
SCIENTIFIC PAPERS 
OF THE UNIVERSITY OF PARDUBICE 

Series A 
Faculty of Chemical Technology 

14 (2008) 

WALL EFFECTS ON A SINGLE SPHERICAL 
PARTICLE MOVING 

THROUGH A POWER-LAW FLUID 

Jaroslav STRNADEL and Ivan MACRAe! 
Department of Chemical Engineering, 

The University of Par dub ice, CZ-532 10 Pardubice 

Received September 30, 2008 

The steady motion of solid spheres through a power-law fluid contained in a 
cylindrical tube has been solved numerically using a finite element method by 
means of the COMSOL software package for the steady non-Newtonian flows. 
From the resulting stress fields, the drag force on the sphere, drag coefficient, 
drag coefficient corrective jactor, and wall correction factor have been evaluated 
in dependence on the fluid power law index and the sphere-to-tube diameter ratio. 
The results of numerical computation are in very good agreement with previous 
theoretical and experimental literature data, which documents suitability of the 
computational method used. 
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Introduction 

The knowledge of the terminal velocity of particles falling in a viscous fluid is 
needed in a number of engineering applications such as solid-liquid separations, 
fluidization, solid transportation, rheometry, etc. Prediction ofthe terminal falling 
velocity is based on the knowledge of the drag coefficient ofthe flow around the 
particle. The calculation of the terminal falling velocity of a sphere moving 
through a Newtonian fluid is a classical problem and the drag coefficient 
correlations for a rigid spherical and non-spherical particles are described 
(especially for spherical particles) in a number of monographs and review papers 
(for example, Refs [1-3]). The influence of non-Newtonian behaviour on the drag 
coefficient of a sphere was more intensively investigated in the past several 
decades. The present-day scientific knowledge and the advances in particle motion 
in non-Newtonian media are reviewed in the book by Chhabra [4]. 

It is known that the confining walls or bounding surfaces caused an extra 
retardation effect on a falling particle due to an upward flux of the fluid displaced 
by the particle. On this account, the particle terminal velocity is reduced in 
comparison with that reached in the infinite medium. The particle retardation 
depends on the particle shape, orientation, and position, as well as on the fluid 
rheological behaviour, flow regime, and the geometry of the confining walls. 

The particle retardation is customarily quantified using the wall correction 
factor fw, which can be defined as the ratio of the terminal falling velocity of a 
particle in a bounded fluid to that in an unbounded one 

u 
fw= u 

00 

(1) 

The great deal of information on wall effects available in literature, 
especially for non-Newtonian fluids, concerns spherical particles and is based 
mainly on experiments. Only little theoretical and numerical work has been carried 
out on the effect of containing walls on sphere motion in purely viscous fluids 
without a yield stress [5]. Missirlis et al. [4,5] presented a numerical study of the 
wall effects on the terminal velocity of a sphere falling freely through a power-law 
fluid at the axis of a cylindrical tube in the creeping flow regime. Using both a 
finite-element and finite-volume method, they obtained results encompassing the 
ranges of power-law index 1 ~ n ~ 0.1 and diameter ratio 0.50 ~ diD ~ 0.02. The 
wall effect is predicted to decrease with the decreasing values of n and diD. 

In this paper, the results are reported of our numerical solution of the flow 
of a power-law fluid over a solid sphere in a cylindrical tube in the creeping flow 
region, which have been obtained during the testing of the possibility to exploit 
the COMSOL software package for steady non-Newtonian flows to the solution 
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of the flow of purely viscous fluids around a solid obstacle. The results obtained 
are compared with available literature data. 

