OBSAH

1 ÚVOD .. 11

2 TEORETICKÁ ČÁST .. 12
 2.1 Atomová absorpční spektrometrie ... 12
 2.1.1 Princip .. 12
 2.1.2 Technika elektrotermické atomizace ... 14
 2.1.3 Teplotní program .. 15
 2.1.4 Rušivé vlivy .. 16
 2.2 ICP-MS .. 17
 2.2.1 Popis metody .. 17
 2.2.2 Transport vzorku do plazmatu ... 18
 2.2.3 Převedení iontů do vakua ... 19
 2.2.4 Separace iontů v kvadrupólu ... 20
 2.2.5 Detekce iontů .. 21

3 PRAKTICKÁ ČÁST .. 22
 3.1 STANOVENÍ ŽELEZA metodou AAS ... 22
 3.1.1 Použití .. 22
 3.1.2 Pracovní rozsah metody ... 22
 3.1.3 Mez stanovitelnosti ... 22
 3.1.4 Rušivé vlivy .. 22
 3.1.5 Chemikálie ... 23
 3.1.6 Přístroje .. 24
 3.1.7 Postup .. 25
 3.1.8 Výpočet .. 26
 3.1.9 Výsledky ... 26
 3.1.10 Zabezpečení a řízení jakosti (QA/QC) ... 26
 3.1.11 Relativní rozšířená nejistota stanovení .. 27
 3.2 Stanovení kationů metodou ICP-MS .. 28
 3.2.1 Použití .. 28
 3.2.2 Pracovní rozsah metody ... 28
 3.2.3 Chemikálie ... 28
 3.2.4 Přístroje .. 30
ZKRATKY

ICP-MS hmotnostní spektrometrie s ionizací v indukčně vázaném plazmatu
AAS atomová absorpční spektrometrie
FAAS AAS s plamenovou atomizací
EDU elektrárna Dukovany
ETA atomová absorpční spektrometrie s elektrotermickou atomizací
rpm otáčky za minutu
amu hmotnostní jednotka
ppm parts per million
ppt parts per trillion
demivoda demineralizovaná voda
ρ koncentrace
1 ÚVOD

Některé z produktů koroze uvolněné z povrchu systému vytvoří nános na palivových článkách. Produkty aktivace přítomné v těchto nánosech a jejich uvolňování, transport a ukládání na površích mimo aktivní zónu vedou ke zvýšení úrovně radiace elektrárny. Tento proces může být zpomaleny, pokud je správně řízen chemický režim. K tomu je však třeba znát přesnou koncentraci jednotlivých parametrů, které o tomto jevu vypovídají.

Pro tento účel se používají metody atomové absorpční spektrometrie a hmotnostní spektrometrie s ionizací v indukčně vázaném plazmatu, které jsou schopny spolehlivě stanovit koncentrace železa v jednotkách μg·l⁻¹ i nižší.

Hmotnostní spektrometrie s indukčně vázaným plazmatem je ultrastopová analytická metoda sloužící ke stanovení obsahu stopových množství jednotlivých prvků v analyzovaném vzorku. Atomová absorpční spektrometrie je spektrometrická analytická metoda sloužící ke stanovení obsahu stopových i významných koncentrací jednotlivých prvků v analyzovaném roztoku. Účelem této práce je zhodnocení přesnosti měření jednotlivých přístrojů a zhodnocení výhod použití přístrojů v závislosti na účelu využití.
2 TEORETICKÁ ČAST

2.1 Atomová absorpční spektrometrie

2.1.1 Princip

Atomová absorpční spektrometrie je proces, ve kterém dochází k absorpci charakteristické vlnové délky volnými atomy daného prvku. Absorpce při dané vlnové délce je charakteristická pro příslušný prvek.

V atomové spektrometrii emisní, absorpční a fluorescenční, se dodá populaci atomů tepelnou, elektromagnetickou, chemickou nebo elektrickou formou energie, která se konvertuje před změřením různými atomickými a elektronickými procesy na energii světelnou. Atomová absorpční spektrometrie je užitečná pro kvantitativní stanovení 65 elementů přítomných ve vzorcích. Tato technika je specifická a schopná v každém vzorku identifikovat velmi malá množství prvků řádu 1 μg·g⁻¹ (1 ppm).

Při zahřívání vzorku nebo roztoku se v plameni nebo záhřevem v trubici se ze vzorku uvolňují volné atomy a vytvářejí atomový oblak. Každý atom se skládá z pozitivně nabitého jádra, které je obklopeno řadou elektronů rychle se pohybujících okolo tohoto jádra. Každý atom má diskrétní sadu energetických úrovní, které mohou tyto elektrony obsahovat. Energetické úrovně těchto hladin jsou pro každý elektron v atomu různé, avšak tytéž atomy mají stejně energetické úrovni elektronů. Energetické hladiny se obvykle označují E₀, E₁, E₂ až E∞.

V neexcitovaném atomu jsou všechny elektrony v základním energetickém stavu. Během excitace atomu může jeden a nebo více elektronů přejít do první a nebo vyšší energetické hladiny při absorpci energie tímto atomem. Tuto energii lze atomu dodat fotony a nebo srážkami, které způsobí tepelná energie. K přechodu ze základního energetického stavu E₀ do první energetické úrovně E₁ je třeba dodat budicí energii, která je dána vztahem

\[E = E₁ - E₀ \]

Energie potřebná pro tento přechod se může realizovat světelným fotonem podle rovnice:
\[E = h \cdot v \]

Kde \(h = \) planckova konstanta a \(v = \) frekvence.

Vlnová délka (\(\lambda = \)) se vyjádří vztahem:

\[\lambda = \frac{h \cdot c}{E} \]

kde \(c = \) rychlost světla ve vakuu.

Avšak pro všechny nevodivé prvky (izolátory) a pro většinu vodivých atomů je rozdíl energie \(E_1 - E_0 \) příliš velký, a proto pouze velice energetické ftony, snad pouze X-paprsky a nebo UV záření ve vakuu, by byly schopné excitovat atom. Kovové a polokovové prvky však obsahují tak zvané valenční elektrony, které mohou být excitovány v optické oblasti 190-900 nm. U každého atomu tohoto typu (kovového nebo metaloidního) je energetický rozdíl \(E_1 - E_0 \) partikulárního valenčního elektronu prakticky identický. Kromě toho stejný energetický rozdíl \(E_1 - E_0 \) se u žádného prvku nenajde. Jestliže se tudíž vycentruje dostatečně úzké rozmezí fotonů vlnové délky:

\[\lambda = \frac{h \cdot c}{E_1 - E_0} \]

a takto úzký svazek vlnové délky se nechá projít oblakem tvořeným různými atomy, absorbuji se tyto ftony pouze atomy jednoho partikulárního elementu. Odtud vyplývá selektivita techniky atomové absorpce. K absorpci dochází ve velmi úzkém rozmezí vlnových délek. Šířka typického absorpčního pásu je cca 0,001 nm. V atomových spektrometrech se obvykle používá emisní zdroj, který eliminuje šířku pásma stejné konstantní frekvence s šířkou kolem 0,001 nm. Tvorba emisního spektra analyzovaného prvku se realizuje buď dutými katodovými lampami (HCL) a nebo bezelektrodyovými výbojkami (EDL).

