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In this article, an algorithm for eliminating outlying values prior to estimating
linear regression parameters is described. By using such an algorithm, one can
objectively exclude outlying values from experimental measurements and
determine an interval (x,, x;,) covering a linear relation y = f(x) between the
output variable with a normal distribution N (f(x),6°) and the independent
variable x. The theoretical part concerns the derivation of a mathematical
equation which allows to identify the outlying values and to determine the critical
deviation of a point under testing. In the experimental section, the usefulness of
the algorithm proposed is demonstrated on the evaluation of linear regression
parameters of a calibration plot and for calculating the equivalence point of
selected titration curves. The derived algorithm can generally be applied to
evaluation of the concentration dependences of various physico-chemical
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variables such as absorbance, polarographic wave-height, conductivity,
refraction, optical rotation, etc. A method utilising this algorithm can be used e.g.
for analysing the titration end-points in conductometry, amperometry, spectro-
photometry, radiometry or thermometry. The algorithm proposed is especially
suitable for evaluating a set with small number of experimental data and for
processing such sets that comprise two linear segments with insignificantly
different slopes of the corresponding regression lines.

Introduction

Numerous experimental relations of two variables are linear within a limited
{ x,, x,! interval, where x is the independent variable, whereas out of this interval
the relationship is non-linear. This is typical for concentration dependences of
various physico-chemical variables: absorbance, polarographic wave-height,
conductivity, refraction or optical rotation. Some functional dependences
measured experimentally may also comprise more intervals of the independent x
variable where the relation observed exhibits a linear character. In these cases, it
is usually necessary to determine the x coordinate for the intersection of the
corresponding linear regression lines. This is a case of the methods for the
determination of the titration end-point in various analytical techniques such as
conductometric, amperometric, spectrophotometric, radiometric, and thermo-
metric titrations.

A model, in which only a part of the relation studied can be approximated
with a regression line, is characterised by a f(x) € C function that is defined as
foltows

B+ Bx for x € &, x2)

1) = 2(x) for x ¢ bx,,x,) (L)

where g(x) = B, +Bx

When evaluating experimental data, it is first necessary to determine the
interval (x,, x,) with a linear segment of the function f(x). Then, within this
interval, the outlying values can be eliminated and the regression line parameters
determined.

In the past, the above-stated problem was solved graphically [1]; at present, it is
usually solved in a numerical way. For a long time mainly classical methods of
statistic analysis [2] have been used which, however, are often inapplicable to the
evaluation of real data. Some improvements were achieved via introducing the
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regression diagnostics that comprise the identification of significant points, the
analysis of multicolinearity [3], the model proposal (including the corresponding
transformation [4]), and the verification of individual assumptions for the
parameters evaluation [5]. (Other methods recommended for identification of gross
errors are described in the literature [6—11].) Nevertheless, the criteria used so far
for determination of outlying points are not often unambiguously defined and the
final decision usually depends upon the user (experimenter).

For example, the article [10] reports on a robust regression analysis in
combination with the method of the least squares of the medians. The authors
claim that this procedure is applicable only if at least 50% of experimental points
correlates with the dependence observed. Besides this, they chose a criterion for
eliminating the outlying values without mentioning the reason for such a decision.

The aim of this paper is to derive an algorithm which would provide — after
being used in an appropriate program — an objective and complex resolution of
the above-defined task without any influence of the user. The crucial point of the
whole problem can be seen in the way of determining an adequate criterion that
would also allow one to define objectively whether or not a point tested is an
outlying value.

Derivation of Critical Value for a Point under Test

Let us assume a simple linear mode! given by function (1). In the linear parts of
the function f, the random variable ¥ has a normal distribution N(B, + B x, ¢%).In
the non-linear part, the variable ¥ exhibits a distribution formulated as N(f(x), a?).
The measured y value is a value of random variable ¥ and should be called
observation of the random variable Y. It is postulated that the individual x values
should be measured without an error and also that, for x; # x; the corresponding ¥(x,)
and Y(xj) random variables should be completely independent.

In order to consider the outlying character of a point, it is important to know
the residuum value, i.e., the deviations between the measured value y and the value
calculated from the regression line Ay = y - (b, + bx).

