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Initial procedure used in investigation of an organic compound that has not been
studied by polarography is described. This is followed by determination of the
number of transferred electrons, elucidation of the nature of the process
controlling the limiting current, discussion of the role of acid-base equilibria, and
proofs of reversibility of the electrode process. Numerous examples demonstrating
the use of experimental data in elucidation of the sequence of electron and proton
transfers in electroorganic processes in protic solvents are given.
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Introduction

For application of any analytical procedure — whether gravimetric, volumetric,
spectrophotometric, chromatographic or electrochemical — it is essential to
understand at least the main features of physical and chemical processes involved.
Only with such understanding it is possible to find rationally the optimum reaction
conditions and in many cases either to predict or to interpret matrix effects. The
physical quantity measured is usually straightforward — the mass, the volume, the
absorbance or reflectance, the conductance, the potential, or the current and these
quantities are measured either at equilibrium or under conditions where the rate of
the reaction plays important role.

The chemical aspect involves known composition of the product which has
a well defined property, such as limited solubility, limited dissociation or complex
formation, absorptivity, or fluorescence, molar conductivity, or standard oxidation-
reduction potential, or an interaction with a substrate, as in chromatography. The
situation is more complicated in dynamic electrochemical techniques, such as
polarography (where current-voltage curves are obtained with a dropping mercury
electrode) and voltammetry (where such curves are obtained with electrodes the
surface of which is not renewed). In the latter cases, in addition to the thermo-
dynamic standard potential also the rates of electron transfer as well as rates and
equilibria of chemical reactions, which can take place before the first electron
uptake, between two electron uptakes, as well as after some electron uptakes can
play a role. Moreover, as such electrochemical processes take place at the interface
between a metallic phase and a solution, adsorption of studied compound at the
electrode surface can play a role.

The ultimate goal of any electrochemical study is to understand the nature of
the electron transfer and chemical reactions and to determine all equilibrium and rate
constants involved, as well as to evaluate quantitatively the role of adsorption on
these processes. To achieve such goal involves extensive, long term studies using
nurnerous techniques. More or less complete understanding on this level has been
so far achieved for a relatively few systems and is not a condition for practical
application of electroanalytical procedures. For such applications is nevertheless
essential to recognize the number of electrochemical steps, the numbers of electrons
transferred in each of those steps, the nature of chemical reactions accompanying
each individual electron transfer, and to obtain some information about position of
equilibria and rates of chemical reactions involved. A general piece of information
about how much and how adsorption affects the processes studied is useful.
Usually, both for mechanistic and analytical applications conditions are sought
under which the role of adsorption is minimal (with the exception of adsorption
stripping analyses).

For inorganic species the recognition of the relevant physical and chemical
steps is often fairly straightforward (with the exception of inorganic electroactive
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centers placed inside large — e.g. protein-molecules). For substitution inert
complexes the structure of the eleciroactive species is known. It is necessary to
distinguish whether the central metal or the ligand or both undergo electron transfer
reactions and for the metal to establish the change in the oxidation state (for
electroactive organic ligands the behavior of the ligand must be investigated first).
For labile complexes the composition of the complex or complexes formed and its
stability should be known in addition to the change in oxidation states. The nature
of aquocomplexes or of complexes formed in a given supporting electrolyte in the
absence of investigated ligand plays sometimes also an important role.

For organic compounds the situation is different, depending on whether
aprotic or protic solvents are used. In aprotic solvents the first electron uptake is
usually not preceded by a chemical reaction, such as proton transfer. The use of
such solvents enables us thus a more straightforward information about the
thermodynamics of the first electron transfer. On the other hand, the radical ions,
anions or cations, formed in the electron uptake, are strong acids or bases and
readily undergo reactions with any proton sources or bases present, such as solvent
molecules, components of supporting electrolytes or parent compounds. As systems
are not buffered in such components, higher order reactions, which are more difficult
to follow, are often involved. Addition of reactants particularly reactive towards the
products of electrolysis are sometimes useful, particularly in synthetic application.

Most analytical applications of polarographic and voltammetric determination
of organic compounds are carried out in aqueous solutions. Hence this contribution
will be restricted to such systems.

The surface of solid electrodes is generally much {ess well defined than that
of mercury. This and a more pronounced role of adsorption on solid electrodes
makes them less suitable for gathering initial information. Furthermore, this author
is much less familiar with organic electrode processes on solid electrodes. Thus this
contribution will be restricted to processes occurring at mercury electrodes. This
presents a serious limitation: Since mercury is dissolved in aqueous solutions at
about +0.4 V (SCE), the behavior of less easily electrooxidized species cannot be
discussed here. _

One comment should be made concerning the use of mercury electrodes: In
some countries, e.g. Scandinavian, the use of metallic mercury in chemical
laboratories is practically prohibited.

As metallic mercury, even when spilt at room temperature, results in vapor
pressure orders of magnitude below the toxic level, such prohibition is a hysterical
overreaction without scientific foundation. The present author over past 50 years not
only worked in laboratories where mercury was daily used, but met hundreds of
colleagues who did so without any harmful effects. Only at elevated temperatures,
e.g. where distilled, metallic mercury is toxic.

A situation of development of an analytical method for an organic compound
in aqueous solutions which has not been studied before is not unusual. Among the
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four million or s0 of known organic compounds at least 50% can be expected to be
electroactive, i.e. to undergo either electrooxidation or electroreduction. Qut of the
two million compounds considerably less than 100,000 have been studied using
electrochemical method and less than 10,000 studied in some detail. There are
whole classes of compounds, in particular among heterocyclic compounds, which
have not been studied before.

Thus when facing the problem of investigation of an unstudied compound, it
is first useful to check, whether the compound contains a grouping which is known
to be electroactive at mercury electrodes.

Most important reducible groups are the following

c-F Cc-Cc1© C-Br C-1I  C-NR-" C-SR"™  C-OR’
C=C" C=0 C=N C=§

C=C* C=N'
N-N° N=N  N=N
N=O  NO,
0-0  $-§

Polycondensed aromatics, some heterocyclics, quinones and their nitrogen analoga.