Pro získání intenzivního absorpčního signálu je nutné, aby byl velký počet atomů v základním energetickém stavu, to je aby dostatečně velký počet fotonů správné frekvence uváděl tyto atomy do excitovaného stavu. Počet atomů, který se nachází v základním a prvním excitovaném stavu, se řídí Maxwell-Boltzmannovým zákonem. \(^1\)
2.1.2 Technika elektrotermické atomizace

Hlavní rozdíl mezi atomizací v plameni a v grafitové kytě je v citlivosti metody. Grafitový atomizér je o tři řády citlivější než stanovení FAAS. Další rozdíl lze spatřovat ve složení plynné fáze, do které částice vstupují. Zatímco u plamenových atomizérů je atmosféra dána spalnými produkty používaných plynů, u grafitových atomizérů se jedná o inertní atmosféru, která spolu s redukčními vlastnostmi grafitu zajišťuje dobré atomizační podmínky pro většinu analytů. Rozdíl obou technik lze spatřovat i v době setrvaní atomů v absorpčním prostředí. Zatímco u plamenových atomizérů je atmosféra dána spalnými produkty používaných plynů, u grafitových atomizérů se jedná o inertní atmosféru, která spolu s redukčními vlastnostmi grafitu zajišťuje dobré atomizační podmínky pro většinu analytů. Rozdíl obou technik lze spatřovat i v době setrvaní atomů v absorpčním prostředí. Zatímco u plamenových atomizérů je atmosféra dána spalnými produkty používaných plynů, u grafitových atomizérů se jedná o inertní atmosféru, která spolu s redukčními vlastnostmi grafitu zajišťuje dobré atomizační podmínky pro většinu analytů.

Cílem je co nejvíce odstranit složky matrice, a to ještě před fází atomizace, aby nemohly působit rušivě. Doba setrvaní atomů v absorpčním prostředí kyvety je tak o 2 až 3 řády vyšší než v plameni. Děje, které probíhají v ETA během atomizace, jsou složité a navzdory množství prací, které řadu procesů odhalily, stále zůstává i dost těch neobjasněných. Jednoduchý matematický model popisující časovou závislost populace volných atomů v absorpčním prostředí navrhl L’vov:

\[
dN/dt = n_1(t) - n_2(t)
\]

kde dN je změna atomů v atomizátoru v čase t, \(n_1(t) \) je počet atomů vstupujících za časovou jednotku do atomizačního prostředí, \(n_2(t) \) je počet atomů za časovou jednotku vystupujících z atomizátoru.

Jak je z vztahu patrné, jedná se o dva, v praxi však neoddělitelné děje, jejichž výsledkem je krátkodobý absorpční signál (podle těkavosti analytu od deseti až po několik sekund), jehož grafické zobrazení se nazývá absorpční pík.

Tvar signálu, jehož šířka, výška maxima i plošný obsah se prvek od prvku liší. Tvorba atomů závisí na rychlosti ohřevu podložky a na aktivační energii reakce, která určuje rychlost vzniku volných atomů daného analytu. Při výstupu atomů převažuje difuze otevřenými konci atomizátoru či dávkovací, ověřovací, uplatňuje se i další faktory, jako expanze plynů, velikost průtoku inertního plynu, geometrie podložky, apod.

U příčně vyhřívaných izotermických atomizérů s kovovými uzávěrkami se uplatňuje i konvence od konců k dávkovacímu otvoru, což se pozitivně projevuje na tvaru piku a na dosažené citlivosti. Časový průběh absorpčního signálu a signálu absorpčního pozadí lze
sledovat na monitoru řídící jednotky, což je velmi cenné při vývoji analytické metody. Řídící jednotky spektrometrů nabízejí pro vyhodnocování analytických signálů volbu mezi výškou nebo obsahem píků (integrace signálu). Výška píku je ovlivněna řadou faktorů, jako jsou drobné změny v teplotním režimu atomizátoru, změnami v povrchové struktuře grafitu (vliv stárnutí kyvety) a změnami ve složení matrice. Z těchto důvodů a na základě teoretických úvah je správnější pro vyhodnocování volit obsah píků, protože lépe odpovídá počtu volných atomů v pozorovatelném objemu během celého atomizačního procesu. Tento způsob vyhodnocování lze doporučit pro dostatečně velké signály, dobře rozlišené od šumu přístroje. Výsledky takto vyhodnocované bývají většinou správné. Citlivost měření je však pro obsah píku zpravidla nižší než pro jejich výšky. Tam, kde se měření pohybují blízko meze detekce, je ve fázi atomizace rozhodující šum, který se v případě integrace píků sčítá se specifickým signálem, a to může vést k chybám výsledkům. V takovém případě lze doporučit odečet výšky píků. Podmínkou však je dobře vypracovaná analytická metoda, kde budou všechny vlivy zahrnuty. Jen tak lze z výšek píků získat spolehlivé výsledky. Jiným problémem je stanovení obtížně atomizovatelných analytů zejména v atomizátořích s podélným ohřevem (Ba, Mo, V), které vlivem pomalých procesů (disociace, rozklad oxidů) vykazují značně široké píky, které se obtížně vymezují. I v takových případech je lépe k vyhodnocování použít výšek píků, nejlépe obě vyhodnocení metod.

2.1.3 Teplotní program

Vzorek nadávkovaný na atomizační podložku v kapalném stavu se zpracovává podle předem odvozeného teplotního programu ve třech základních fázích:

1. SUŠENÍ
Má za úkol odstranit ze vzorku rozpouštědélo. Teplota je zde volena tak, aby nedošlo k varu a analyzovaný vzorek nebyl rozptýlen po stěnách kyvety.