Unbiased estimates b, and b, of the unknown parameters B, and B, can be
obtained by the least squares method. For an estimate of the unknown variance o’
one can choose the so-called residual variance

2 = E v~ by~ blxi)2

»x n-2

(2)

The random variable
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is a linear combination of independent random variables Y, with a normal
distribution (which is assumed) and hence, the variable b, also exhibits a normal
distribution. It can easily be verified that the mean E value as well as the variance

D for the parameter b are defined according to

Eb =P

2 2
e ) @

X, - X X,
1 E {xfz - "“‘““‘(E !)2]
£]

If the b, + b xrandom variable is expressed in the form of
by+bx =y+bx-x) (5)

then from the mathematical point of view, expression (5) corresponds to a sum of
two independent and normally distributed variables which have a normal
distribution characterised as

E(by+bx) = E +b(x-x)) = B, +Bx+Pax-Bx =B, + Bx (6)

Db, +bx) = Dy+b(x-%) =DY+x-xDb =

_d, G- i, (x-3 (7)
& Z(x;‘_az n E(xi"J?)z

Now, itisevident that foreachx, the ¥ = b, + b x random variable exhibits
a normal distributicon
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N

1 (x - x)*
B, + Byx, GZE; + m” (8)

The deviation written as Ay = y - (b, + bx) is a difference between two
independent random variables with a normal distribution and thus it results in a
normal distribution as well. By calculation, it can be found that

EAy = Ey— E(bo + b1x) = Bo - B] - (ﬂg + Brx) =0 (9)

and

DAy = Dy + D(b, + bx) o’ + g?

no3 - %y

1+.1.+__(x__‘92_
noY - Xy

1, - ]

(10)
02

Also, the previous results suggest that the Ay = y - (b, + b,x) random

. . 2 1 (x = 57)2 s .
variable can be characterised bya N| 0, 6%l + = + ——— | [ distribution and

no3 (-3

by standardised variable has therefore
_ 2
1oL, & x)
noY (k- XY
a N(0,1) normal distribution .

(n - 2)Sy2x . 2 aten: . .
Because the —-—2———- variable has a ¥° - distribution with (n - 2) degrees
o)
of freedom, it can be written — according to the definition for a -distribution —

that the random variable

the corresponding

[+
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- Ay (11)

also exhibits a #-distribution with (n - 2} degrees of freedom. Furthermore, this
formula determines the critical value for the deviation of a (x,, ) point tested

1 (x - x)?

Ayl,cn’l = n 2,a ny 1+—+ (12)

H Z(x,'_;c)z

where ¢ _ 20 is the critical value of the #-distribution and « is the confidence level
chosen.

The equation derived in this way (12) can then be applied to testing of the
outlying values for individual measurements.

Experimental
Hardware, Programming, Apparatus, and Chemicals

In order to obtain the calibration dependence for spectrophotometric determination
of nitrate and for chelatometric microtitration of scandium, the absorbance values
were measured with a Specol spectrophotometer (Model 10, Carl-Zeiss, Jena,
FRG) using ordinary glass cells,

Conductometric titration of a mixture of both strong and weak acids with
the standard solution of sodium hydroxide was carried out using an OK-104
conductometer (Radelkis, Budapest, Hungary).

Proposed Algorithm and Its Function

The algorithm to solve the above-defined problem can be divided onto the
following steps:

I.  The algorithm selects the first ten values from the entire set of experimental
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data when forming subsets that contain all possible combinations of five
points. For common measurements, such a set of five points can be
considered to be sufficient for a reliable estimation of the regression line
coefficients. Using the least squares method, the algorithm calculates the
standard deviations, Sy e for all subsets, with a parallel testing whether a
given subset contains an outlying value, which is performed with the aid of
the derived criterion (12). In this way, all other groups of ten points, i.e., 2™
~ 11" 39— 12% 413" point etc., are analysed until all experimental points
are processed. A set of five points which exhibits the smallest standard
deviation, s, ,is then selected for further processing.

II. Afterwards, using this criterion, all the remaining experimental data are
investigated against the initial set of five points. If the next point to be tested
is not an outlying value, it is taken into the set of already selected points. As
the number of included points gradually increases, the criterion (12) becomes
more and more limiting and it is necessary — after each newly added point
— to check whether the set does not include any outlying point. If a point
does not fulfil the criterion, it is regarded to be outlying and the process
continues by testing the subsequent point till all the data (points) are
processed.

IIl. From the set of points belonging to the linear range of the functional
dependence tested, the regression line parameters are computed by using the
least squares method.

IV. Ifthe functional dependence exhibits several linear segments, the remaining
data being ascertained (in the step II) as outlying are used to form a new data
set, in which another linearity is sought and approximated with the
corresponding regression line. Hence, the data manipulation and calculations
are repeated again starting from the step [.

V. The whole calculation is stopped at the moment when a set of five points
with no outlying points in the step I is found. It means that any other lincar
segment has not been revealed, and the remaining points should be
considered to be outliers with respect to the linear segments already
ascertained.

Based on the algorithm described above, an OK-LIN program has been
assembled. This program allows one to determine objectively the linear regression
parameters for one or even more regression lines of the dependence studied. Atthe
same time, it ensures an effective elimination of all outlying values. If the program
has revealed at least two linear parts, it computes their regression lines together
with the coordinates of their intersections.

