ečko složek celá absorbováno, i když neodpovídá maximu absorpce. Dokáže autor odhadnout, jaká je vlastně skutečná absorbance na této vlnové délce v reálném tisku? Dalo by se místo v práci užívané keramiky potisknut i sklo a pokusi se absorbanci změřit?

- Absorbní spektra obou použitých UV stabilizátorů v chloroformu (Obr. 7.11, str. 61-62) v rozmezí 200 – 400 nm jsou obecně zkršlené. V obou případech není respektována absorbční hranu chloroformu (nejméně 250 nm, podle kvality), pod níž již nelze absorpci rozumně měřit, jak je vidět z pokusu absorbance do záporných hodnot. To je zřejmě zdrojem „falešného“ maxima Tinuvinu R 796 u 241 nm, které výrobce neuvádí ve specifikaci (str. 61). V případě TAA-ol-MA se autorovi vůbec nepodařilo spektrum změřit (str.62), částečně kvůli nízké použité koncentraci a částečně právě kvůli spektrálně nevhodnému rozpozitědlu.

Výsledky a diskuse (8. kap.) jsou ovlivněny tím, že zkoumaný problém je velmi komplexní, závislý na mnoha faktorech a detailní mechanismy fotodegradace celého systému nejsou zcela jasně. Z tohoto hlediska hodnotím kladně autorův pokus o rozumnou klasifikaci výsledků formou jejich rozdělení do „modelů“ dle způsobu chování při ozařování a jeho závislosti na koncentraci UV stabilizátoru. Oceňuji také, že se snaží i ne zcela jasně výsledky poctivě diskutovat s odkazy na alespoň částečně podobné rysy chování nalezené v literatuře. Kladem je jistě také to, že část výsledků je pozitivní ve smyslu nalezené účinné UV fotostabilizace, převážně při použití benzotriazolového UVA stabilizátoru. K diskusi mám následující otázku:

- Autor uvádí (str. 92), že jeden z možných mechanismů degradace polyakrylátových polymerů může spočívat v oxidaci singletovým kyslíkem, který je generován příchozím přenosem energie z excitované molekuly Pigment Yellow 74 na kyslík v základním stavu. Myslí si autor, že se taková degradace původně nebarevného polyakrylátu může výrazně projevit v jím sledovaném parametru, jímž je barvová odchylka? Není dominantním zdrojem změn v ΔE* jen degradace jediné barevné
složky v systému, tedy pigmentu (a možná částečně degradovaného právě singletovým kyslíkem, který sám generoval)?

Soupis literatury je mimořádně rozsáhlý (259 citací), jednotlivé odkazy jsou uvedeny v jednotném formátu a plněm znění, což čtenáří usnadňuje orientaci. Odkazy pochází z vědecké, patentové i firemní literatury, částečně jsou také citovány www stránky, u nichž by mělo být uvedeno i datum, kdy z nich byl odkaz čerpán. Citace [183] je neúplná. Nevim, jak lze dohledat citaci [258].

V práci není český souhrn (nevím, zda je předepsán), anglické Summary je přeložený téměř celý Závěr (str. 94) a je tedy, podle mého názoru, zbytečně podrobné. K práci mi nebyla dodána separátní anglicky psaná Annotation.

Grafická úroveň práce je výborná, pouze mi subjektivně nebylo příliš přijemné použité husté řádkování v kombinaci s minimálními okrají, zvláště v části „Soupis literatury“. Autorův styl psaní je někdy poněkud rozvleký, občas se opakuje, někdy použije i tutéž větu dvakrát na téže stránce (str. 65, 1. věta části 7.7. a 3. věta části 7.8.). Nadměrně je použití kurzívy (str. 65, část 7.7.: průběh závislosti hodnot, pokles optické hustoty, závislost lesku atd). Naopak, gramatických chyb bylo nalezeno minimálně a spíše pouze v interpunkci. Z obsahu (str.6) autorovi vypadla kap. 3. Inkjetový tisk, na stránce 20 (6. řádek odhora) není odstraněna poznámka „napamat že literatura to nazývá hybridní dosperze", na stránce 92 (8. řádek odpodu) není doplněno číslo odkazu „Literatura [x] uvádí ...“. Nicméně, tyto ani jiné formální nedostatky neovlivňují podstatným způsobem kvalitu práce.

Doporučuji přijmout práci k obhajobě.