2. TEPELNÝ ROZKLAD – PYROLÝZA
Má za úkol zjednodušit matrici a odstranit produkty rozkladu. Jelikož probíhá již za vyšších teplot, nastávají v této fázi různé chemické reakce vedoucí např. k tvorbě oxidů či karbidů. Fáze rozkladu představuje velmi důležitý krok ve zpracování vzorku, jehož úspěšnost se projeví ve fázi atomizace. Je zde možný i přídavek chemicky aktivního plynu (vzduch, kyslík) ke zvýšení účinnosti rozkladu.
3. ATOMIZACE
Má za úkol zajistit selektivní atomizaci analytu a měření absorbance světla jejími atomy. V této fázi bývá zastaven nebo výrazně snížen průtok inertního plynu, aby střední doba setrvání atomu byla co nejvyšší. Výsledný signál má potom tvar píku a pro vyhodnocení obsahu prvku ve vzorku se měří buď jeho výška nebo plocha.

4. VYPALOVÁNÍ – ČIŠTĚNÍ
Má za úkol odstranit zbytky nevypařené matrice po fázi atomizace. Provádí se zpravidla při teplotách o málo vyšších než je atomizace za plného průtoku inertního plynu.

2.1.4 Rušivé vlivy
Technika ETA je především technikou stopové a ultrastopové analýzy. V praxi to znamená, že stanovené obsahy jsou o několik řádů nižší než obsahy doprovodných složek. Tento fakt automaticky vede k vysokému riziku uplatňujících se rušivých vlivů. Jak již bylo ukázáno výše, je snahou odseparovat analyt od matrice co nejvíce ve fázi pyrolýzy, aby signál na analytu nebyl rušen ve fázi atomizace. Úplné odstranění však závisí na těkavosti jak analytu, tak matrice. Také tvar atomizéru a způsob ohřevu hrají významnou roli. U podélně vyhřívaných atomizérů, kde se uplatňuje značný teplotní gradient, je veliké riziko, že již jednou vypařené složky budou na chladných koncích kondenzovat a během atomizace se znovu vypařovat a působit rušivě. Dokonce i v případě, kdy je rušivá složka matrice z velké části odstraněna během pyrolýzy, zůstává potřeba korigovat nespecifickou absorpci zapojením korektoru pozadí.

Součástí vývoje každé analytické metody je identifikace rušivých vlivů a jejich efektivní eliminace, protože mohou způsobovat chyby stanovení systematické i náhodné a výsledky tak zcela znehodnotit.
2.2 ICP-MS

Metoda hmotnostní spektrometrie s indukčně vázaným plazmatem je ultrastopová analytická metoda, sloužící ke stanovení obsahu stopových množství jednotlivých prvků v analyzovaném vzorku. Tato technika umožňuje analyzovat téměř všechny prvky s cílitlivostí až jednotek ppt po stavky ppm a v současné době jedna z nejcítlivějších metod pro anorganickou analýzu.3

ICP-MS spektrometry obecně dělíme na tři typy:

1) Spektrometry s kvadrupolovými analyzátoři - pro rutinní analýzy s velkou rychlostí, nižší pořizovací náklady, menší nároky na vakuum, před ten kvadrupolový analyzátor je zařazena iontová optika, která fokusuje iontový paprsek z interface do hmotnostního spektrometru.

2) Spektrometry s vysokým rozlišením, ty jsou určeny pro speciální velmi přesná měření poměrů izotopů, nebo kde je nutné potlačení spektrálních interferencí. Vysoké nároky na vakuum, výrazně nižší rychlost analýzy (3-5x dražší).

V této práci se dále budeme zabývat spektrometry s kvadrupolovými analyzátorů.

2.2.1 Popis metody

Hmotnostní spektrometrie s indukčně vázaným plazmatem. V této souvislosti je plazma malý mrak horkého (6 000 K až 10 000 K) a částečně ionizovaného (přibližně 1 %) plynného argonu.
Chladná plazmata mají teplotu pouze přibližně 2 500 K. Plazma je neseno radiofrekvenčním polem. Vzorek je zaveden do plazmatu jako aerosol. Kapalné vzorky jsou převáděny na aerosol s použitím zamlžovače, které jsou dále unášeny do přechodové komory, kde je snížen tlak plynu na přibližně 0,01 Torru.

Po průchodu do vstupu k detektoru klesá tlak na řádově 10^{-5} Torru a ionty se systémem elektromagnetických čoček dostávají do kvadrupolového detektoru. Zde jsou analyzované ionty vedeny takovým způsobem, aby na povrch zesilovače dopadaly v daném časovém okamžiku pouze ionty se zvolenou hmotností. Dopadem na povrch zesilovače vzniká velmi slabý elektrický proud, který je následně zesílen a je změřena jeho intenzita. Pomocí výpočetního programu jsou naměřené intenzity signálu převedeny na koncentrační data, výsledkem analýzy jsou údaje o koncentraci naměřených prvků v analyzovaném roztoku.

2.2.2 Transport vzorku do plazmatu

Ve většině vzorků se analýza technikou ICP-MS provádí z roztoku vzorku. Pro jeho převedení do plazmatu je proto nejprve třeba jej dopravit do zamlžovače, k čemuž slouží peristaltická pumpa (někdy se také označuje jako peristaltické čerpadlo). Přitom se obvykle používá dvou, nebo i třicestně čerpadlo, které v prvním kanále transportuje roztok vzorku, v druhém kanále roztok interního standardu a třetí může být použit například pro inline ředění příliš koncentrovaných vzorků.

V některých speciálních aplikacích lze odebírat vzorek pro měření i z pevného materiálu, a to ojiskřováním laserem za průtoku konstantního množství argonu, který transportuje ojiskřené mikročástečky vzorku přímo do hořáku.

Posledním speciálním případem je generování plynných hydridů a jejich dávkování do plazmatu. Tento postup vede k mimořádné citlivosti analýz, má však řadu omezů – je použitelný pouze v omezené skupině prvků jako arsen, selen, antimon, cín, tellur nebo bismut a současně nesmí analyzovaný roztok obsahovat významné koncentrace těžkých kovů.

Ionizace v plazmatu

Technika ICP-MS je založena na analýze iontů měřených prvků a je proto žádoucí, aby atomy analyzovaných prvků byly před vstupem do detektoru převedeny do formy iontů M⁺.

Dlouhodobým výzkumem bylo proto nalezeno plazma s takovými parametry, které produkci uvedených iontů zabezpečuje v požadované míře.

Základní charakteristikou vstupu vzorku do plazmatu je množství přiváděného plynu. To je v tomto případě na úrovni přibližně 20 l Ar/min a zajišťuje tvorbu aerosolu vzorku potřebných parametrů. Pro takový průtok plynu je pak jako ideální prostředí definováno vysokofrekvenční (obvykle v rozmezí 25 – 50 MHz) plazma s dodávaným výkonem 0,8 – 1,8 kW.

