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In this work, the numerical solution of Hill s variational principles is presented
for the estimation of upper and lower bounds to the drag coefficient correction
function necessary for the determination of terminal velocity of spherical particles
falling in purely viscous fluids obeying the four-parameter Allen-Uhlherr
viscosity model. The calculated data of the drag coefficient correction functions
are compared with the available experimental data. In the experiments, terminal
falling velocities of spheres in aqueous solutions of polyalkylene glycol Emkarox
HV 45 with small addition (0.06 and 0.08 % wt) of polyacrylamide Praestol 2935
were measured. At the same time, viscosity function measurements and oscillation
dynamic tests of liquids were performed using rheometer RS 150 (Haake). It was
found that due to the liquid elasticity the experimental values X,,, of the drag
coefficient correction function are beyond the calculated interval of upper and
lower bounds and are higher than the upper bounds X, However, terminal
velocities of spheres falling in fluids of the similar type as the test ones can be
roughly estimated using the upper bound X, for determination of a sphere drag
coefficient.
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Introduction

Regarding the theoretical and practical importance of the motion of particles
falling in non-Newtonian fluids, great effort has been put into investigation of the
motion of spheres through non-Newtonian fluids over the last several decades, At
the same time, the fluid viscosity models containing zero shear viscosity should
be preferred for describing the flow of purely viscous fluids around a sphere [1,2].
Such viscosity models (especially for polymeric liquids) are, for example, the
Carreau model

m-1
N =M AT 0

and the Allen—Uhlherr model

N =M, + (M- ) + Ayt )

The creeping motion of spheres through a Carreau model fluid has been
solved in the work [3] using Hill’s variational principles for the dimensionless
viscosity parameter

Mo ™ N
M, = = (3)
Mo

encompassing the interval of 1 2 n, > 0.5. Here, the model parameters nyand 1 _
represent liquid zero shear rate and infinity shear rate viscosities, respectively.

In this work, we have formulated and solved an analogical problem for the
numerical estimation of the upper and lower bounds to the drag coefficient
correction function for an Allen—Uhlherr model fluid. We present the obtained
dependences of the upper bound X, and the lower bound X, on the dimensioniess
time parameter A and the model parameter m for selected values of n,. Some data
are compared with the available experimental data X, which were evaluated from
measurements of terminal falling velocity of spherical particles moving in aqueous
solutions of poly(alkylene glycol) Emkarox HV 45 with small addition of
polyacrylamide Praestol 2935 under creeping flow conditions. These polymeric
fluids satisfy the viscosity equation (2).
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Problem Analysis
Governing Equations

Let us consider the free fall of a solid spherical particle in an unbounded purely
viscous fluid whose viscosity function is approximated by the Allen—Uhlherr
viscosity model. Supposing the creeping flow conditions, the problem is described
by the following set of equations

continuity equation Vi =0 (4)
motion equation Vp + VT-pg=0 (5)
and constitutive equation 7= —21]3 (6)

The non-Newtonian viscosity 1 = n(I) is the function of the second
invariant of the rate of deformation tensor defined as

o=y73: Q)

For an Allen—Uhlherr mode! liquid we have
n =, + M- 0 22" (8)

In spherical coordinates (r, 8, ©), the dependent variables are the velocity
components u,, 4y, and the pressure p. The corresponding boundary conditions are
given as

forc =R u, =ug =20 9

,
forr » o u, = ucosf (10)

where R is the radius of the sphere, u, is the terminal falling velocity.
The magnitude F, of the drag force is gained by integration of stresses
acting on the sphere surface. It can also be expressed using the drag coefficient as

F, = c,mR¥1/2)pu/ | (11)

At the same time, the drag coefficient for the flow of the Allen—Uhlherr liquid
around a sphere is given as

¢y = 22X 12)
Re,
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where the Reynolds number

_ 2Ru,p
0 o

Re (13

and X is the drag coefficient correction function.

The mathematical model given by equations (4)-(13) can be approximately
solved if it is replaced by an equivalent variational problem, which consists in
finding a function that maximizes or minimizes a proper integral quantity
(functional). Following the development of Slattery for an Ellis model fluid [4],
such variational problem, based on Hill’s variational principles, has also been
formulated for an Allen—Uhlherr model fluid. Solving this variational problem, the
upper bound X, and the lower bound X, to the drag coefficient correction function
X can be estimated.

