Oponentní posudek diplomové práce

Diplomová práce: Návrh konstrukce sedadla pro pacienty do sanitních vozidel

Autor: Bc. Petr Vlasák

Oponent DP: Ing. Jindřich Kovář, VOŠ a SOŠT Litomyšl

Hodnocená diplomová práce je věnována poměrně obsáhlé problematice. Autor se věnoval především kontrolním výpočtům navrhané konstrukce sedadla, ale v souladu se zásadami pro zpracování věnoval nemálo prostoru také popisu předepsaných homologačních zkoušek.

a) Celkově je možné hodnotit přístup autora k zadanému úkolu velice pozitivně, nejen podle celkového rozsahu práce a objemu předložených výpočtů, ale také pro velice transparentně přeložené porovnání pevnostních výpočtů klasickou analytickou cestou a pomocí v současně používané metody konečných prvků. Pokud je možné z textu práce vysledovat, nebylo předmětem práce přímo navrhnout konstrukci sedadla zcela nové konstrukce, ale provést kontrolní výpočty nosné konstrukce buď již vyráběné, nebo všechno z nějaké modifikace sedadla již vyráběného firmou Fosan Ivančice. Tato firma je pouze zmíněna v úvodním poděkování a v seznamu informačních zdrojů, a její vliv vyplývá z použití celkového výkresu, bohužel autor vice nepopsal konkrétní podíl této firmy na spolupráci. Právě spolupráce s firmami na přípravě výroby skutečného výrobu je takovým pomyslným vrcholem závěrečných prací studentů všech úrovni a je trochu na škodu, že autor podrobněji nerozepsal případné využití výsledků a závěrů plynoucích z této práce pro konkrétní výrobu.

b) Výstupem práce je hodnocení mechanických vlastností nosné konstrukce sedadla, které může ušetřit značné množství času i finančních prostředků před podrobením daného výrobního homologačním zkouškám. Tento postup je dnes samozřejmě využíván ve většině případů, kdy je vyžadována destrukční homologační zkouška a závisí pouze na použitím SW do jaké úrovni proběhne simulovaná virtuální zkouška před vlastním fyzickým testem pověřenou zkušební organizací. Jak se autor v závěru vyjadřuje, mohla by být tato práce dobřím předpokladem pro splnění takové fyzické homologační zkoušky. Přes zdánlivou jednoduchost navrhané konstrukce není kompletní výpočtová analýza v žádném případě snadnou záležitostí, a proto je pochopitelné, že se autor dopustil několika nepřesností. Pravidelně porovnává vypočítané napětí v ohybu s mezi kluzu, popř. dokonce s mezi pevnosti, ale v tahu. Přestože to jsou obě napětí normální, je takové srovnávání, zvláště při použití tenkostěnných profilů, se sklony ke zhroucení průřezu, minimálně diskutabilní. Určitě lépe by vyznělo srovnání s dovolenými hodnotami napětí, případně uvedení koeficientu bezpečnosti. Několika dalších
chyb se dopustil při výpočtu šroubového spoje konstrukce sedadla s vozidlem. Výpočtový model zatižení šroubu úplně poměrně existenci druhého kotevního šroubu na stejné stojině sedadla, vypočtená osová síla 31 855 N se jistě rozloží do obou šroubů, i když nerovnoměrně. Proto autorovi vyšlo nečekaně velké napětí, které se snažil zmenšit chybně vypočtenou plochou šroubu, místo 65 mm² má šroub M10 pouze 58 mm², navíc navrhovaná pevnostní třída 12K není zrovna nejlevnější, při opakovaně zdůrazňovaném ekonomickém tlaku na cenu konstrukce. S touto pevnostní třídou se setkáme na hlavách motorů, ale ne na podlaze sanitky. Navíc by při působení vypočítaných 32 kN došlo zřejmě k částečnému protržení hlavy šroubu tenkostěnným profilem, kolem standardního podložky Ø 10 by ve stěně profilu vzniklo napětí ve střihu kolem 200 MPa, toto kritické místo autor úplně pominul. Částečně kladně je možné hodnotit proces vyhodnocení a navrhování úprav po provedení výpočtové analýzy metodou MKP. Již vytvoření výpočtového modelu byla jistě velmi náročná operace, bohužel podle vyjádření autora její vytvoření není předmětem práce. Z výstupních výsledků pozitivně vyčnívá jak autor dobře vyhodnotil kritická místa a navrhl v těchto místech změny. Pro potřebné úpravy ovšem navrh výzvy už z materiálu 11 700, který ho zaujal vysokými hodnotami Rm a Re, ke své škodě ale přehlédl absolutní nevhodnost tohoto vysokopevnostního materiálu pro svařované konstrukce. Přes využití tohoto materiálu je vyhodnocení některých vypočítaných hodnot napětí minimálně odvážné, hodnoty překračující mez kluzu, či dokonce blízko mezi pevnost, nejsou v konstrukcích zrovna obvyklé, i přes povolené trvalé deformace při destrukční zkoušce.

c) V celé práci je řada odkazů na homologační předpisy a mezinárodní dohody, při tomto zadání práce se autor nemohl vyhnout jejich přímému vlivu a z některých přímo vyplyvají některá zadání a podmínky řešení.

d) Formální stránka práce je určitě nejpozitivnějším místem celého autorova snažení. Práce je přehledná, k výpočtům vždy přináleží jednoduchý obrázek s mechanickou analýzou a rovněž použití obrázků ze 3D modelu je vcelku na místě.

Přes uvedené drobné nedostatky hodnotím celkově práci velmi kladně, autor k jejímu vypracování přistoupil opravdu svědomitě a kreativně, a pouze pro nedostatky způsobené zřejmě prozatím malou zkušeností s technickým konstruováním snižuji hodnocení z nejlepšího možného na známkou:

Výborně minus

Diplomovou práci doporučuji k obhajobě, pro zodpovězení v průběhu obhajoby navrhuji tuto otázku: Jaké jednoduché konstrukční úpravy by vedly ke snížení špiček napětí uvedených na str. 61,62 a 63?

V Litomyšli 8.6.2009

Ing. Jiří Zoubová

[Signature]