Technicky je tento výkon předáván protékajícímu proudu argonu pomocí cívky o 3 – 4 závitech, která je umístěna na vyústění zmlžovače. Protože předávání tak vysokého výkonu z vysokofrekvenčního generátoru do plazmatu by za normálních podmínek způsobilo přehřívání cívky s možností jejího poškození nastavením, jsou cívky zhotoveny z dutých kapilár o vnitřním průměru 1 – 2 mm. Cívka je pak kontinuálně chlazena proudem chladicího média (obvykle deionizované vody) o teplotě 15 – 20 °C.

2.2.3 Převedení iontů do vakua

Protože analýzu obsahu jednotlivých iontů ve vzorku lze provést pouze za podmínek poměrně vysokého vakua, je třeba ionty analyzovaných prvků transportovat do tohoto
prostředí. Dosahuje se toho průchodem vzorku dvěma kónusy s průměrem vstupního otvoru několik desetin milimetrů. Po průchodem 1. kónusem (semper) se atomy vzorku dostávají do meziprostoru, kde je tlak plynu soustavně udržován na hodnotě řádově několika setin Torru. Po průchodu otvorem druhého konu (skimmer) se analyzovaný vzorek dostává do prostředí o tlaku přibližně 10^{-5} Torru a dosahuje již nadzvukové rychlosti.

Vakuum je získáváno kombinací činnosti celkem 4 vakuových pump. Ve vzájemné součinnosti pracuje vždy jedna klasická olejová vývěra, která odčerpává hlavní množství přítomného plynu. Zbytek je pak odsáván turbomolekulární pumpou, která při otáčení rotoru kolem 60 000 rpm odstraňuje atomy plynu mechanickými nárazy lopatek o velmi vysoké rychlosti.

2.2.4 Separace iontů v kvadrupólu

Po převedení iontů do vakuové části spektrometru se tam však také dostává velké množství nechtěných částic, které by rušily závěrečnou detekci jednotlivých separovaných iontů. Jsou to jednak elektricky nabité atomy, převážně atomy argonu, kyslíku a vodíku a dále velké množství fotonů uvolněných z argonového plazmatu. Protože všechny uvedené částice jsou elektricky neutrální a neovlivňuje je tudíž elektromagnetické pole, stačí do jejich dráhy umístit nějakou mechanickou překážku (např. kovový terčík) a fotony i nenabité částice se na ni zastaví. Analyzované ionty se pak vychýlí přesně tvarovaným elektromagnetickým polem tak, aby překážku prostě obletěly a teprve za ní byly vneseny do kvadrupólu. U některých přístrojů je vzájemné uspořádání vstupních kónů a kvadropólu vyřešeno tak, že osa kvadrupólu je otočena v úhlu přibližně 45° od směru vstupujících iontů a ty jsou do kvadrupólu nasměrovány opět důmyslně generovaným elektromagnetickým polem (tzv. magnetickou optikou), zatímco nenabité částice zanikají po dopadu na absorpční kovovou plochu ležící v ose vstupních kónů.

Pro další oddělení jednotlivých iontů podle jejich relativní atomové hmotnosti (amu) slouží tzv. kvadrupolový separátor. Je to soustava čtyř kovových tyčí o délce 30 – 40 cm a průměru asi 10 mm, na které se postupně vkládá elektrické napětí složené ze stejnosměrného napětí a vysokofrekvenčního napětí tak, aby dvě protilehlé tyče měly vždy stejnou polaritu. Působením takto generovaného elektromagnetického pole s ionty, vstupující do kvadrupólu rozkmitají a za určitých známých podmínek lze docílit toho, že kvadrupólem
proletí pouze částice o definované hmotě a dopadne na detektor. Některé typy ICP-MS spektrometrů mají navíc instalován ještě menší kvadrupólový separátor, který vstupující ionty nasměruje do správného směru v ose vlastního kvadrupólu.

Při analýze se pak obvykle postupuje tak, že se pomocí výkonného počítače mění podmínky na kvadtrupólu tak, aby byly analyzovány pouze vybrané ionty podle zadání obsluhy. Tím se podstatně zkrátí doba analýzy a zabrání se tak i přehlcení detektoru ionty o příliš vysokém zastoupení ve vzorku.

2.2.5 Detekce iontů

Pro detekci a kvalifikaci počtu dopadlých iontů se v ICP-MS nejčastěji využívá vícekanálový elektronásobič. Jeho funkce je obdobná jako u klasického fotonásobiče a spočívá v mnohonásobném zesílení elektrického signálu, vzniklého dopadem měreného iontu na měrnou plošku, na kterou je vložen elektrický potenciál velikosti přibližně – 3kV. Dopadem pozitivně nabitého iontu Me⁺ dojde k vypužení velkého počtu tzv. sekundárních elektronů, které jsou dále směrovány elektrickým polem k dalším elektrodám a znovu zesilovány, až je na výstupu detektoru získán měřitelný elektrický proud.

Při vlastním měření metodou ICP-MS jsou kvadrupólovým separátem na detektor směrovány ionty o zvolené hmotnosti vždy po dobu 10 – 100 ms a počet dopadajících iontů je zaznamenáván řídícím počítačem. Poté jsou na detektor nasměrovány další ionty o jiné amu a celý proces se opakuje. Proměření celého zadaného spektra iontů se opakuje 100 – 1000x a výsledný signál je počítán jako průměr ze všech těchto měření. Stejným způsobem dále probíhá i kalibrace přístroje, kdy jsou proměřovány standardní roztoky o známé koncentraci měřených prvků a na základě velikosti signálů těchto standardů jsou finálně vypočteny.⁴,⁵
3 PRAKTICKÁ ČÁST

3.1 STANOVENÍ ŽELEZA metodou AAS

3.1.1 Použití

Podle tohoto standardního pracovního postupu se stanoví obsah železa v různých druzích vod (např. pitná, podzemní, povrchová, odpadní, technologická) atomovou absorpční spektrometrií.

3.1.2 Pracovní rozsah metody

A. Stanovení železa AAS s elektrotermickou atomizací

Pracovní rozsah metody je bez ředění při objemu dávkovaného vzorku 20 µl v koncentračním rozmezí 1 až 20 µg·l⁻¹. Vyšší koncentrace je možno stanovovat při dávkování menšího množství vzorku. Takto lze stanovit koncentrace železa do 100 µg·l⁻¹. Vzorky s vyšší koncentrací nutno ředit nebo stanovit v plameni.