Most important groupings which undergo oxidations at mercury electrodes

C=C , CHO, NHOH", —HNNH— ", hydroquinones
H(lj CI)H and their nitrogen analoga

Groups marked with an asterisk above undergo reduction or oxidation within
the potential range available in aqueous solutions only when they form a part of a
conjugated system or in the presence of another activating grouping in the molecule.
For example, the single C~N bond is not reduced in aliphatic amines, but is
reducible in o-aminoketones or in 4-pyridylmethylamine.

Anodic waves can be observed also in the presence of organic compounds
which form slightly soluble or complex compounds with mercury, for example
thiols, derivatives of urea and thiourea and some heterocyclic compounds.

Ifthe studied compound contains aknown electroactive center, it is necessary
to check in the literature if it behaves like some earlier described system. In such
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case it is sufficient to prove that the investigated compound shows the same number
of waves, the same number of electrons transferred in each of them and a similar
dependence of limiting currents and half-wave potentials on pH, and/or ionic
strength, solvent composition and concentration, as related compounds described
in the literature.

Initial Experiments

When, on the other hand, the studied compound shows a behavior different from
that of related compounds described in literature or if this compound does not
contain a known reactive center, a systematic procedure should be carried out. One
approach to such study, which has proved useful in numerous cases, can be
described as follows

1) Prepare a 0.01 M stock solution of the studied compound either in water,
or in an organic solvent miscible with water, such as ethanol, acetonitrile,
DMF, DMSO or tetrahydrofuran. Verify that the compound is completely
dissolved in true — not colloidal — solution. Check the stability of the
stock solution by recording current-voltage curves over chosen time
intervals. According to results of such study prepare stock solution every
week, every day or every hour (possibly keeping it at low temperature).

2) Prepare the following set of supporting electrolytes

0.1 M H,80, pH = 1
0.1 M acetate buffer pH 4.7
0.05 M phosphate buffer pH 6.8
0.05 M borax pH 9.3
0.1 M NaOH pH = 13

Deaerate each supporting electrolyte by a stream of inert gas (N,, Ar), add
an aliquot of the stock solution so that final concentration in the electrolytic cell is
0.1 mM, introduce briefly inert gas and record a current-voltage curve using dc
polarography. For 0.1 M H,SO, and 0.1 MNaOH it is recommended to record two
current-voltage curves in succession: Any observed changes would indicate an acid
or base catalyzed cleavage.

3) Observe in which pH the compound is electroactive, i.e. gives either a
cathodic wave (indicating a reduction) or an anodic one (indicating either
an oxidation or formation of a mercury compound).

Next it is to be noted, if at each pH a single or a muitiple wave is observed.
Does in the case of multiple waves their ratio change with pH? At all pH-values
where a wave is observed but particularly at those pH-values where multiple waves
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are observed, vary concentration of the studied compound at least over one order
of magnitude — for example between 0.05 mM and 0.5 mM. Are all waves a linear
function of concentration? If multiple waves are observed, does the ratio of limiting
currents change with concentration of the electroactive species?

The majority of limiting currents encountered in polarography are controlled
by diffusion and such currents are a linear function of concentration of the
electroactive species (Fig. la). Nevertheless, also currents governed by a rate of a
first order chemical reaction (kinetic waves) and some catalytic waves can also
show a linear dependence on concentration. A current which increases linearly with
increasing concentration of the electroactive species, but becomes independent of
concentration above a certain concentration, is an adsorption current, which involves
rapid formation of an adsorbate (Fig. 1b). Gradual increase in current reaching a
limiting value (Fig. 1c) was observed for some types of adsorption currents (with a
more sluggish formation of the adsorbed layer) and some catalytic currents.

c C c

Fig. 1 Dependence of the limiting current on concentration of the electroactive species: (a)
Diffusion, kinetic and some catalytic currents; (b) adsorption currents, fast formation of
adsorbate; (c) adsorption currents, slow formation of adsorbate, some catalytic currents

It is strongly recommended to use dc polarography with a natural dropping
electrode for such studies. Limiting currents are not affected by the rates of
electrode processes, whereas peak currents as measured in differential pulse
polarography or linear sweep or cyclic voltammetry depend also on kinetics of the
electrode process. Also the use of tast (sampled) polarography and the use of static
mercury drop and similar types of electrodes is less advantageous, as for such
conditions the current characteristics in the presence of adsorption or antecedent
chemical reactions are less well understood.
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Determination of Number of Electrons

Perhaps the most important piece of information about any electrochemical process
is the number of electrons transferred in a given step of the reduction or oxidation
process.

The simplest and at the same time most informative approach is comparison
of limiting currents of the studied compound with limiting currents of equimolar
solutions of standards — either external or internal. For external standards are used
well defined compounds (98% or better purity; when crystal water is present, it
should be well defined) of similar size of molecules and with known number of
electrons transferred in the reduction or oxidation. These waves are usually recorded
in the same supporting electrolyte as the wave of the studied solution. Typical
examples involve quinones (n = 2; well soluble quinones bearing OH or SO,
groups are particularly suitable), aryl alkyl or diaryl ketones ( # = 1 in acidic and
alkaline solutions, » = 2 in the medium pH-range), azo compounds (n = 2, with
exception of o- and p-hydroxy and -amino derivatives), nitrobenzenes (n = 4 with
exception of o- and p-hydroxy and amine derivatives), semicarbazones or oximes
(n = 4 at sufficiently low pH-values).