Mathematical Model 

We consider the flow of a power-law fluid around a sphere falling in an 
unbounded fluid and along the axis of a cylinder. The schematic representation of 
the domain used for the solution of the flow is shown in Fig. 1. For convenience, 
it is assumed that the sphere is held fixed and the cylinder walls are moving with 
the fluid velocity U. 
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Fig.1 Schematic representation of the solution domain 

The field equations governing the fluid motion are 

continmuity equation 
equation of motion 
constitutive equation 
where 

V·U = 0 
p U' Vu = -VP + V·¥ 
"* (. ):;1 't;:11YY 
11 ;: Kyn-l 

(2) 
(3) 
(4) 
(5) 

Here u is the velocity vector, p the fluid density, P the pressure, ¥ the extra stress 

tensor, ~ 0 \7ii + \7ii'the shear rate tensor, y 0 ~ ~ f :f the shear rate, K the 

consistency, and n the power-law index. 
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F or calculation, the two dimensional axial symmetric geometry with 
cylindrical coordinates (r, z) has been used. We have postulated the following 
boundary conditions for the flow solution in an unbounded fluid: 

- ( "* =t)-boundaryr\-symmetrycondition ~. -PI +'t 'i z = 0 

boundaries r 4, rs - normal stress condition 
boundary r3 - velocity condition 
boundary r 2 - no slip condition 

i ·u = 0 
z "* "*)_ (-PI +'t 'i z = 0 

Ur = 0, U: = U 
U = 0 

(6a) 
(6b) 
(6c) 
(6d) 
(6e) 

For the flow solution in a bounded fluid, the boundary conditions on 
boundaries r \' r 2' and r 5 remain the same. On the boundary r 3 the normal stress 
condition (6c) and on the boundary r 4 the velocity condition (6d) are valid. 

The results of the numerical solution of the given mathematical model are 
the velocity, pressure, and stress fields. The quantities of interest are the drag force 
on the sphere 

R R 

FD = 2nJ J(P+'trz+'tz)drdz 
o -R 

and the drag coefficient 

(7) 

(8) 

Analogously to Newtonian flow, the drag coefficient for the creeping flow of a 
power-law fluid around a sphere is commonly expressed as 

c = 24 X(n) (9) D Ren 

where Ren = 
pU2- n(2Rt 

(10) 
K 

is the generalised Reynolds number andX(n) a drag coefficient corrective factor 
depending on the power-law index. From the comparison ofEq. (8) with Eq. (9), 
it follows that 

(11) 
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and the wall correction factorfw, Eq. (1), is then given as 

fw" ( ~)~ (12) 

Solution Procedure 

The governing equations (2) - (5) together with the boundary conditions (6) have 
been solved by a finite-element method based on the Galerkin formulation of the 
conservation equations. 

The computations were performed with the computer programme COMSOL 
Multiphysics using software package for the steady non-Newtonian flows. 
Different triangular grids have been used for computation of different diD ratios. 
On the boundary 2, the grid has been substantially refined. Table I shows number 
of grid elements and degrees of freedom used for the individual diD ratios. The 
example of the grid used for calculation at diD = 0.33 is shown in Fig. 2. 

Fig. 2 Example of the grid used in the calculation with the ratio diD = 0.333, number of 
elements 16880 

The utv1FPACK direct solver has been used for index n EO (0.4, 1). The 
convergence of the computations has been rapidly falling for lower values of 
power-law index n. Hence, the use of the SPOOLES direct solver, which does not 
require so large contiguous memory blocks, has been necessary for the index n E 

(0.1,0.3). 

Strnadel J., Macha~ I.ISci. Pap. Univ. Pardubice Sar. A 14 (2008) 107-120 111 



Table I Number of elements and degrees of freedom used for the individual dID ratios 

dID Number of elements D.O.F 

0 45474 196739 

0.01 26968 116877 

0.02 19354 85815 

0.1 36786 162739 

0.125 20768 95551 

0.25 23040 105463 

0.333 16880 79413 

0.4 19344 85771 

0.5 19696 93285 

Results and Discussion 

Newtonian Fluid (n = 1) 

The results of computation of Newtonian drag force have served as a check on 
suitability ofthe discretization scheme and boundary condition used. For n = 1, the 
dependence of the drag coefficient CD on the Reynolds number in the range of Re 
from 0.001 to 200 for diD -> 0, and the dependence of the wall correction factorJw 
on the ratio diD in the creeping flow region were calculated. In these calculations, 
the following values of entering quantities have been used: d = 0.001 m, p = 1000 
kg m-3

, U = 0.02 or 0.04 m S-I. The Reynolds number was changed by viscosity 
variation from 20 to 0.0002 Pa s. 