3.1.3 Mez stanovitelnosti

Mez stanovitelnosti L₀ byla stanovena odhadem z testu kalibrační křivky. :

Stanovení železa AAS s elektrotermickou atomizací:

\[L₀ = 0,5 \mu g·l⁻¹. \]

3.1.4 Rušivé vlivy

A. Stanovení železa AAS s elektrotermickou atomizací:

Rušivé vlivy matrice jsou odstraněny mineralizací a ředěním vzorku dle postupu stanovení. Nespecifická absorpce pozadí je kompenzována korekcí pozadí deuteriovou lampou.
3.1.5 Chemikálie

Demivoda
Používá se demivoda z rozvodu EDU upravená přes úpravnu demivody DEMIWA 5 nebo MILLI Q. Výstupní vodivost musí být menší než 0,01 mS·m⁻¹ a voda nesmí obsahovat pevné částice s průměrem větším než 0,45 µm.

Kyselina dusičná (HNO₃) Suprapur, ρ = 1,40 g·ml⁻¹
Používá se kyselina kvality Suprapur - Merck nebo srovnatelné čistoty. Životnost 1 rok.

Základní roztok standardu o koncentraci ρ(Fe) = 1 g·l⁻¹
Komerčně vyráběný standard železa o koncentraci ρ(Fe) = 1 g·l⁻¹. Životnost udává výrobce. Základní roztok jednoduchého standardu fi ANALYTIKA o koncentraci ρ(Fe) = 1,000±0,005 g·l⁻¹
Komerčně dostupný standardní roztok fi ANALYTIKA. Používá se jako nezávislý standard. Životnost udává výrobce.

Zásobní kalibrační roztok standardu, ρ(Fe) = 20 mg·l⁻¹
Do odměrné baňky 100 ml se odpipetuje 2 ml základního roztoku standardu železa a doplní se po rysku roztokem 0,1 mol·l⁻¹ HNO₃ Koncentrace ρ(Fe) = 20 mg·l⁻¹. Životnost roztoku je 3 měsíce.

Zásobní kontrolní roztok standardu, ρ(Fe) = 20 mg·l⁻¹
Do odměrné baňky 100 ml se odpipetuje 2 ml základního roztoku jednoduchého standardu fi ANALYTIKA o koncentraci ρ(Fe) = 1,000±0,002 g·l⁻¹ železa a doplní se po rysku roztokem 0,1 mol·l⁻¹ HNO₃ Koncentrace ρ(Fe) = 20 mg·l⁻¹. Životnost roztoku je 3 měsíce.

Top Standard - kalibrační roztok pro stanovení Fe AAS s elektrotermickou atomizací - ρ(Fe) = 20 µg·l⁻¹
Připraví se Top Standard. Do odměrné baňky 100 ml se odpipetuje 0,100 ml standardního roztoku železa, přidá se 0,7 ml HNO₃ Suprapur a doplní se po rysku upravenou demivodou. Koncentrace Top Standardu ρ(Fe) = 20 µg·l⁻¹. Připravuje se vždy čerstvý.

3.2.7.8. QC Check 1 - kontrolní standard pro stanovení Fe AAS s elektrotermickou atomizací - ρ(Fe) = 15 µg·l⁻¹
Do odměrné baňky 100 ml se odpipetuje 0,075 ml standardního roztoku železa, přidá se 0,7 ml HNO₃ Suprapur a doplní se po rysku upravenou demivodou. Koncentrace QC Check 1 ρ(Fe) = 15 µg·l⁻¹. Připravuje se vždy čerstvý.

QC Check 2 - kontrolní standard pro stanovení Fe AAS s elektrotermickou atomizací

ρ(Fe) = 5,0 µg·l⁻¹

Do odměrné baňky 100 ml se odpipetuje 0,025 ml standardního roztoku železa, přidá se 0,7 ml HNO₃ Suprapur a doplní se po rysku upravenou demivodou. Koncentrace QC Check 2 ρ(Fe) = 5,0 µg·l⁻¹. Připravuje se vždy čerstvý.

Blank

Do odměrné baňky 100 ml se odpipetuje 0,7 ml HNO₃ Suprapur a doplní se po rysku upravenou demivodou. Připravuje se vždy čerstvý.

QC Check 2 - kontrolní standard pro stanovení železa v plameni acetylen-vzduch

ρ(Fe) = 1500 µg·l⁻¹

Do odměrné baňky objemu 100 ml se odpipetuje 0,15 ml a doplní se po rysku roztokem 0,1 mol·l⁻¹ HNO₃. Koncentrace QC Check 2 ρ(Fe) = 1500 µg·l⁻¹. Připravuje se vždy čerstvý.

3.1.6 Přístroje

Obvyklé laboratorní vybavení a dále :

1. Atomový absorpční spektrometr UNICAM 939 s příslušenstvím
2. Automatický dávkovač vzorku
3. Data stanice
4. Mineralizační pec Milestone s příslušenstvím
5. Eppendorf VARI - 100-1000 µl
6. Eppendorf VARI - 100 µl
7. Eppendorf Multipette plus - 5 ml, 10 ml
8. Odměrné baňky 100 ml - třída A
9. Odměrné baňky 50 ml - třída A
3.1.7 Postup

Příprava standardů

Příprava koncentrace 0,1, 0,5, 1, 2, 3, 5, 7, 10 µg·l⁻¹
Do 100 ml odměrné baňky se odměří:
cca 20 ml upravené demivody,
10 µl, 50 µl, 100 µl, 200 µl, 300 µl, 500 µl, 700 µl, 1000 µl kalibračního standardu
koncentrace 1 mg/l
1,5 ml HNO₃ Suprapur
a doplní se po rysku upravenou demivodou.

Princip metody

Okyselený nebo předem upravený vzorek vody se nadávkuje do grafitové kyvety v množství 20 µl. Vzorek se atomizuje podle zadaného teplotního programu v elektricky vyhřívané grafitové kyvetě AAS a měří se absorbance při vlnové délce 248,3 nm. Absorbance je úměrná koncentraci železa ve vzorku.
Vzorky, jejichž absorbance přesáhne absorbanci kalibračního standardu 20 µg·l⁻¹, se ve druhém kroku automaticky dávkují do kyvety v množství menším než 20µl (Inteligentní dilutor je zapnut).
Přístroj z kalibrační křivky vypočte koncentraci železa v roztoku.
Výsledky se uloží do databáze po ukončení analýzy.

Měření

Parametry analýzy jsou uloženy v souboru fe1K061.par, adresář 939\SOP\ Z databáze se nahraje sekvence analýzy - Sequence parameters fe1K061.tsk a pořadí vzorků se upraví podle požadavků na analýzy vzorků.
Z databáze se nahrají detaily série vzorků - Sample Details fe1K061.det a upraví se podle požadavků na analýzy vzorků.
Kontroluje se průběh analýzy a do deníku přístroje se zapisují údaje z průběhu analýzy.
Kalibrace

Kalibrace na 6 standardů se provádí současně s analýzou vzorků. Standardy řídí dávkovací zařízení z kalibračního standardu a proměří se za daných parametrů přístroje. Přístroj ze změřených absorbancí vyhodnotí podle metody automaticky kalibrační křivku. Kalibrační parametry jsou součástí parametrů metody.