The limiting currents of the investigated compound and standards (preferably
2 — 3) are compared and observed if they are equal, a fraction (e.g. one half) or a
multiple (e.g. twice as high} (Fig. 2a). For molecules of comparable molecular mass
the differences in diffusion coefficients (which in the expression for current are in
square root) are negligible for estimation or unit values of “»”. This technique is of
course unsuitable when small deviations from unit values of “»” are of interest, but
this is not the case in the initial stages of investigation. Peak currents, as obtained
by differential pulse polarography, linear sweep or cyclic voltammetry are not
suitable for this procedure, as these currents depend also on kinetic parameters of
electrode processes,

Sometimes the studied molecule contains in addition to the investigate
grouping another electroactive group, for which the “n” is known. Comparison of
the ratio of the limiting currents for the unknown with those of the internal standard
yields the value of “»n” (Fig. 2b).

Coulometry is often applied to the determination of “»”, but certain caveats
must be considered when used for elucidation of processes at the dropping mercury
electrode. Chemical and electrochemical processes which take place during the
approximately 3 second of the life of a single drop can be different from those,
occurring over longer periods of time needed for controlled potential electrolysis
used in coulometry. And if — as most frequently done — a constant surface
electrode, such as mercury pool, is used, — differences may result not only from
consecutive bulk reactions but also from adsorption at the electrode surface and
reactions in the adsorbed state. Therefore ,it is important to compare for the studied
compound the current-voltage curves obtained with the use of dropping mercury
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studied standards

Fig.2a Determination of the number of transferred electrons by comparison of limiting currents:
First curve — studied compound, second and third — standards. Equimelar concentra-

tions
n .
— -2 E
0 =1, 0, = "'2_'

Fig.2b  Determination of the number of transferred electrons using internal standard from ratio
of limiting currents of two electroactive groups, when n, or n, is known
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electrode (DME), hanging mercury drop electrode (HMDE) and mercury pool (Hg-
pool) electrode. If all these three curves show similarities, it is safe to use HMDE
or Hg-poo! as the working electrode. When Hg-pool is used, a current-voltage curve
with this electrode should always be recorded (usually point by point). The choice
of the potential of the Hg-poo! should be based on such i-E curve, not on the curve
obtained by DME. The surface of the Hg-pool should be equipotential, which can
be achieved by a proper positioning of the counter electrode.

When the potential for the controlled potential electrolysis has been properly
chosen (so that the role of consecutive electrochemical processes is minimized,
often close to the upper bend of the current-voltage curve, before the limiting current
is reached), first it is found out whether the rate of electrolysis follows first order
kinetics. Deviations from linear Ini = f{t) [or Inc = f{f)] plot indicate compli-
cations, e.g. due to consecutive chemical reactions of the primary product.

To determine the value of “n” it is possible to compare the slope of the
i = f{f) plot with a slope obtained for controlled potential electrolysis with a
compound with known “»”, such as quinones, Cd?*, or Ti" ions. Alternatively, the
area under the i = f{{) curve can be integrated.

As working electrode DME can be used, in a special cell allowing a small
volume (0.5 to 1.0 ml) to be electrolyzed in a solution stirred by the falling off
mercury drops. Such electrolysis takes 8 — 12 hours to carry out, under strictly
anaerobic conditions. This approach eliminates surface reactions, but consecutive
bulk reactions can convert the primary electrolysis product.

When a Hg-pool electrode is used, typically 30 — 100 ml of the solution is
used and the solution is vigorously stirred, preferably with a magnetic stirrer located
in the Hg-pool. The electrolysis time is typically between 30 and 300 min.

Much faster electrolyses can be carried out when a HMDE is used —
typically during 5 to 300 s. There is much less experimental evidence available for
this type of coulometry to offer unbiased evaluation.

Product identification and yield are excellent proofs of the value of “»n”. For
example, an alcoho! is formed from an aldehyde or a ketone only by a two-electron
process. It is nevertheless important to prove that identified species really is the
predominant product.

Confirmation of the Nature of the Type of the Process Involved

For the use of currents in elucidation of the scheme of the electrode process, it is
essential to understand the nature of the process controlling the limiting current.
Variation of currents with concentration enables separation of some categories, as
mentioned above. Further information can be obtained by varying the pressure of
mercury, using a naturally dropping electrode, varying deliberately the drop-time or
recording current-voltage curves during the life of a single mercury drop.
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Using a natural DME and measuring the mean current (i.e. the current at the
center of oscillations, for which theoretical expressions were derived, rather than the
top of oscillations, which can significantly differ from theoretical “maximum
current”) at various heights of the mercury reservoir (“/” being the distance between
the tip of the capillary and level of mercury in the reservoir, corrected for “back
pressure” H, ., = 3.1m'? 1/7, where m is the outflow velocity of mereury and ¢,
the drop-time, which is typically 1 —2 cm), plots of 7, as a function of “/#” can be
obtained (Fig. 3). Ifthe plotof /, = fly/h) is linear and the extrapolated line passes
through the origin (Fig. 3a), the current is diffusion controlled. If the current is
directly proportional to “A” (Fig. 3b), it is governed by adsorption (7, ). And finally,
if the current is independent of “A4™ (Fig. 3c), it is governed by the rate of a chemical
reaction preceding the electron transfer and is denoted kinetic current (7,).

vh h h, vh

Fig.3 Dependence of the limiting current (/) on the height of the mercuty column (#): (a)
Diffusion current; (b) adsorption current; (¢) kinetic current

There is one group of currents which is not clearly identified by dependences
on “¢” and “h”; those are catalytic currents. Such currents can show plots
resembling Figs. 3a, 3b, or 3¢c. Only when a current increases with decreasing “/”,
it is definitely one type of catalytic current. There are two main large groups of
catalytic currents: Those which involve catalytic evolution of hydrogen and those
in which the electrolysis product is chemically reoxidized or re-reduced yielding the
starting material. The first group of catalytic waves, which often have a shape of a
peak in dc polarography, increases prominently with decreasing pH (Fig. 4a) and
increases at a given pH in a buffer with increasing concentration of the buffer (Fig.
4b). For currents where the electroactive species is regenerated by the catalyst (or
mediator), the current is a function of the square-root of concentration of the catalyst
(Fig. 4c).