The role of a user of the OK-LIN program is reduced to correct entering of
the input data, i.e., the (x,, ¥;) coordinates of individual points. The proper process
of data manipulation is then done automatically and runs practically without the
user’s assistance.
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Results and Discussion

The following paragraphs present some selected examples of calculations obtained
with the aid of the OK-LIN program evaluating typical experimental data.

The input data are summarised in tables where the shaded boxes denote all
points which have been identified as outlying by the program. In each example,
the results of linear regression analysis are provided with the individual
coefficients given together with their precision. The corresponding graphs plotted
directly by the program are also shown.

Example 1: Calibration Plot for Spectrophotometric Determination of Nitrate

Table I Experimental dat

c, 0.00 3.00 27.00 | 30.00
mg ™
A 0.018 { 0.105 0.789 | 0.875
Results:

Linear regression analysis: 4 = 0.0185 + 0.028536+¢
Precision (+) 0.0013 0.000068

Regression equation was calculated for ¢ (concentration) values within an interval of (0; 30},

0.8

) -

20 30
c/mgl’

Fig. 1 Calibration plot for spectrophotometric determination of nitrate
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Comments: The program eliminated a grossly outlying peint with coordinates (9.00; 0.358). This
point, in fact, could be excluded even by a subjective (graphical) evaluation of the data. The OK-
LIN program eliminated also other two points, (15.00; 0.440) and (21.00; 0.613), whose outlying
character might not be evident by merely subjective analysis. The reason for excluding these data
by the program is that the remaining points, belonging to the linear range, were measured with
a higher precision compared to that for both eliminated points.

Example 2: Specirophotometric Microtitration Curve for Chelatometric Determination of
Scandium [12]

Table II Experimental data

V, 30.0 100.0 110.0 120.0

pl

A 20695 0411 0308 | 0.274 | k
¥, 140.0 150.0 160.0 170.0 180.0 200.0 210.0 220.0
pl

A 0.206 0172 0.069 0.035 0.036 0.035
V, 230.0 240.0 2800 320.0 340.0

pl

A (1,035 0.034 0.036 0.035 0.034 0.035
Results:

Linear regression analysis, equation 1: A4 = 0.6841 - 0.0034175+«V
Precision (%) 0.0011 0.0000080

Linear regression analysis, equation 2: ~ 4 = 0.0359 - 0.000003 *V
Precision (%) 0.0029 0.000011

Linear regression analysis was performed for ¥ (volume) values within an interval of (80; 180}
for equation 1, and of {200; 340) for 2.

Intersection of regression lines: ¥ = 189.9; 4 = 0.035

Comments: Before and beyond the equivalence point, the titration curve has a linear character.
The titration end-point is given by V-coordinate in the intersection of regression lines 1 and 2
which were calculated separately for both linear segments of the titration curve.

In this curve, the first four points from (0.0; 0.623) to (60.0; 0.469) as well as the point
{190.0; 0.040) were eliminated as the values lying out of the linear part of the titration curve.
Other two points, (130.0; 0.238) and (250.0; 0.037), were found outlying too; in this case,
because of the lower precision of measurement in comparison with that for points lying in the
linear part of the curve.
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Fig. 2 Spectrophotometric microtitration cutve for chelatometric determination of scandium

Example 3: Conductometric Titration Curve for a Mixture Containing Both Strong and Weak
Acid Tirrated with Sodium Hydroxide Standard Solution [10]

Table IIl Experimental data

v, mi 0.00 | 0.50 300 | 3.50 | 4.00
G, mS 1.85 1.72 1.10 0.97 0.85
v, ml 450 |00 7.50 | 8.00 | 8.50
Gms || 074 065 | 073 | 075
v, mi 9.00 12.00 | 12.50 | 13.00
G, mS 0.79 1.10 1.19 [.28
vt | 13.50
G, mS 1.37 1.45 1.54 1.63 1.72

Results:

Linear regression analysis, equation 1: G = 1.8455 - (.2478+V

Precision (%) 0.0086 0.0032
Linear regression analysis, equation 2: G = 0.230 + 0.0620*F
Precision () 0.023 0.0627
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Linear regression analysis, equation 3: G = -1.000 + 0.1753«V
Precision (&) 0.027 0.0020

Linear regression analysis was performed for ¥ values within an interval of (0.00; 4.50) for
equation 1, of (6.50; 10.50) for 2, and {11.50; 15.50) for 3.

0.55
0.90

1

Intersection of regression lines 1 and 2: ¥ = 5.22; G
Intersection of regression lines 2and 3: ¥ = 10.85; G

GimS

Viml

Fig. 3 Conductometric titration curve for a mixture containing both strong and weak acid
titrated with sodium hydroxide standard solution

Comments: This type of alkalimetric titration is an example of a functional dependence
characterised by three linear segments with two intercepts of the corresponding regression lines,
The V-coordinate of the first intercept indicates the titration end-point for strong acid whereas
the V-coordinate of the second intercept belongs to the end-point of weak acid.