3.1.8 Výpočet

Datastanice provádí výpočet číselné hodnoty korigované koncentrace z kalibrační křivky a podle navolených údajů ve funkci Sample Details.

\[
C_r = \frac{C_m \times \text{Dilution} \times \text{Nominal Mass}}{\text{Sample Mass}}
\]

- \(C_r\) korigovaná koncentrace
- \(C_m\) koncentrace vyhodnocená z kalibrační křivky.
- \text{Dilution Ratio} zředění vzorku
- \text{Nominal Mass} nominální hodnota hmotnosti vzorků (pro většinu aplikací je rovna 1)
- \text{Sample Mass} navážka vzorku (pro analýzu kapalných médií je zadáno 1)

3.1.9 Výsledky

Uloží se do příslušného adresáře (např. \text{DATArr\ K061} \ ve tvaru \text{mmdd.res}) kde \(dd\) je číslo dne a \(mm\) číslo měsíce analýzy vzorku.

3.1.10 Zabezpečení a řízení jakosti (QA/QC)

- \text{QC Check 1} vkládá se hned za kalibrační křivku.
- \text{QC Check 2} vkládá se vždy za první QC Check 1 a dále vždy po 5 až 10 vzorcích a na konci série. Minimální počet analýz v sérii je 2. Do regulačního diagramu se zaznamenají dvě hodnoty QC Check 2 - první a poslední ze série.
- Zjištěná koncentrace kontrolního standardu musí být v regulačních mezích, jejíž aktuální hodnoty jsou uvedeny v tabulce u přístroje.
- Zjištěná absorbance slepého vzorku musí být v regulačních mezích, jejíž aktuální hodnoty jsou uvedeny v tabulce u přístroje.
• Zjištěné koncentrace kontrolního standardu a absorbance slepého pokusu se zadají do kontrolních vzorků v sítí CHEMIS pro sestrojení regulačních diagramů.

Pozn.: SW přístroje varuje nebo ukončí analýzu při překročení nastavených mezí slepého stanovení nebo kontrolního standardu QC Check.

3.1.11 Relativní rozšířená nejistota stanovení

Relativní rozšířená nejistota stanovení je ±10 %.
3.2 Stanovení kationů metodou ICP-MS

3.2.1 Použití

Podle tohoto standardního pracovního postupu se stanoví obsah prvků v různých druzích vod (např. technologická, pitná, podzemní, povrchová, odpadní) ICP-MS.

3.2.2 Pracovní rozsah metody

Pracovní rozsah metody je bez ředění:
- Ag, Al, As, B, Ba, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, Sb, Sr, Zr, Zn: 0,1 µg·l⁻¹ až 20 µg·l⁻¹

3.2.3 Chemikálie

Demivoda
Používá se demivoda z rozvodu EDU upravená přes úpravnu demivody PUERLAB nebo MILLI Q. Výstupní vodivost musí být menší než 0,01 mS·m⁻¹ a voda nesmí obsahovat pevné částice s průměrem větším než 0,45 µm.

Kyselina dusičná (HNO₃) Suprapur, ρ = 1,40 g·ml⁻¹
Používá se kyselina kvality Suprapur - Merck nebo srovnatelné čistoty. Životnost 1 rok.

Základní jednoprvkové standardy fi MERCK o koncentraci ρ = 1,000±0,005 g·l⁻¹
Komerčně dostupné standardní jednoprvkové roztoky Xx, fi MERCK.
Životnost udává výrobce.

Základní jednoprvkové standardy fi ANALYTIKA o koncentraci ρ = 1,000±0,002 g·l⁻¹
Komerčně dostupné standardní jednoprvkové roztoky Fe, Ag, As, Be, Ge, Ca, K, Li, Mg, Na, Nb, Si, Sb, Sr, Zr fi ANALYTIKA.
Životnost udává výrobce.

Interní standard
ρ(Sc, Y, Rh)= 1,0 mg·l⁻¹

Do 100 ml odměrné baňky se odměří:
cca 70 ml upravené demivody,
1,5 ml HNO₃ Suprapur
0,100 ml jednoprvkových standardů Sc, Y, Rh ,
a doplní se po rysku upravenou demivodou.
Životnost 1 měsíc.

Kalibrační zásobní roztok

Obsahuje:

\[\rho(\text{Ag, Al, As, B, Ba, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, Sb, Sr, Zr, Zn}) = 1 \text{ mg·l}^{-1} \]

Do 100 ml odměrné baňky se odměří:
cca 20 ml upravené demivody,
100 µl jednoprvkových standardů Fe Na, K, Li, Si (ANALYTIKA)
1,5 ml HNO₃ Suprapur
a doplní se po rysku upravenou demivodou.
Doba použitelnosti 3 měsíce.

Kontrolní zásobní roztok

Obsahuje:

\[\rho(\text{Ag, Al, As, B, Ba, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, Sb, Sr, Zr, Zn}) = 1 \text{ mg·l}^{-1} \]

Do 100 ml odměrné baňky se odměří:
cca 20 ml upravené demivody,
100 µl jednoprvkových standardů Fe Na, K, Li, Si (MERCK)
1,5 ml HNO₃ Suprapur
a doplní se po rysku upravenou demivodou.
Doba použitelnosti 3 měsíce.

Kalibrační roztok – Level 1: Blank

Do odměrné baňky 100 ml se nadávkuje cca 80 ml demivody, nadávkuje se 0,7 ml HNO₃
Suprapur a doplní se po rysku upravenou demivodou.
Připravuje se vždy čerstvý.

Kalibrační roztok – Level 2:

Koncentrace v kalibračním roztoku – Level 2:

\[\rho(\text{Ag, Al, As, B, Ba, Cd, Co, Cr, Cu, Fe, Mn, Nb, Ni, Pb, Sb, Sr, Zr, Zn}) = 20 \text{ µg·l}^{-1} \]
Do odměrné baňky 100 ml se nadávkuje:
cca 70 ml upravené demivody,
0,7 ml HNO$_3$ Suprapur
2,00 ml kalibrační zásobní roztok
a doplní se po rysku upravenou demivodou.
Připravuje se vždy čerstvý.

Kontrolní standard 1: QC_01:
Koncentrace v kontrolním standardu 1 – QC1:
\[\rho(\text{Ag, Al, As, B, Ba, Cd, Co, Cr, Cu, Fe, Mn, Nb, Ni, Pb, Sb, Sr, Zr, Zn}) = 10 \, \mu g \cdot l^{-1}. \]

Do odměrné baňky 100 ml se nadávkuje:
cca 70 ml upravené demivody,
0,7 ml HNO$_3$ Suprapur
1,00 ml kalibrační zásobní roztok
a doplní se po rysku upravenou demivodou.
Připravuje se vždy čerstvý.