Using the dependence of the mean current on the drop-time or the instanta-
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cal

pH {Buffer] cat

Fig. 4 Characteristics of catalytic currents: (a) and (b) currents of catalytic hydrogen evolution;
(c) currents of system where the electroactive species is regenerated by an oxidation-
reduction process. {a) Dependence on pH; (b) dependence on buffer concentration; (¢)
dependence on concentration of the catalyst

t t t

Fig.5 Changes of instantaneous current on a single drop on time or of the mean current on drop
time: (a) Diffusion current; {b) kinetic current; (c) adsorption current

neous current on the time (onh a single drop), the diffusion current increases in a
1/6th parabola (Fig. 5a), kinetic ina 2/3rd parabola (Fig. 5b} and adsorption currents
show an increase, followed by a decrease after the time the surface of the electrode
is covered by the adsorbed form (Fig. 5¢). To distinguish between i, and i,
togi = flY) plot is simplest: for i, the slope of the linear plot is about 0.18, for i,
about 0.66 (Fig. 6).
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log i log i

m/n = (0,18 m/n = 0.66

Fig. 6 Distinguishing between diffusion and kinetic instantaneous current using logi = f(1):
(a) Diffusion current, slope 0.18; (b} kinetic current, slope 0.66

Role of Acid-Base Equilibria and Other Acid-Base Catalyzed Reactions
Accompanying the Electron Transfer

Electron transfers in protic systems are often accompanied by proton transfers. If
such proton transfers occur before the electron transfer in areversible or irreversible
process (see below) or if a proton transfer follows a reversible one- or two-electron
process, the presence of acid-base processes can be identified and their nature
recognized based on dependence of polarographic half-wave potentials and
sometimes limiting currents with pH. If, on the other hand, the proton transfer
occurs following an irfeversible electrode process, polarography usually does not
offer any information concerning such a process. For example, in the reduction of
some aryl bromides the following sequence takes place

ArBr +e = ArBr’ (1)

ArBr = Ar' +Br )
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Ar' +e = Ar (3)

Ar +H* = ArH (4)

As at least step (2) is not extremely fast and neither is the protonation of the
carbanion in reaction (4), neither the half-wave potentials nor the limiting currents
of the reduction of such aryl bromides are pH dependent.

For all other systems to obtain information about acid-base equilibria and
other chemical reactions involved, a detailed pH-dependence of polarographic
curves over the entire pH range, in which the compound is electroactive, should be
followed. For this purpose current-voltage curves in 0.05 to 0.2 mM solutions of the
studied compound in buffers differing by 0.5 pH-units or less are recorded. Simple
buffers are preferred to universal (mixed) buffers, as sometimes buffer components
also play arole of proton donors. Buffers must have sufficient buffering capacity —
the concentration of the buffer component (either the acid or the base) present in
lower concentration must be at least 20 times higher than that of the studied species.
0.05 to 0.1 M buffer components are most frequently used. It is preferable to keep
ionic strength constant by addition of a neutral salt — perchlorates and in some
instances nitrates are generally preferred to chlorides, which may affect electrode
processes. For all current-voltage curves recorded, mean limiting currents and half-
wave potentials are measured and plotted as a function of pH.

A general rule should be stated first: Empirically it has been observed that if
a simple acid-base equilibrium precedes the first electron uptake, the conjugate acid
is always reduced at more positive potentials (i.e. easier) than its conjugate base.
This is independent of the initial charge of the acid component and applies to
couples like

H,A = HA™ +H’ (5)

HA™ = A* +H' (6)
or
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BH." = BH' +H" (7)

BH'= B+H" (8)

where the species on the left-hand side is more easily reduced.

Examples of reducible acids:

CH,COCOOH = CH,CO0" +H (9)
HOOCCH=CHCOOH = HOOCCH=CHCOO™ +H" (10)
HOOCCH=CHCQO = "Q0OCCH=CHCOO™ +H" (11}
= CHO /' CHO
o — | o (12)
N =~
H" N
I I
. +H" (13)
OH o

In contrast, the conjugate base is always more easily oxidized (i.e. at more
negative potentials) than its conjugate acid. Thus in couples (5) — (8), HA", A%,
BH", and B are the more easily oxidized species.
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Examples:

ArCHO + O \
o
\ ArCH’ (14)
/ OH
ArCH(OH), - -H"
_H+ _H+
—6=0— —g=0— W
OH OH 0- OH oo
1
(16)
OH o

Conjugate bases on the right hand side of equations (14) — (16) are the more easily
oxidized form.

In the following it will be shown how it is possible from variations of limiting
currents and half-wave potentials to conclude on processes involved. Individual
systems will be discussed starting from simpler and proceeding to more complex
ones.

a) Constant limiting current, half-wave potential pH-dependent

The interpretation of experimental data in this case depends on the
reversibility of the system (for definition and checks on reversibility see below).

(A) Reduction of reversible systerns

Whereas limiting current remains pH-independent (Fig. 7a), the dependence
of half-wave potentials shows several linear segments with varying slopes
corresponding to dE,,/dpH = pRT/nF, at 25 °C hence dE,,/dpH = p0.059/n
(where “p” is the number of protons transferred and “»” the number of electrons).
The value of “p” corresponds to the difference between the number of protons in the
electroactive form and the number of protons in the form predominating in the
solution in the given pH-range.