V Pardubicích, dne 8.1.2010

RNDr. Stanislav Luňák, CSc.
CHEM-PARD spol. s r.o.
Oponentní posudek disertační práce Ing. Jana Bourka „UV stabilizace disperzantů pro inkousty inkjet tiskáren

Disertační práce Ing. Jana Bourka se zabývá možnostmi využití UV stabilizátorů chemicky zabudovaných v polymerním disperzantu použitém v inkoustu pro inkjet tisk. Tyto stabilizátory byly studovány především pro pigmentové typy zmíněných inkoustů. V práci byly použity dva typy UV stabilizátorů lišící se mechanismem UV stabilizace (benztriazolový typ a HALS). Účinnost stabilizátorů byla studována na inkoustech s různými typy polymerů, ale obsahujícími jen jeden typ organického pigmentu. Zároveň s hodnocením stability na světle byl uvažován možný současný vliv substrátu.

Značná část práce byla také věnována samotné přípravě vzorků pro hodnocení tak, aby byly pokud možno eliminovány další některé možné faktory ovlivňující chování inkoustové vrstvy a její UV stabilitu. Celá práce je vlastně srovnávací studie vlivu UV stabilizátorů za různých podmínek.

Disertační práce obsahuje teoretickou část v rozsahu přibližně třiceti stran. Tato část shrnuje poznatky o inkjetových inkoustech, jak z hlediska používaných barvív a pigmentů, tak např. disperzantů, stabilizace pigmentové disperze, aditiv apod. Dále jsou popsány principy UV stabilizace inkoustů a měření a hodnocení světlostálosti inkjet inkoustů.

Považuji teoretickou část za napsanou tak, že poskytuje každému, kdo se bude podobným problémem zabývat, ucelený pohled na současný stav této problematiky. Podle mého názoru je tato část svým pojetím velmi zdařilá a cenná.

Experimentální část rovněž v rozsahu přibližně třiceti stran, popisuje použité polymerní disperzanty, přípravu inkoustů a tiskových vzorků, použité analytické metody a způsoby hodnocení. Z charakteru provedených experimentů jsem přesvědčen, že muselo být vykonáno značně vyšší objem experimentální práce než se v konečné fázi v disertaci objevuje. To souvisí s již zmíněnou eliminací různých faktorů, které by mohly komplikovat nebo i znemožnit hodnocení jednotlivých vzorků.
Z hlediska použitých metod hodnocení, jejich aplikace a zvládnutí poměrně širokého spektra různých metod nemáme k práci žádné závažnější připomínky. Jen snad poznámkou, že v práci takového experimentálního rozsahu by bylo možno více využít statistických metod nebo např. DOE. Tato poznámka ale nemá žádný vliv na kvalitu provedených experimentů.

Výsledková část a diskuse výsledků je podle mě podána přehledně. Za dobrý nápad lze považovat i rozdělení experimentálních výsledků skupin - modelů - a vyhodnocení experimentů podle tohoto navrženého schématu. To nepochybně přispělo k určitému logickému uspořádání velkého množství experimentálních dat.

K dosaženým výsledkům bych dodal, že práce se v podstatě omezují jen na jeden typ organického pigmentu. Při této studii byly zjištěny další možné vlivy na UV stabilitu inkjet tisku a některé výsledky by si zasloužily hlubšího pohledu. To však zcela jistě není zvládnutelné z hlediska jedné disertace. Zdá se, že práce spíše některé problémy otevřela, než aby se je podařilo uspokojivě vyřešit. Rád bych se přesto zeptal na názor, jaké výsledky by bylo možno očekávat při použití dalších, obvykle stálejších, červených a modrých pigmentů v inkoustech při stejném typu UV stabilizace.

Po formální stránce je práce takřka bez obvyklých nedostatků (překlepů) a ne právě vhodných formulací apod.). Z tohoto hlediska byla práci zřejmě věnována velká pozornost.

Disertační práce Ing. Jana Bourka podle mého názoru splňuje požadavky kladené na tento typ práci. Autor prokázal velmi dobré znalosti ve svém oboru, schopnost exp práce a dosažené výsledky na patřičné úrovni zhodnotit a diskutovat s ohledem na současný stav znalostí v daném oboru.

Disertační práci Ing. Jana Bourka doporučuji k obhajobě.