Kontrolní standard 2 : QC_02:
Koncentrace v kontrolním standardu 1 – QC2:
\[\rho(\text{Ag, Al, As, B, Ba, Cd, Co, Cr, Cu, Fe, Mn, Nb, Ni, Pb, Sb, Sr, Zr, Zn}) = 2,0 \, \mu g \cdot l^{-1}. \]

Do odměrné baňky 100 ml se nadávkuje:
cca 70 ml upravené demivody,
0,7 ml HNO$_3$ Suprapur
0,200 ml kontrolní zásobní roztok
a doplní se po rysku upravenou demivodou.
Připravuje se vždy čerstvý.

3.2.4 Přístroje
Obvyklé laboratorní vybavení a dále :
1. ICP-MS Agilent, model 7500cx
2. Automatický dávkovač vzorku ASX 500
3. Data stanice
4. Odměrné baňky 100 ml – PFA
3.2.5 Postup stanovení

Příprava standardů

Příprava koncentrace 0,1, 0,5, 1, 2, 3, 5, 7, 10 µg·l⁻¹
Do 100 ml odměrné baňky se odměří:
cca 20 ml upravené demivody,
10 µl, 50 µl, 100 µl, 200 µl, 300 µl, 500 µl, 700 µl, 1000 µl kalibračního standardu
koncentrace 1 mg/l
1,5 ml HNO₃ Suprapur
a doplní se po rysku upravenou demivodou.

Princip metody

Okyselený nebo předem upravený vzorek vody se nadávkuje do vialek autosampleru.
Změří se signály jednotlivých prvků dle příslušné metody.
Přístroj z kalibrační křivky vyhodnotí koncentrace jednotlivých prvků.

Měření

Vytvoří sequence analýzy podle tabulky a pořadí vzorků se upraví podle požadavků na
analýzy vzorků:
Sample: název vzorku, typicky odběrové místo,
Comment: informace k vzorku, nejčastěji se zadává datum a čas odběru vzorku formátu
Dil: zředění vzorku

Pro kontrolní standardy se používají následující klíčové Sample name:
 QC_01 pro Kontrolní standard 1
 QC_02 pro Kontrolní standard 2
 QC_00 pro blank

Do přístroje se nasává interní standard
Nadávkou se kalibrační a kontrolní standardy dle pořadí v sequenci.
Překontroluje se ladění přístroje – signály vnitřního standardu.
Naladí se P/A faktor.
Překontroluje se čistota blanku – signál na Fe, Na.

Nadávkují se vzorky do autosampleru dle pořadí v sequenci.

Zadá se název adresáře pro uložení naměřených dat série vzorků ve tvaru rrmmdx.B, kde rr je číslo roku, mm číslo měsíce, dd je číslo dne, x písmeno abecedy.

Spustí se analýza.

Kontroluje se průběh analýzy a do deníku přístroje se zapisují údaje z průběhu analýzy.

Po ukončení analýzy se uloží sequence pod stejným názvem jako soubor výsledků – dle bodu 7.

Po ukončení analýzy se výsledky uloží do databáze – pomocí tabulky excel : Formular_ICP-MS_Protokol.xls.

Vytisknou se primární výsledky a protokol z měření příslušné sequence.

Kalibrace

Kalibrace se provádí:

Slepé stanovení - blank: = Level 1

Koncový standard: = Level 2.

Křivka se kontroluje v polovině kalibrační křivky kontrolním standardem QC_01.

3.2.6 Výpočet

Provede se výpočet koncentrace z kalibrační křivky a podle údajů v tabulce sequence:

3.2.7 Výsledky

Automaticky se ukládají do příslušného adresáře pro celou serii měřených vzorků ve tvaru rrmmdx.B

kde rr je číslo roku, mm číslo měsíce, dd je číslo dne, x písmeno abecedy.

3.2.8 Zabezpečení a řízení jakosti (QA/QC)

- **QC_00** vkládá se hned za kalibrační křivku a na konci série měření, monitoruje čistotu slepého stanovení.
- **QC_01** vkládá se hned za kalibrační křivku, kontroluje křivku v polovině kalibrace.
- **QC_02** vkládá se vždy za první QC1 a dále vždy po 5 až 10 vzorcích a na konci série.

Kontroluje kalibrační křivku v 1/10 kalibrační křivky.
Minimální počet analýz v sérii je 2.
Do regulačního diagramu se zaznamenají dvě hodnoty QC_02 - první a poslední ze série.
• Zjištěná koncentrace kontrolního standardu musí být v regulačních mezích, jejíž aktuální hodnoty jsou uvedeny v tabulce u přístroje.
• Zjištěný signál slepého vzorku musí být v regulačních mezích, jejíž aktuální hodnoty jsou uvedeny v tabulce u přístroje.
• Zjištěné koncentrace kontrolního standardu QC_02 se zadají do kontrolních vzorků v síti CHEMIS pro sestrojení regulačních diagramů.
• **Pokud měření vybočují z regulačních mezí:**
 Překontroluje se stav přístroje, případně ladění.
 Připraví se nové kalibrační nebo kontrolní roztoky.
 Měření nebo její část se zopakuje.

3.2.9 Relativní rozšířená nejistota stanovení
Relativní rozšířená nejistota stanovení je ±10 %.\(^7\)
3.3 EXPERIMENTÁLNÍ ČÁST

3.3.1 provedená měření

Výsledky měření metodou AAS:

Tabulka 1

<table>
<thead>
<tr>
<th>vzorek číslo:</th>
<th>Připravená koncentrace µg·l<sup>-1</sup></th>
<th>Stanovená koncentrace µg·l<sup>-1</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0,1</td>
<td>0,039</td>
</tr>
<tr>
<td>2</td>
<td>0,5</td>
<td>0,436</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>0,97</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>2,05</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>2,971</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>5,078</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>6,975</td>
</tr>
<tr>
<td>8</td>
<td>10</td>
<td>10,08</td>
</tr>
</tbody>
</table>

Výsledky měření metodou ICP-MS:

Tabulka 2

<table>
<thead>
<tr>
<th>vzorek číslo:</th>
<th>Připravená koncentrace µg·l<sup>-1</sup></th>
<th>Stanovená koncentrace µg·l<sup>-1</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0,1</td>
<td>0,086</td>
</tr>
<tr>
<td>2</td>
<td>0,5</td>
<td>0,494</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>0,994</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>1,97</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>2,991</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>4,978</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>6,982</td>
</tr>
<tr>
<td>8</td>
<td>10</td>
<td>9,972</td>
</tr>
</tbody>
</table>
3.3.2 Vyhodnocení měření