The pH at the intersection of the two linear segments corresponds to a pK
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T
K! '
pH p red pH pKa PH

Fig.7 Reduction of systemswhere the limiting current is pH independent (a): Dependenceof £,
on pH for (b) reversible systems; (c) irreversible systems

value. If the slope of dE,,,/dpH for the segment at lower pH value is smaller than
the slope dE,,/dpH for the segment at higher pH values (hence if in the plot the
slope increases) the intersection corresponds to a pK value of the oxidized form
( pK ). If the slope of the plot ( dE, ,,/dpH ) decreases, the intersection corresponds
to a dissociation of the reduced form ( pK ),

For example for the 2-carboxy-1,4-benzoquinone (Fig. 7b)

0 o
| 17
+2e /= (a7
CcCOoO coO
O o
O 0
_.,ix +H (18)
COCH PK° coo’
8] 0
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OH o

+H (19)

Red
Coo 28} oo
OH OH
0 o
+H (20)
Red
Coo” Pk Coo"
OH o

the intersection of segmcnts with dE,,/dpH = 0.029 VpH' and that with
dE, /dpH = 0.060 V pH! corresponds to pK* of Eqg. (18), the 1ntersect10n of
segments with slopes 0.060 V pH™' and 0.029 V pH™' corrcsponds to pK 4 of Eq
(19) and the intersection of segments with slopes 0.029 V pH™! and 0.000 V pH™'
to pK ! of Eq. (20).

(B) Reduction of irreversible systems

For such systems where over the entire accessible pH range the limiting
current of an irreversible reduction remains pH independent (Fig. 7a) and the
dependence of half-wave potentials on pH shows two linear segments with
dE, ,/dpH = 0 and dE,,/dpH = pRT/onF, (Fig. 7c), the pH value at the inter-
section of these segments corresponds to pK  of an acid-base reaction of the
oxidized form.

An example of a system that follows such pattern is the reduction of
phenacylsufonium cations

+ -+
PhCOCH,SR, == PhCOCHSR, +H’ (1)

Pk

& - (22)
PLCOCH,SR, +2¢ — PhCOCH, +R,S
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PhCOCH;, + H* = PhCOCH, (23)

For this system the intersection of the two linear segments at pH 7.2 corresponds to pK
of reaction (21). The constant value of the limiting current at least up to pH 12 and
the shift of E, , in the same pH-range indicates that equilibrium (21) remains rapidly
established (compared to the rate of electroreduction) and the zwitterion is rapidly
protonated to replace the reduced cation in reaction (22) at least up to pH 12.
(C) Oxidations of irreversible systems

When the limiting current remains pH independent (Fig. 8a) and the half-wave
potentials are shifted to more negative values and the £,, = f{pH) plot shows two
linear segments with dE, ,/dpH = pRT/anF and 0.0 V pH™', the oxidation
corresponds to a loss of “w” electrons by the conjugate base and involves an
antecedent rapidly established acid-base equilibrium. The pH at the intersection of
two linear segments of the plot (Fig. 8b) corresponds to pK of the reduced form
(pK®e), Such behavior is observed for example in the oxidation of the enediol
grouping of the ascorbic acid (24) and (25)

i E,,

anod

[\
¥

pH PK,., pH

Fig. 8 Oxidation of irreversible systems where the limiting current is pH independent (a).
Dependence of £, on pH (b)

(24)
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— » C—C + e (25)

o-a
o—0

The resulting «-diketone undergoes rapid addition of water to one of the carbony]
groups. '

b) Systems in which both the limiting currents and the half-wave potentials

are a function of pH

The systems in which both the limiting current and half-wave potential vary
with pH will be discussed here using the shape of the i = fi[pH) plot for
classification. ,

(A) With increasing pH a cathodic wave decreases completely

One of the most frequently encountered types of pH dependences results in
a cathodic wave that decreases with increasing pH above a certain pH value (Fig.
9a). The plot of the decrease of this wave (i, ) as a function of pH has a shape of 2
dissociation curve (Figs 9b and 9¢). If the conjugate base is reducible within the
accessible potential range, its wave ( i,) increases with increasing pH. If the acid
and conjugate base are reduced by the same number of electrons ( # = m), the sum
of i + i, remains constant.

2
Such patterns correspond to a sequence (26) — (28)

HA = A" +H’ (26)
HA +ne = P, i (27)
A +vme = P, (28)

(The conjugate acid denoted HA can be an uncharged molecule, a cation or an
anion.)

There are two distinct groups of such variations of wave-heights with pH,
depending on the rate of establishment of the equilibrium (26)

D) Slowly established equilibrium
When equilibrium (26) is slowly established as compared to the rate of reduction,
the limiting current at each pH is proportional to concentration of the species in the
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pK, i pH P&, P pH

Fig. 9 Reduction of systems where half-wave potentials depend on pH and limiting current of
an acid form decreases with increasing pH to zero: (a) pH dependence of curtent-voltage
curves; {b) pH dependence of limiting currents for slowly established acid-base equilibria;
(¢) pH dependence of current of the conjugate acid (- ), of the conjugate base (——
——-) and of the absorbance A (—-—.—- ); (d) pH dependence of |, of the conjugate
acid and base (at more negative potentials)

solution, to [HA] for #, and [A7]] for i,. In this case the limiting current at cach pH
is diffusion controlled (as shown on hnear dependence on \/I_t see above). For such
system the inflection point of the 7, . = ApH) plot occurs at pH = pK (Fig. 9b).
Hence this inflection point, denoted pK ', is in this case equal to pK obtained at
equilibrium, using spectrophotometry or titration.

An example of such system is the reduction of 3-thionaphthenone (29) - (30}
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P _ .'O
L = Lo
5 S H

H
HO
/0 H
H +2+2H —» - H +H (30)
S H S b

In this case the conjugate base, the carbanion, is reduced at too negative potentials
to be followed, but yields an anodic wave, corresponding to oxidation (31)

0 _ 00 N
2 - — | ] | +4e + 20" (31)
s H XN 57 NF

II) Rapidly established equilibrium

Much more frequently encountered are systems in which the rate of
establishment of equilibrium (26) is comparable with the rate of reduction in (27).
In this case, as in the previous one, a decrease of 7, is observed as in Fig. 9a. There
are, nevertheless, two differences: The wave i, is kinetic, which can best be proved
when /i, < 0.15 from independence of ¢, of & (see Fig. 3¢). Furthermore, pH
at the inflexion point of i, = f(pH), where i, = i,_/2, which is denoted pK”, is
larger than the value of pK  determined by spectrophotometry or potentiometry.
This is due to the following: At pH, (Fig. 9¢), which is below pK (equilibrium
concentration of HA in Fig. 9¢ is indicated by dotted line and the pH at its inflexion
pointis equal pK_), form HA predominates in the solution and is reduced. Current 7,
is equal to /.  and, as the same form which predominates is reduced, (E,,), at
pH < pK, is constant (Fig. 9d). At pH > pK_, form A" predominates in the
solution, but as long as the rate of protonation of A in Eq. (26) with rate constant &,
is so high that all of A™ is converted during the life of a drop into HA (which is
continuously reduced) {, remains equalto ¢, (Fig. 9¢). AsHA isreduced, but must
be formed by protonation, (E,,), in this pH range, where reaction with £, is fast,
is shifted with increasing pH to more negative values (Fig. 9d).