The calculated dependence CD = J(Re) is displayed in Fig. 3. The computed 
values of CD agree with an accuracy of 0.1 % with those determined numerically 
by Tabata and Itakura [6]. In Fig. 3, the computed data are compared with the well 
known Stokes solution 

24 
C =-

D Re 
(13) 

which is useful for the creeping flow region (Re < 0.1), and with the simple 
empirical formulas of Schiller and Neumann [7] 

(14) 
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Fig.3 Dependence of the drag coefficient cn on the Reynolds number Re: • - calculated data; 
- - - - Eq. (13); - - Eq. (14); ........... - Eq. (15) 
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Fig.4 Dependence of the wall correction factorfw on the ratio dID for the creping flow region . 
• - calculated data; - - - - Eq. (16); ........... - Eq. (17); -- - Eq. (18) 

which is recommended for 0.2 <Re < 500 -1000, and Khan and Richardson [3,4] 

(15) 

which predicts the drag coefficient with an average uncertainty of less than 5 % 
in the range of 10-2 < Re < 3 x 105

• Very good agreement between numerically 
calculated data of CD and those presented by Tabata and Itakura [6] and those 
determined at low values ofRe from Eq. (13) and at higher values ofRe according 
to eqs. (14) and (15) bears evidence of the suitability of the solution procedure 
used. 

The computed dependencefw= fCd/D) is displayed in Fig. 4. It was compa­
red with the dependences evaluated from the classical correlation ofFaxen [4] 
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d ('d)3 (d)5 Iw = 1 - 2.104 D + 2.09 D - 0.95 D (16) 

which is limited to low values of the diD ratio, and from the relationship of 
Haberman and Sayre [1,4] 

Iw = 

d (d)3 (d)5 (d)6 1 - 2.105 15 + 2.0865 15 - 1.706 15 + 0.72603 15 

1 - 0.75857( ~r 
(17) 

which is stated to be valid in the range 0 ~ !!... ~ 0.80. Figure 4 shows that the 
D 

relationship (16) approximates the computed data oflw with a sufficient accuracy 
up to diD = 0.5 and the relationship (17) up to diD = 0.7. It has been found that 
the computed dependence I w = I (diD) can be approximated with the same good 
accuracy by the polynomial 

d (d)2 (d)3 f w = 1 - 1.943 D - 1.290 D + 6.594 D -

-7.690( ~r + 4.528( ~r -1.200( ~r 
(18) 

d 
up to - = 0.94. 

D 

Power-law Fluid 

For n < 1, the dependencesX=X(dID, n) andlw= ICdID, n) were evaluated in the 
creeping flow region. In the drag force FD calculations, the following values of 
entering quantities were used: d = 0.001 m, p = 1000 kg m-3

, U = 0.02 m s-t, K = 

1 Pa sn ,0.1 ~ n .$' 1, 0 ~ !!... ~ 0.5. 
D 

The computed values of the corrective factor X are summarized in Table II. 
Their agreement with the values of X determined numerically by Missirlis et al. 
[5] is, especially for n < 0.9, very good. The mean relative deviation between data 
of X calculated in this work and the corresponding data determined by Missirlis 
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Table II 

n 

0.9 

0.8 

0.7 

0.6 

0.5 

0.4 

0.3 

0.2 

0.1 

Computed values of the drag coefficient corrective factor X 

0 0.01 0.02 0.1 

1.0006 1.0164 1.0358 1.2513 

1.1374 1.1455 1.1572 1.3211 

1.2575 1.2607 1.2668 1.3825 

1.3553 1.3564 1.3591 1.4336 

1.4288 1.4289 1.4299 1.4721 

1.4759 1.4758 1.4761 1.4957 

1.4951 1.4949 1.4951 1.5011 

1.4838 1.4834 1.4836 1.4832 

1.4360 1.4354 1.4356 1.4329 

1.3414 1.3393 1.3400 1.3359 

1.2 

0.8 

It 0.6 
"'" 

0.4 

0.2 

0 
a 0.2 

diD 

0.125 0.25 

1.3363 1.9524 

1.3912 1.9115 

1.4377 1.8629 

1.4744 1.8075 

1.4999 1.7463 

1.5125 1.6801 

1.5098 1.6094 

1.4873 1.5333 

1.4363 1.4484 

1.3413 1.3421 

0.4 

0.333 

2.6527 

2.4991 

2.3448 
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2.0409 

1.8946 

1.7531 

1.6164 
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Fig.5 Calculated dependences offw on diD for parametric values of n. 