Vyhodnocení výsledků AAS:

Tabulka 3

<table>
<thead>
<tr>
<th>vzorek číslo:</th>
<th>Připravená koncentrace µg·l⁻¹</th>
<th>Stanovená koncentrace µg·l⁻¹</th>
<th>rozdíl koncentrací v %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0,1</td>
<td>0,039</td>
<td>61</td>
</tr>
<tr>
<td>2</td>
<td>0,5</td>
<td>0,436</td>
<td>12,8</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>0,97</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>2,05</td>
<td>2,5</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>2,971</td>
<td>0,97</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>5,078</td>
<td>1,56</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>6,975</td>
<td>0,36</td>
</tr>
<tr>
<td>8</td>
<td>10</td>
<td>10,08</td>
<td>0,8</td>
</tr>
</tbody>
</table>

Bylo zjištěno, že naměřené hodnoty se od připravených koncentrací liší v rozmezí od 61 % po 0,38 %. Největší odchylky byly zjištěny u hodnot pod 1 µg·l⁻¹, kde již přístroj nedokáže tyto koncentrace spolehlivě stanovit.

Vyhodnocení výsledků ICP-MS:

Tabulka 4

<table>
<thead>
<tr>
<th>vzorek číslo:</th>
<th>Připravená koncentrace µg·l⁻¹</th>
<th>Stanovená koncentrace µg·l⁻¹</th>
<th>rozdíl koncentrací v %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0,1</td>
<td>0,08616</td>
<td>13,84</td>
</tr>
<tr>
<td>2</td>
<td>0,5</td>
<td>0,4943</td>
<td>1,14</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>0,9935</td>
<td>0,65</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>1,97</td>
<td>1,5</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>2,991</td>
<td>0,3</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>4,978</td>
<td>0,44</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>6,982</td>
<td>0,257143</td>
</tr>
<tr>
<td>8</td>
<td>10</td>
<td>9,972</td>
<td>0,28</td>
</tr>
</tbody>
</table>

Bylo zjištěno, že naměřené hodnoty metodou ICP-MS se od připravených koncentrací liší v rozmezí 13,84 % po 0,26 %.
3.3.3 Srovnání výsledků

Tabulky 5

<table>
<thead>
<tr>
<th>vzorek číslo</th>
<th>Připravená koncentrace µg·l⁻¹</th>
<th>rozdíl koncentrací v %</th>
<th>rozdíl koncentrací v %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0,1</td>
<td>61</td>
<td>13,84</td>
</tr>
<tr>
<td>2</td>
<td>0,5</td>
<td>12,8</td>
<td>1,14</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>3</td>
<td>0,65</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>2,5</td>
<td>1,5</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>0,97</td>
<td>0,3</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>1,56</td>
<td>0,44</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>0,36</td>
<td>0,257</td>
</tr>
<tr>
<td>8</td>
<td>10</td>
<td>0,8</td>
<td>0,28</td>
</tr>
</tbody>
</table>

Bylo zjištěno, že naměřené hodnoty metodou ICP-MS vykazují menší chybu stanovení. Obzvláště v koncentracích 0,1 µg·l⁻¹ je rozdíl chyby velice patrný. Metoda AAS v těchto koncentracích vykazuje odchylku až 61 %, zatímco metoda ICP-MS pouze 13,84 %. V koncentraci 0,5 µg·l⁻¹ se již metodou ICP-MS dostáváme na chybu stanovení pouze 1,14 %, zatím co metoda AAS vykazuje 12,8 %.
Graf:

Srovnání přesnosti stanovení

Číslo vzorku

Připravená koncentrace
Stanovená koncentrace metodou AAS
Stanovená koncentrace metodou ICP-MS
ZÁVĚR:

Na základě provedených měření, kdy byly porovnány výsledky stanovených koncentrací železa připravených standardů o různých koncentracích metodami ICP-MS a AAS, bylo zjištěno, že pro hodnoty <1 µg·l⁻¹ je již měření metodou AAS značně nespoléhlivé. Oproti tomu při použití metody ICP-MS je možné spolehlivě změřit i koncentrace nižší než 0,1 µg/l.

Potřeba znát nízké koncentrace železa vyvstala po změně chemického režimu v parovodním okruhu.

Do roku 1999 bylo pH napájecí vody nastaveno na hodnotu cca 8,6 a koncentrace železa se pohybovaly okolo 15 µg·l⁻¹. Stanovení takového množství bylo možno s dostatečnou přesností provádět pomocí AAS v plamení acetylén-vzduch. V letech 1999 – 2000 byly provedeny změny v technologii hlavních kondenzátorů a pH napájecí vody bylo postupně až do roku 2002 zvyšováno až na konečnou hodnotu cca 9,95. V průběhu zvyšování pH docházelo k postupnému snižování koncentrace železa zpočátku na hodnoty okolo 5 µg·l⁻¹ až k hodnotám kolem 1 µg·l⁻¹. Zde již přesnost stanovení i mez stanovitelnosti pomocí plamenové techniky nedostačovaly a proto byl vyvinut postup stanovení Fe metodou elektrotermické atomizace. Ovšem i tak byla mez stanovitelnosti 0,5 µg·l⁻¹ a nižší koncentrace Fe nebylo možno stanovit. Teprve nasazení techniky ICP-MS umožnilo stanovení nižších koncentrací železa s dostatečnou přesností.

Pro provoz má tato možnost zásadní význam, neboť množství železa v napájecí vodě vypovídá o kvalitě chemického režimu.
5 POUŽITÁ LITERATURA

PŘÍLOHY

Přístroj AAS

Přístroj ICP-MS
<table>
<thead>
<tr>
<th>Název práce</th>
<th>Hmotnostní spektrometrie s ionizací v indukčně vázaném plazmatu versus atomová absorpční spektrometrie.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Autor práce</td>
<td>Hana Honsová</td>
</tr>
<tr>
<td>Obor</td>
<td>Analytická chemie</td>
</tr>
<tr>
<td>Rok obhajoby</td>
<td>2009</td>
</tr>
<tr>
<td>Anotace</td>
<td>Stanovení železa metodami hmotnostní spektrometrie s ionizací v indukčně vázaném plazmatu a atomové absorpční spektrometrie. Srovnání těchto metod.</td>
</tr>
<tr>
<td>Klíčová slova</td>
<td>Atomová absorpční spektrometrie, hmotnostní spektrometrie s ionizací v indukčně vázaném plazmatu</td>
</tr>
</tbody>
</table>