Figure 3 showing the titration curve also illustrates the confidence intervals for individual
linear segments. (Such intervals could not be evident in the previous examples whose data had
been measured with substantially higher precision and hence the individual confidence intervals
coincided with the corresponding regression lines.)

Even this last example did not require any involvement of the user during the data
processing by the program.
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Example 4: Conductometric Titration Curve for a Mildly Strong Acid Titrated with Sodium
Hydroxide Standard Solution

Table IV Experimental data

v, ml 50| 300 | 400 | so0 | 600 | 7.00 | s.00

G, m$ 590 | 480 | 405 | 300 | 230 | 170

v, ml 11.00 | 12.00 | 13.00 | 14.00 | 15.00 | 16.00

G, mS 710 | 920 | 1090 | 13.00 | 15.10 | 16.80
Results:

Linear regression analysis, equation 1: G = 8.05 - 0.808«})

Precision (%) 0.42 0.078
Linear regression analysis, equation 2: G = -1438 + 1955=}F
Precision (%) 0.66 0.051

Linear regression analysis was performed for ¥ (volume) values within an interval of
(1.00; 8.00) for equation 1, and of {9.00; 16.00} for 2.

Intersection of regression lines; ¥ = 8.00; G = 1.49

15f

10r

G/mS

¥iml

Fig. 4 Conductometric titration curve for a middle strong acid titrated with sodium hydroxide
standard solution
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Comments: In this case, the experimental data represent a set measured with a larger variance.
Based on testing by the criterion (12), only two points, (2.00; 7.00) and (10.00; 4.80), are
eliminated and all the remaining points are used for calculations. The resultant dependence is
characterised by broadening of the confidence intervals, as depicted in the figure.

Example 5: The Determination of Critical Micellar Concentrations of Surfactants [13,14]

Table V Experimental data

c, 1.012 1.985 5.528 8.599 9305
mmol I!
Y, 44 87 244 379 409
pSem™
c, 9.587 10.647 11.907 13.092 13.658
mmol |
¥, 439 469 497 525 575 597
psS em™!
c, 14.208 14.742 15.262 15.766 16.257 16.735 1.199
mmol !
Y, 619 639 660 679 698 717 734
uSem™!

Results:

Linear regression analysis, equation 1: y = -04 + 44.08+c

Precision (%) 1.0 0.12

Linear regression analysis, equation 2: y = 674 + 38.80 xc
Precision (%) 38 0.25

Linear regression analysis was performed for ¥ (concentration) values within an interval
(1.012; 11.907} of for equation 1, and of {13.092; 17.199} for 2.

Intersection of regression lines: ¢ = 12.830; v = 565
Comments: Based on evaluating the data by using the OK-LIN program, two linear segments
were found. The case when the slope of both regression lines differs only very slightly is not

solvable — as far as we know — by any present method. The resultant solution of standard
evaluation allowing to find the only linear segment is illustrated in Fig. 6.
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Fig.5 The determination of critical micellar concentrations of surfactants — a graph plotted by
OK-LIN program

800 T - T
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Fig. 6 The determination of critical micellar concentrations of surfactants — a dependence
obtained by using method of the least squares
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Conclusion

Statistical analysis of experimental data performed with the OK-LIN program
enables to an objective elimination of outlying values when utilising a specially
derived criterion. By simply applying the least squares method, the regression line
parameters are calculated via analysing the experimental points from a linear part
of the dependence studied. If the dependence tested exhibits several linear
segments, the values given as the coordinates of individual intersections of
regression lines can be obtained by solving the system of the corresponding linear
regression equations.

The use of the OK-LIN program is not limited only to the analysis of
calibration plots and titration curves, but, in general, it is applicable to situations
when attention is to be paid to the evaluation of the intercept(s) of coordinates for
linear segment(s) of the dependence studied. The proper function of the proposed
algorithm can best be verified by analyses of both real and simulated experimental
data.

If the algorithm proposed is compared, for example, with the LMS method
[10], it can be stated that, in most cases, the results obtained are essentially the
same. The difference can be found in the data evaluated for a set shown in
Example 4. Only the algorithm presented herein is capable of finding two
objectively existing linear segments for such a type of the data. Another advantage
of the algorithm is the fact that it even allows evaluation of experiments with a
small number of data. This results in the substantial reduction of the expenses
necessary to carry out the corresponding analytical measurements.

In our opinion, the methodical procedure presented herein brings a highly
effective processing of experimental data with reliable numerical results. However,
the utmost importance can be attributed to an objective evaluation of outlying
values, whose determination is not subjectively affected by the user.
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