0.4 0.5 

3.5153 5.7667 

3.2096 5.0089 

2.9186 4.3321 

2.6442 2.7325 

2.3879 3.2060 

2.1501 2.7469 

1.9306 2.3480 

1.7281 2.0013 

1.5405 1.6985 

1.3622 1.4301 

et al. [5] is only 0.42 %. The maximum deviation achieved for n = 1 and diD = 0.5 
is 3 %. 

Using the data of X given in Table II, the values ofthe wall corrective factor 
fw were calculated according to Eq. (12). The examples of the obtained 
dependencesfw = j(d/D, n) are shown in Fig. 5. These dependences are nearly 
identical with those based on the results of Mis sir lis et al. [5], which are given in 
Fig. 10.5 in Chhabra's book [4]. 

The wall correction factor is approaching to the value offw= 1 for d/D .... O. 
For diD> 0, the value offw gradually goes down bellow unity in dependence on 
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the index n. At the same time, the wall corrective factor reduction is slower with 
decreasing value of n. The theoretical course of the dependence Iw = I ( diD, n) 

(Fig. 5) can be approximated in the range 0.5 ~ ~ ~ 1 by the relationship 
D 

Iw = 
1 

(19) 
d (d)2 (d)3 (d)4 l+k-+k - +k - +k -

ID 2 D 3 D 4 D 

where the dependences of parameters krkJ on the flow index n are given by the 
following polynomial functions 

k1 = a1 n2 + a2 n, 
k2 = a 1 n2 + a3 n + a3, 

k3 = a4 n2 
- a4 n + aJ, 

k4 = a6 n2 + a4n - a4· 

(20a) 
(20b) 
(20c) 
(20d) 

The mean relative deviation between numerically calculated data oflw and 
those calculated according to Eq. (19), using parameters a ,- a6 summarized in 
Table III, is only 1.2 %. The maximum deviation is 2.7 %. 

Table III Parameters a j (i = 1, 2, ... 6) in Eq. (20) 

4.317 -2.963 4.827 -66.09 -38.80 84.44 

The theoretical functional dependence Iw = I (diD, n) was collated with 
available experimental data by Chhabra [4]. He affirms that the flow index n seems 
to exert virtually no influence on the extent of wall effects in power-law fluids, 
and the wall factor varies linearly with the diameter ratio as 

d 
I' = 1 +A­
Jw D (21) 

d Most of the literature data covering 0.52 ~ n ~ 0.95, 0 ~ ~ 0.5 are well 
D 

correlated with a single value of A = 1.6. At the same time, the wall effects are 
seen to be smaller in power fluids than those in Newtonian media. These statements 
have also been acknowledged, at least for diD < 0.25, by the results of our 
previous experiments in the creeping flow region [8]. In these experiments, the 
terminal falling velocities were measured with glass, steel, and lead spherical par-
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Fig.6a Wall correction factor versus sphere-to-tube diameter ratio for fail in 2.5 % solution 
of Cello size QP-40, n = 0.935. Bold symbols, experiments; .... ...... . - Eq. (20);--
- numerical calculation 
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Fig. 6b Wall correction factor versus sphere-to-tube diameter ratio for fall in 1.3 % solution of 
Natrosol 250 MR, n = 0.844. Bold symbols, experiments; ........... - Eq. (20); -- -
numerical calculation 
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Fig. 6c Wall correction factor versus sphere-to-tube diameter ratio for fall in 1.3 % solution of 
Natrosol 250 H, n = 0.672. Bold symbols, experiments; ...... .. .. . - Eq. (20); -- -
numerical calculation. 
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Fig. 6d Wall correction factor versus sphere-to-tube diameter ratio for fall in 0.5 % solution of 
Separan AP 45, n = 0.369. Bold symbols, experiments; ....... .... - Eq. (20); ---
numerical calculation 