Upper Bound to the Drag Coefficient Correction Function

Using the first (velocity) variational principle, the following relation has been
derived for the correction function X [4]

11 11
-2 2,4 2 Advdy = 2
X 3ff1]bIbe dydx < 3”be dydx 3Fub (14)
0-1 0-1
Here
x = Rr (15a) y = cosf (15b)

are the dimensionless spherical coordinates,

g = ER* _ 2 N, m

- = (1= NI} + ———|(/2Amil, - 1)(/2ALT, + 1" + 1] (16

u* Nom(1 +m)
Mo

is the dimensionless function E, which is for the Allen—Uhlherr model liquid given

as
i _
BAD) = [n@pdir? = n i+ —20 | /Bamir - 1)(/201 + 1+ 1] (7
L Aim(1 + m)
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where

My = 2 (18) A= (19)
Mo

are the dimensionless viscosity and dimensionless time parameter,

1
2 20Y2 ([ 2
i, = IR _ 3,4 y? 4 +_l_x2(1 -3 af
u 2 dx 12 dx?

!

@)

is the dimensionless second invariant of the rate of deformation tensor.

In order to express the invariant 7/,, a trial velocity distribution must be
specified that satisfies the continuity equation (4) and the boundary conditions (9)
and (10). The equation of continuity will be fulfilled if the nonzero velocity
components are written in terms of stream function

1 oy
u, = - — 1)
r2sing 06
1 oy
= o 22
“o rsin® or (22)

At the same time, we suppose that the stream function can be expressed by the
relationship

¥ = --;-u,rzsinzef(x) (23)

In our calculations, the function f{x) has had the form

fx) = 1—%x+%x3+a(x—2x3+x5) )

x+0

in this case (%} = 0,A1)=0,/0)=1, and limx—Z{ = 0 so that also the
x=1

boundary conditions are fulfilled. At the same time, if @ = 0, the velocity
distribution corresponds with Stokes solutions for the creeping flow of a
Newtonian fluid past a sphere.

The optimum vatue of the parameter g in the function Ax) can be determined
by the minimisation of the functional F,,. The estimation of the upper bound X, to
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the correction function X = X(m, A, 11,) then follows from the relation (14).

Lower Bound to the Drag Coefficient Correction Function

According to the second (stress) variational principle, the following relation is
valid [4]

11
1+m 4 1+m
X: {_{be dydx > 3 F, 25

3

The functional F), is given by the relationship
11
F, = -ffEcbx‘4ajzdx +2B 26)
01

where the function

E, = 2nJI, - E, @n
can be determined by the solution of the equation

i, =2n,1, (28
Here /7, is the dimensionless second invariant of the extra stress tensor, In order
to express this invariant, a trial stress distribution that satisfies the motion equation

(5) must be specified. Using the following approximations of the extra stress
tensor components [4]

t, = B agng ®)
R
Top = Tpo = Lo Bﬂgﬂ(xz—x‘*)cose (30)
op 7T R
we have
1
i, = B{2x'[x*(1 - »3)+ 301 - x2B2)2 GY)
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The optimum value of the parameter B can be determined by the
maximization of the functional F,,. The estimation of the lower bound X; to the
correction function X then follows from relation (25).

Solution Procedure

The numerical calculations of the upper bound X, and the lower bound X, have
been performed on personal computer using tabular editor Microsoft Excel
complemented by special macros compiled in Visual Basic. The calculations were
performed for the varying values of quantities m, A, and 7, encompassing the
intervals 0.2 <m <1,0.1 £ A <2000,and 0.5<7, < 1.

Upper Bound

The upper bound X, was determined by minimisation of the functional F, (Eq.
(14)) using the Excel’s add-on Solver. The double integral (Eq. (14)} (evalvated
for each value of the parameter a) was calculated making use of extended Simpson
rule. The quantity E,, needed for the calculation of the integral, is given by Eq.
(16) as a function of II, (Eqs (20) and (24)).

Lower Bound

The lower bound X, was determined by maximisation of the functional F, (Eq.
(26)). The procedures used for the optimisation of parameter B and the double
integral calculation were the same as in the case of the upper bound estimation.
The necessary quantity £, is given by Eq. (27) as a function of /f,. The value of
11, was determined by the solution of the nonlinear Eq. (27).