V Pardubicích 8. 1. 2010

Ing. Vladimír Špaček, CSc.
OPONENTSKÝ POŠUDEK

disertační práce Ing. Jana Bourka

„UV stabilizace disperzantů pro inkousty ink-jet tiskáren“

Zvolené téma disertační práce je velmi aktuální – zvýšení světlostálosti inkoustů je celosvětově předmětem zvýšeného zájmu.

Na začátku práce jsou velmi precizně definovány rozsáhlé cíle disertační práce následované popisem ink-jetové technologie a vlastností a složením inkoustů. V dalších kapitolách je věnována pozornost principům UV stabilizace barvových vrstev, světlostálostí tiskových inkoustů a jejich hodnocení. Popis současného stavu problematiky ve výši uvedených kapitolách je jasný a výstižný, doplněný velkým množstvím literárních odkazů, navíc správně citovaných (259 citací). Teoretickou část doplňují přílohy 1 až 3, kde jsou uvedeny seznamy barvírů a pigmentů používaných v ink-jetové technologii a seznam norem vztahujících se ke světlostálosti materiálů.

Experimentální část je kapitolou velice rozsáhlou, detailně popisující materiály, syntézu UV stabilizátorů, přípravu testovaných inkoustů, jejich způsoby nanášení, charakterizaci materiálů a metodiky měření. V této kapitole jsou už uvedeny některé důležité výsledky měření. Připravené vzorky byly důsledně charakterizovány vhodnými a dostupnými metodami.

Výsledky jsou v práci přehledně seřazeny podle jednotlivých modelů popisujících chování studovaných UV stabilizátorů a charakterizační metod a jsou poměrně dobře diskutovány, avšak v některých částech bych přišel hlubší diskusi vzájemných souvislostí naměřených hodnot.

Celý text práce je přehledný a typograficky čistý. Přesto se autor nevyvaroval některých chyb jako typograficky nerozlišené proměnné a konstanty, špatná čitelnost některých grafů buď z důvodu mnoha překrývajících se čár nebo špatně odlišitelných barev stojných symbolů (str. 37, 38, 62), nejednotnost uvažování jednotek intenzit ozáření a dávek ozáření nutící čtenáře k neustálým přepočtům (mJ.cm⁻², MJ.m⁻² a pod.), příliš mnoho zkratků neuváděných v souhrnném seznamu zkratků, ale hlavně rušivě působící zdvojené popisky grafů.

Přes všechny tyto přípomínky disertační práce Ing. Jana Bourka obsahuje množství velmi cenných poznatků. Velmi velký počet testovaných kompozic a následně mnoho parametrů počítaných z naměřených dat degradace inkoustů UV záření si vyžádal zpracovat mnoho závislostí a korelací mezi naměřenými veličinami. Autor správně vyhodnotil výsledky a učinil z nich logické závěry.

K práci mám následující otázky a připomínky:

1. Chybí porovnání zdrojů UV záření z hlediska poskytované intenzity ozáření z pracovní vzdálenosti (str. 55).

2. Na základě většího počtu emisních čar není možné určit výkonnější zdroj bez znalosti intenzit záření v měřeném rozsahu vlnových délek (str. 56).
3. V textu se popisuje pokles barvové odchylky s teplotou, ale grafy jsou prezentovány jako závislost teploty na barvové odchylce (str. 63).

4. Papír pro inkoust ultrachrom (str. 62) není v seznamu vzorků (str. 48).

5. Jakou technikou byly měřeny FTIR spektra papírů a jejich výluhy (str. 50)?

6. Jaký je počítaný index polydispersity částic pigmentů v pastích (tab. 7.8)?

7. Proč jsou remisní křivky žlutého pigmentu prezentovány až po 450 nm?

8. Hodnota pH přijímacích médií pro inkoustový tisk může velmi výrazně ovlivnit světlostálost výtisků s barvírovými inkousty. Jaké interakce ovlivňující světlostálost mohou proběhnout mezi barvivem a kyselými či bazickými skupinami v přijímacím médiu?

Ve své disertační práci prokázal Ing. Jan Bourek schopnost tvůrčí práce. Předloženou disertační práci povážu za významný přínos pro vývoj nových inkoustů a hodnocení světlostálosti ink-jetových výtisků.

Doporučuji, aby práce byla přijata k obhajobě jako podklad pro udělení stupně PhD.

[Signature]

V doc. Ing. Michal Veselý, CSc.
Fakulta chemická
Vysoké učení technické v Brně
Purkyňova 118, 612 00 Brno

V Brně 28. 1. 2010