With increasing pH the rate of protonation with constant £_(which is a linear
function of [H'] decreases. At sufficiently high pH, all of A™ cannot be converted
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into HA. In this pH range i, decreases and it can be shown that /; = J(pH) must
havea shape of a dissociation curve of amonobasic acid. The value of pHwhere 1) = 4, /2
is denoted pK’ and represents the inflexion point of the dissociation curve. At
pH > pK ' the half-wave potential of wave i, becomes pH independent (Fig. 9d).

As the rate of protonation of A” decreases, current i, increases. In numerous
instances reduction of A~ does not involve a proton transfer prior to the potential
determining electron transfer and hence (E, ), is pH independent. If the species
reduced in i, is an anion, its half-wave potential can be, nevertheless, dependent on
nature and concentration of supporting electrolytes.

Example of a system where both the acid and base form are reduced is the
reduction of phenylglyoxylic acid

PRCOCOOH < PhCOCOO™ + H' (32)
PhCOCOOH - 2¢ +2H' -» PhCH(OH)COOH (33)
PhCOCOO™ +2e +2H" - PhCH(OH)COO" (34)

An example of an acid-base equilibrium, where the conjugate base is reduced
at so negative potentials that only i, is observed, is the reduction of tropylium ion

© g
+ HyO O +H (35)

OH

H

e+ HF O
(D ==X,
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B) With increasing pH a cathodic wave decreases to one half of the original

height '

In some instances the limiting current does not decrease with increasing pH
completely, but reaches a limiting value, which can be 75%, 50% or 25% of the
initial current. Most frequently the decrease of a two-electron reduction wave to a
one-electron reduction wave is observed. Such dependence on pH corresponds to
scheme (37) — (40)

Avres A 37
re (37)
?ila

A +H" = HA (38)
ri‘

HA +e e HA" (39)

HA™ +H* = H,A (40)

Koo AT (4
I‘2

A¥ +2H = HA (42)

Such scheme is manifested by the decrease of i, (Fig. 10). As long as the rate of
protonation of the radical anion A~ inreaction (38)is fast enough to convertall of A~
into HA=, the height of wave #, remains constant and corresponds to a two-electron
process. This is due to the fact that potential £, is always more positive than
potential £.,. With increasing pH the rate of protonation in reaction (38) decreases.
The plotof i; = f(pH) has a shape of a dissociation curve (Fig. 10) with a limiting
value ({, ), which corresponds to a transfer of a single electron in reaction (37).
In some instances, reduction of A™ occurs at more negative potentials £, in
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pH

Fig. 10 Reduction of systems where the limiting current decreases to one half of its original
value. More positive wave i, decreases to one half (7, ), more negative wave i,
increases

wave i,, the height of which increases with increasing pH (Fig. 10) until it reaches
a value corresponding to a one-electron transfer.

As neither in reaction (37) nor (41) the proton transfer occurs before the
transfer of the potential-determining first electron, the half-wave potentialsof i , i, ,
and i, remain pH independent, but (£, ,),, which corresponds to reduction of an
anionic species, depends on nature and concentration of cations of the supporting
electrolyte.

Examples of such behavior are reductions of aromatic aldehydes and aryl
alkyl ketones at pH > 9, which e.g. for acetophenone follows the pattern

PhCOCH, +e = ArCOCH, (43)
_ | (44)

PhCOCH, + H* = PhC(OH)CH,
(45)

PhC(OH)CH, +e — PhC(OH)CH,
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PhC(OH)CH, + H* = PhCH(OH)CH, (46)

z 2- 7).
PhCOCH, +e — PhCOCH;

-
PhCOCH, + 2H* = PhCH(OH)CH, (48)

C) Cathodic wave decreases over a region of pH to a fraction of its original
height
In some instances the limiting current decreases below the value
corresponding to a diffusion-controlled current which involves transfer of “n”
electrons. The plots of i = f(pH) can have shapes shown in Fig. 11. In all the cases
the following scheme is involved in which the electroactive form A is in equilibrium
with an electroinactive form

A = Electroinactive form (49)

A+ne = P . ' (50)

Ifreaction (49) is acid catalyzed, the dependence in Fig. 10ais observed, if it is base
catalyzed, corresponding plot is given in Fig. 10b, and if it is both acid and base
catalyzed, it is shown in Fig. 10c.

Examples of an acid catalyzed reaction are the reduction of nifedipine (51)
—(53) and metamitron (54} — (55)

(51)
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Rl = CH3
R’ = COOCH;

(52)
R\__NH__R'
|
R? R +2+2H —» R (53)
NH B

pH pH ' pH

Fig.11 Reduction of systems involving equilibria between the electroactive and inactive form,
for example involving covalent hydration of C=0 or C=N bonds: (a) Acid catalyzed
dehydration; (b) base catalyzed dehydration; (c) acid and base catalyzed dehydration

The dehydration in reaction (52) with rate constant £, is acid catalyzed.

Therefore the limiting current increases with decreasing pH as in Fig. 10a. As
potential E,; is more positive than E; , only a single six-¢electron wave is observed
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in strongly acidic media.