Experimental

In our experiments, the terminal falling velocities u,, of spheres in aqueous
solutions of poly(alkylene glycol) Emkarox HV 45 with small addition (0.06 and
0.08 % wt) of polyacrylamide Praestol 2935 were measured [3].

The test liquids were prepared by dissolving of the corresponding amount
of Praestol in 25 % aqueous solution of Emkarox HV 45. The viscosity
measurements and the oscillation dynamic tests of liquids were carried out on
rheometer RS 150 (Haake). The viscosity function courses were approximated by
the Allen—Uhlher model (2). The resulting values of the model parameters of the
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Table I Characteristics of the test liquids

Allen—Uhlherr model parameters

Symbol Liquid pl?i’;jgs P -
L1 BWEmkar 1043 377 021 197 0204 0792
L2 PATMX 1043 181 028 339 0293 0843
1000 3 10
o0 .'.0..

10 ¢

7 {Pa)
7 (Pas)

01k ,0.. "o fowocune
F * » vscosity i
i ~——Eq.(2)
0‘01 VI bkl - Ll L il 1 el 0’1
0,01 01 1 10 100 1000

o{1/s)

Fig. 1 Example of the flow curve and viscosity function courses for liquid L2

liquids used are given in Table I. An example of the flow and viscosity curves for
the liquid L.2 is shown in Fig. 1. In oscillatory tests, the comparable values of
storage modulus G “and loss modulus G “were found for both the liquids L1 and
L2 as it is shown in Fig, 2. It suggests evident elasticity of the test liquids.
Seven types of glass spheres were used for drop tests; their diameters and densities
are given in Table II.

Wall effects were accounted for by dropping each sphere in three Perspex
columns 20 mm, 40 mm, and 80 mm in diameter and about 0.8 m in length. The
test section was situated nearly 0.2 m away from top and bottom ends of the tube.
The range of sphere velocities encountered in these measurements was from 1.23
mm s to 26.0 mm s™'. The corresponding intervals of Reynolds number and
dimensionless time parameter were 0.002 £ Re,, < 0.471 and 5.6 < A< 23,
repectively.
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Fig.2 Storage and loss moduli vs. angular velocity: <, liquid L1; O, liquid L2; empty symbols
- loss modulus G"

Results and Discussion
Numerical Calculations

Examples of the results of numerical calculations of upper and lower bounds to
correction function X are given in Figs 3-5 forn,=1.0,0.75, and 0.5. Analogously
to a Carreau model fluid, the pseudoplasticity of an Allen—Uhlher model fluid
increases with the increasing value of the model parameter A and the decreasing
value of parameter m. In accordance with that, the calculated values of X, and X,
follow the trend previousty found for Carreu model fluids [3] and decrease with
the increasing A and decreasing m for a given value of viscosity parameter 1. At
the same time, the pseudoplasticy of the above-mentioned model fluids goes down
with decreasing 7. Therefore, the smallest values of X, and X, for given A and m
were obtained for m, = 1 and their values increase with the decreasing m,.
Concerning the upper limit, X, = 1 for A -~ 0and any mandn,. It corresponds with
Newtonian behaviour of the fluid at this condition. On the other hand, the lower
bound X~ 2/(1 +m)for A- 0. Therefore, the more real estimation of the
function X seems to be its upper bound X, for low values of A.
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Tabie [ Characteristics of the spherical particles used

Symbol Diameter Density
d, mm p, kg m™
S1 1.46 2464
S2 1.89 2506
83 2.50 2516
84 2.79 2515
85 3.13 2463
$6 3.95 2490
s7 492 2514
1ge
L | —o— X, m=1 ) ) )
b b X, m=1 ‘\"". Hn‘.. .
- X,y m=0.9 Ty ¥
I [-w-X, m=0.9 A“‘u\i ™
=X, m=0.8 ™
-+-X, m=0.8
’{ 0.4 ——X,, m=0.7
[ - X, mul.7
[ |~o=X,, m=0.6
| |-+-X, m=0.6 !
—— X, ma0.5
[ |-#-X, m=0.5 A
L |—e~X,, mu0.4 .
—o- Xy 10,4 Sy '
—+ X, m=0.3 N
0.01 [-[-4- X, m=0.3 \\\\_
o aal PR | sl e kg
0.1 1 10 100 1000

A

Fig. 3 Calculated values of the upper and lower bounds to correction function X as a function
of dimensionless time A and parameter m for 1, = 1.