ticles moving through different shear thinning polymer solutions in cylindrical 
columns of 200, 70, 40, and 20 mm in diameter. The diameter of spheres ranged 
from 1.46 mm to 4.75 mm. The resulting experimental dependencesfw= f(dID) 
are shown for the fall in the 2.5 % solution of hydroxyethylcellulose Cellosize 
QP-40,1.3 % solution of hydroxy ethyl cellulose Natrosol 250 MR, 1.3 % solution 
of hydroxy-ethyl cellulose Natrosol250 H, and 0.5 % solution of polyacrylamide 
Separan AP 45 in Figs 6a-6d. 

Figures 6a-6c show that a satisfactory correspondence between experimental 
datafw and those predicted according to Eq. (21) with A = 1.6 exists. At the same 
time, the deviations betweenfw data predicted according to Eq. (21) and those 
calculated numerically (Fig. 5) do not exceed, for 0.7 ~ n ~ 0.95, the errors of 
experimental determination offw. On the other hand, Fig. 6d shows that, at low 
value of n = 0.369, Eq. (21) yields, for dID> 0.12, lower values of fw in 
comparison with the experimental data. The experiments are better approximated 
with the numerical solution presented in this work. Since there is a lack of 
available literature data on the wall effects in the fall of spherical particles through 
highly shear thinning fluids, it will be suitable to perform other experiments in this 
area. 

Conclusion 

A numerical solution of the steady motion of solid spheres through a power-law 
fluid contained in a cylindrical tube has been presented. The given mathematical 
model of the flow around a sphere has been solved using a finite element method 
by means of the COMSOL software package for the steady non-Newtonian flows. 
The quantities of interest were the drag force F D on the sphere, drag coefficient CD, 
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drag coefficient corrective factor X, and wall correction factor fw, which were 
evaluated on the basis of resulting stress fields. 

For n = 1 (Newtonian fluid), the dependence of the drag coefficient Co on 
the Reynolds number in the range of Re from 0.001 to 200 for dID -+ 0, and the 
dependence of the wall correction factorfwon the ratio diD in the creeping flow 
region were calculated. The results obtained for n = 1 are in very good agreement 
with the published theoretical and experimental data. 

For n < 1, the dependencesX=X(d/D, n) andfw= f(d/D, n) were evaluated 
in the creeping flow region. It was shown that the numerically calculated 
dependences ofthe wall correction factorfw on the ratio diD and flow index n can 
be approximated with very good accuracy by the proposed equations (19) and (20). 
The numerical results indicate that the retardation effect of the walls on the 
terminal falling velocity of particles decreases with the increasing shear thinning 
of the fluid. This fact contrasts with the experimental findings that the flow index 
has no significant influence on the value offw, at least in the range 0.5 ~ n 5: 1. 
Therefore, it will be suitable to perform other experiments in this area. 

Symbols 

Q; (i = 1, 2, ... 6) parameters in Eqs (20) 
CD drag coefficient 
d sphere diameter, m 
D tube diameter, m 
fff wall correction factor defined by Eq. (1) 
~ unit vector 
I unit tensor 
k; (i = 1,2, ... 4) parameters in Eq. (19) 
K power-law parameter (consistency coefficient), Pa sn 
P pressure, Pa 
r radial cylindrical coordinate, m 
R sphere radius, m 
Re Reynolds number 
Ren power-law Reynolds number, Eq. (10) 
u velocity vector component, m S-1 

ii velocity vector, m S-1 

U particle terminal falling velocity, m S-1 

X drag coefficient corrective factor 
z axial cylindrical coordinate, m 
y shear rate, S-1 

~' shear rate tensor, S-I 

11 viscosity of non-Newtonian liquid, Pa s 
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IJ. dynamic viscosity, Pa s 
p fluid density, kg m-3 

't extra stress tensor component 
::; 
1: extra stress tensor, Pa 

Subscripts 

r related to the radial cylindrical component 
z related to the axial cylindrical component 
00 related to the unbounded fluid 
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