Metamitron is a pesticide containing 1,2,4-triazine ring. In this compound
1,6-azomethine bond is reduced in protonated form in the first step. But the 1,6-
azomethine bond also can add water and alcohols in a nucieophilic process

0

v
N CH;
j T + H;O
&~ N
N’

kq
CegHs

o |
0. _N_ _CHs
CﬁHsi \*N( (54)
HO N7
H .

ITIHZ . Tsz
0] N CH;, 0 N CH;
3 \I/ N | \r
| + 2e +2H — (CgHs | (55)
S| N
N H N”
: H

CeHs

The dehydration in reverse reaction (54) with rate constant &, is acid
catalyzed, and hence pH dependence as shown in Fig. 10a.

An example of base-catalyzed dehydration is the reduction of 1-alkyl-4-
amino-5-nitroimidazoles (56) — (58)

N-R | HOHN N-R
| + 4e +4H —— l (56)
E
N/)\Rl 56 H,N N/YI\R]

02N

H,N

HOHN HN .
N-R kg ™ N-R .
| P— I /['\ + OH (57)
= 1 - 1
H,N N R H;N N R

HN + H,N
. + .
+ 2e +2H —
Esy = 58
H,N \N)\R] N N/I\Rl (58)
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As E,, is more positive than L., in sufficiently basic solution, where the
base catalyzed dehydration (57) with rate constant &, is sufficiently fast, a single

six-electron wave is observed.
Finally, an example where dehydration reaction is both acid and base

catalyzed and where the i, = f(pH) plot resembles that in Fig. 10c is the reduction
of p-nitrophenol (59) — (61)

NO, NHOH
+4e t4H < —a @ + H,0 (59)
Esg
OH OH
NHOH NH
kq
p—— + H,O (60)
OH ]
NH NH;
+2 +2H —» (o1)
l
OH

As potential £, is more positive than E,, a single six-electron wave,
corresponding to formation of p-aminophenol, is observed in sufficiently strong
acidic or alkaline media. Dehydration reaction (60) with rate constant 4, is both
acid and base catalyzed.

It might be pointed out that the current in the medium pH range (where it is
pH independent) is not a simple function of the concentration of the nonhydrated
form, as the current is also affected by the rate of solvent-catalyzed dehydration.

D} Cathodic currents which with increasing pH first increase, then decrease

A dependence of current, which with increasing pH first increases and then
decreases (Fig. 12) indicates that electroreduction is accompanied by two reactions:
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The yield of the first reaction is favored with an increase in pH, the yield of the
second one oppositely decreases with increasing pH. The two reactions may be
either two consecutive acid-base equilibria or formation of an electroactive species
by a base-catalyzed reaction foilowed by a nucleophilic addition which decreases
the concentration of the electroactive species.

1) Diprotic acids

Dependence of the limiting current on pH shown in Fig. 121s observed for the
reduction of a monoanion of a dibasic acid, following scheme (62) — (64)

HA = HA" +H (62)
HA™ = A +H' (63)
HA  +ne = P (64)

Examples can be reductions of maleic or fumaric acid and reduction of pyridoxal.
For ethylene dicarboxylic acids the relevant scheme is (65) - (67)

HOCCH=CHCOOH = HOOCCH=CHCOO™ +H’ (65)
HOOCCH=CHCOO™ = ~OOCCH=CHCOO" (66)
HOOCCH=CHCOO" + 2¢ + 2H" ~ HOOCCH,CH,CO0" (67)

and for pyridoxal (68) — (70)
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Fig. 12 Reduction of systems involving two pH dependent equilibria. The efectroactive

species is formed in a reaction with rate increasing with increasing pH and
deactivated in a reaction with rate also increasing with increasing pH

CHO

HO. A\ CHOH CHgOH
N | _ (68)
=
H;C 1\'1
H
CHO
0 7 CH,0H CHgOH
¥ | —_ (69}
H;C I‘l{'
H
CHO CH,0H
oA CHOH 0 CHOH
| + 2+ H — = s | (70)
H,C” N HC” N
H H
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Il) Reduction of aliphatic aldehydes accompanied by a base-catalyzed
dehydration

Aliphatic aldehydes exist in aqueous solutions to a considerable extent as
geminal diol derivatives. Their dehydration and formation of the electroactive
unhydrated carbonyl form is base catalyzed. But in more strongly alkaline solutions OH
ions add in a nucleophilic attack to the aldehyde forming a geminal diol anion,
which is not reducible (but undergoes oxidation — see below). The chemical
reactions involved can be described as (71) — (73)

RCH(OH,) = RCH=0 +H,0 (71)
-2 ren/” (72)
RCH=0 + OH™ = RCH
\OH
RCH=0 +2¢ +2H" — RCH,0H (73)

The dehydration (v, ) is based catalyzed, its rate increases with increasing
pH and hence the current corresponding to the reduction of the aldehyde (73) first
increases. The rate of the addition of hydroxide ions (72) also increases with
increasing pH. At a sufficiently high pH (and hence [OH"]), the rate of nucleophilic
addition (v, ) becomes larger than the rate of dehydration { v,, ) and the number of
reducible species (RCH=0) starts to decrease, which is manifested by the decrease
in current at higher pH values.