Comparison of Calculated and Experimental Data

The results of the numerical calculations of the function X were compared with the
experimental data X,,, calculated from the relationship
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Fig.4 Calculated values of the upper and lower bounds to correction function X as a function
of dimensionless time A and parameter m for n, = 0.75
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Fig. 5 Calculated values of the upper and lower bounds to correction function X as a function
of dimensionless time A and parameter m for n, = 0.5.
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2p -
_&e,mp (32)
i 18n0ur,exp

which follows for

4
F, = —3—nR3(p, -p)g (33)

from Eqs (11)-(13).

The experimental values , ., of terminal falling velocity in the unbounded
fluid were determined for the fall of spheres §1-87 in both the test liquids L1 and
L2 by linear extrapolation of the dependences of values u,,, measured in the
individual test columns, on the ratio d/D to d/D = 0 [3] and are summarised
along with the resulting values of X,,, in Table III. The procedure of extrapolation
is illustrated in Fig. 6 where u,,, is plotted against d/D for spheres $1-87 falling
in the liquid L2.

0.016 B
0.014
0.012
— o 81
g 0.01 :\‘\ ns2
~0.008 °©83
;-'0 ms4
0006 m——A——p— | AS5
h—.—-—._._,\'
0.004 —s * 356
*57
0.002 B
—&——6——
0 1 i 1] 1 1
0 0.05 0.1 015 0.2 0.25 0.3

d/D

Fig.6 Dependence of the terminal velocity of spheres S1-S7 on the diameter ratio for the liquid
L2

In Table III are also given the corresponding values of upper and lower
bounds to X, which were calculated for the values of n,, m, and A characterising
the test liquids L1 and L2. In accordance with the previous results for Carreau mo-
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TableIIT Comparison of the experimental values X,,,, of drag coefficient correction function with
calculated data of its upper bound X, and lower bound X,

Liquid L}, n,=0.79, m=0.274

Sphere o A ¥ ¥ v 5,
mm 5~ exp oxp u i o
Si 2.08 5.6 0.740 0.695 0.432 -6.2
§2 3.86 8.0 0.689 0.644 0.398 6.5
83 6.48 10 0.720 0.613 0.376 -14.9
54 8.33 12 0.699 0,595 0.364 -14.8
S5 10.4 13 0.681 0.582 0.355 ~14.5
86 16.8 17 0.685 (.553 0.335 -19.2
87 282 23 0.643 0.519 0.313 -19.3
Liguid L2, 1, = 0.84, m = 0.293

Sphere

’ Vb AL X, X X >
81 1.32 6.1 0.690 0.662 0.416 40
S2 2.54 9.1 0.618 0.602 0.374 2.7
83 4.03 11 0.684 0.576 0.356 -15.8
S84 5.18 13 0.663 0.557 0.343 -16.1
85 6.21 14 0.673 0.548 0.337 -18.6
S6 10.4 18 0.654 0.512 0.312 -21.6
87 15.9 22 0.674 0.488 0.296 ~27.6

del fluids {3], it was verified that, unlike the experiments with dilute aqueous
solutions of only one polymer [2,5], the values of X, are beyond the calculated
interval of X, and X; and are even higher than the upper bound X,. At the same
time, in contrast to expectation, the value of X,,, (proportional to the drag coef-
ficient) does not evidently decrease with the increasing value of A. Therefore, the
magnitude of relative deviation 8, = (X, - X, exp)/XHp between X,,, and X, (Table
I1) increases with increasing A. The observed drag enhancement relative to a
purely viscous fluid is undoubtedly caused, like in the fall of particles in Boger
fluids (e.g. [6,7]), by rising elastic effects as dimensionless time A increases.
Regarding the prediction of terminal falling velocity of spheres in fluids of
a kind the fluids tested, it was validated that the value of #, can only approximately
be determined from Eq. (32) substituting the upper bound X, for X,,,. For that
purpose, the dependences X, =X, (#,, m, A}, calculated in this work (see Figs 3-5),
were for 0.5 <1, $ 1 (with the mean relative deviation &, = 3 %) approximated by
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the relationship

X = {[1 + (kl + kzm + k3m2)A]k4}ks(m' D

(34)

where for 0 < A <100

k, = 0331, k, = 0.125, k, = -0.067, k, = 0.961, and

ks = 0.6737m7-0.151n +0.151

[t}

and for 100 <A <2000

k, = 0445, k, = -2.35, k, = 453, k, = 0332, and
k

2
. = 26007 - 1.421_+0.572

The measure of agreement between experimental terminal velocity data and
data calculated according to Eqs (32) and (34) is shown for test liquids L1 and 1.2
in Fig. 7.

107 —— ey
m]
) g
E 10?7 ¢ 9 u
e C
2 O
10-3 N N PR | N N Ak LA
10 i 10"
Ut oxp {m/s)

Fig. 7 Comparison of experimental terminal falling velocity data with those calculated
according to Eqs (32) and (34): O, liquid L1; O, liquid L2,
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The values of the relative deviations between experimental data ,,, and
calculated data u,, range from —5 % to —66 %. At the same time, in accordance
with experimental values X,,,, the magnitude of the deviation increases with
increasing , due to the rising elastic effects. At the same time, the presented
results of terminal falling velocity calculation are essentially the same as those

obtained using the Carreau viscosity model [3].

Conclusion

Applying the Hill's variational principles, the estimations have been calculated of
the upper and lower bounds to drag coefficient correction function for the fall of
spherical particles in purely viscous fluids obeying the Allen—Uhlherr viscosity
model. The estimations are presented by graphical dependences of the upper
bound X, and the lower bound X, on the dimensionless time parameter A and the
Allen~Uhlherr model parameter m for dimensionless viscosity parameter n,= 1,
0.75,and 0.5. The calculated data of the drag coefficient correction function Xare
compared with the corresponding experimental data X,,,, which were evaluated
from measurements of terminal falling velocity of spherical particles moving in
pseudoplastic and elastic aqueous solutions of poly(alkylene glycol} Emkarox HV
45 with small addition of polyacrylamide Praestol 29335,

It was found that due to the liquid elasticity the obtained values of X,,,are
beyond the calculated interval of X, and X, and are even higher than the upper
bound X,. In contrast to expectation, these values also do not decrease with the
increasing value of A. In the case of the liquids tested, the elasticity effects
manifest themselves more intensively than in the creeping motion of spheres
through ditute viscoelastic aqueous solutions of only one polymer.

Terminal velocities of spheres falling in fluids of the type used in our
measurements can only roughly be estimated using the upper bound X, for
determination of a sphere drag coefficient.

Symbols

stream function parameter, Eq. (24)

shear stress function parameter, Eqs (29), (30)

sphere drag coefficient

sphere diameter, m

test column diameter, m

function defined by Eq. (17), Pas™

function defined in dimensionless form by Eq (27), Pas™
functionals, Eqs (14), (26)

MHEmY RS e
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F, drag force magnitude, N

g  gravity acceleration, m s

m  Allen—Uhlherr model parameter

R sphere radius, m

p  pressure, Pa

r  radial spherical coordinate, m

Re, Reynolds number defined by Eq. (13)

R
Re,, | = % Reynolds number based on the Allen—Uhlher

n/mg+n,[1+ A/2P!

model viscosity
x  dimensionless radial spherical coordinate defined by Eq. (15a)
X  drag coefficient correction function defined by Eq. (12)
y  dimensionless spherical coordinate defined by Eq. (15b)
u;  velocity vector components, m s™
u, terminal falling velocity in an unbounded fluid, m s
u,, terminal falling velocity in a test column, m s™
& relative deviation
1 non-Newtonian viscosity, Pa s
Mg Allen—Uhlherr model parameter (zero-shear rate viscosity), Pa s
n, dimensionless viscosity parameter defined by Eq. (3)

M, Allen-Uhlherr model parameter (infinity shear rate viscosity), Pa s
0  meridian spherical coordinate

A Allen—Uhtherr model time parameter, s

A dimensionless time parameter defined by Eq. (19)

p  liquid density, kg m™

p, sphere density, kg m™

¥  shear rate, 57!

=

¥  shear rate tensor, 5

T;  extra stress tensor components, Pa

T extra stress tensor, Pa

v stream function, Eq. (23), m*s™

Il second invariant of the shear rate tensor defined by Eq. (7), s™
II.  second invariant of the exira stress tensor given in dimensionless form

by Eq. (28)
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Superscripts
~ vector quantity
Subscripts

dimensionless quantity

calculated

experimental value

lower limit

related to the radial spherical coordinate
upper limit

related to the meridian spherical coordinate
related to the parallel spherical coordinate

R oo
=
o

= O Ty Tt
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