E) Increase of an anodic wave, corresponding to oxidation, with increasing

pH

For compounds where the electroactive conjugate base is formed in areaction
the rate of which increases with pH, the anodic wave increases with increasing pH.
Ifthe equilibrium yielding the base form undergoing oxidation is slowly established,
as it was in the case of 3-thionaphthenone (see Section A) I), Eq. (31)) the decrease
corresponds to the equilibrium constant. With a rapidly established acid base
equilibrium, the anodic current increases with increasing pH (Fig. 13a). The
ioq = J(PH) has a shape of an increasing dissociation curve, the pH at the
inflexion (where i, = i, ,), denoted as pK’, is smaller than pK The current
for { < 0.15i,, is kinetic, as shown by the independence of mercury pressure.

anod
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The plot of £, = f(pH) shows three linear segments: pH independent at
pH < pK'and pH > pK_, and shifted with a slope dE,,/dpH = 0.059p/an(Fig.
13b), hence a completely mirror image when compared with graphs for reduction
of the conjugate acid (Figs. 9c and 9d). Such plots as in Figs. 13a and 13b
correspond to a system described in (74) and (75)

BH® = B+ H*

(74)
(or B +OH™ # BOH")
B (or BOH™) = P +ne (75)

An example of this behaviour is the oxidation of aromatic aldehydes in alkaline
solutions, which follows pattern (76) and (77)

ArCHO + OH™ = ArCH(OH)O" (76)
ArCH(OH)YO™ = ArCOO™ +2e +2H" (77)
Proofs of Reversibility

At the beginning of the discussion of the role of pH on polarographic waves the
difference was pointed out between interpretation of E,, = f(pH) plots for
reversible and irreversible systems.

Attention will be paid now to the definition of reversibility and the procedures
used in proving that a given system at a given electrode can be described as
reversible (or Nernstian).

A system is called reversible, if the equilibrium between the oxidized and
reduced forms at the electrode surface is rapidly established
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Fig. 13 Dependence of an anodic wave corresponding to oxidation of a conjugate base cn

pH: (a) Limiting anodic current; (b) half-wave potentials

The problem with the above definition is the meaning of “rapidly”. The word
used in this context is a so called “weasel word”, that is a word which can have
different meanings in different contexts. It is hardly meaningful to express the rate
of the establishment of the equilibrium by a numerical value. It is usually defined
relative to the time-window of the measurement. And as such time-window is
different for different techniques, the reversibility as defined above depends on the
technique used. The time window for individual techniques can be very roughly

estimated as follows:

Potentiometry
Polarography

Linear sweep, or cyclic voltammetry
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Reversibility of the overall chemical process depends a) on the rate of the
electron transfer; b) on the rate of accompanying reactions which can involve the
oxidized or the reduced form or both.

a} When the electron transfer governs the reversibility, then
1) when the time-window is short, the system is described as irreversible
2} for larger time-windows the system can be described as reversible
b) For a system where the reversibility depends on accompanying chemical
reactions, then
1) at a short time-window, the chemical reaction does not have time to
alter the concentration of Ox and Red and the system can be denoted
_as reversible
2) when the time-windows is larger, chemical reactions alter
concentration of Red and Ox and the system is irreversible.

cath

anod

E E

Fig. 14 Proof of reversibility under conditions of dc polarography: (a} Comparison of half-
wave potentials of equimolar solutions of the oxidized (cathodic wave) and reduced
form (anodic wave); (b) current-voltage curve of an equimolar mixture of the
oxidized and reduced form

In dc polarography the proof of reversibility is based on comparison of the
half-wave potentials of the oxidized and reduced forms. If (E, ), is practically
equal to (£, )., (as diffusion coefficients of these two forms usually are similar),
such systems are called reversible (Fig. 14a). In such cases mixtures of the oxidized
and the reduced forms (Fig. 14b) yield a single cathodic-anodic wave. Attempts to
prove reversibility based on analysis of the shape of /- E curves are unreliable:
Even irreversible systems can have Nernstian shapes.

To obtain a proofthat(£, ), = (E,,)s.. by dc polarography, itis necessary
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to have both oxidized and reduced forms available. In some cases both these forms
are stable and their solutions can be prepared from well defined chemicals (e.g.
quinones and hydroquinones, aryl hydroxylamines and corresponding nitroso-
benzenes). More often, nevertheless, the reduced form is not stable and readily
undergoes autoxidation (by air oxygen). In such cases, after the curve of the
reduction of the oxidized form was recorded, the reduction of the studied compound
is carried out by a chemical reaction in the bulk of the solution. This can be achieved
by purging the studied solution by hydrogen gas in the presence of some platinum
or palladium catalyst (either colloidal or on a solid support). Some other reducing
agents, like NH,NH,, $,0} or SO3, can sometimes be used but their possible
reactivity as nucleophiles must be considered as well.

An alternative, instrumental approach is the use of the so-called Kalousek
commutator. In this device, constant potential electrolysis is carried out over short
time intervals and in following period the current of the electrolysis product 1s re-

orig,

commut.

E

Fig. 15 Proof of reversibility of processes on the dropping mercury elcctrode using Kalousek
commutator: Half-wave potentials of the reduction of the original solution of the
oxidized form forig.) are compared with those of the oxidation of the reduced form
generated electrochemically in the commutator (commut.)

corded as a function of the applied potential. The /—FE curve obtained in the
absence of electrolysis (Fig. 15¢, orig) is compared with the curve of the electrolysis
product (Fig. 15¢, commut). A similar principle is used in square wave polaro-
graphy.

Another technique that can prove reversibility is cyclic voltammetry (CV),
where a linearly increasing voltage ramp at rates varying usually between 5 mV s~ ‘
and 1000 mV 57! is applied to mercury electrode.
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Most frequently a HMDE or a static mercury drop electrode are used for such
measurements. To prove reversibility the system should show both a cathodic and
an anodic peak. The cathodic and anodic peak currents should be approximately
equal and the difference between potentials of the cathodic (Ep)c and anodic (Ep)(r
peaks should for reversible systems be equal to

RT
AE, = (E).- (E), = 2[1.113] (78)

ie. for n =1 AE = 0065 V (at 25 °C) and for n = 2 AE = 0033 V.
Furthermore, for a proper time-window (i.e. at neither too low nor too high rates of
scanning), the value of EP is independent of the rate of scanning and of
concentration of the electroactive species.

There are some differences in conditions of electrolysis in dc polarography
(which is practically a potentiostatic method) and in CV (where potential is always
a function of time), but their discussion as well as the discussion of the use of CV
in investigation of chemical reactions following electroactive species would be a
topic of another communication.

As the above text was a content of a talk, references to literature sources are
not given. The attached bibliography might enable those who are interested to find
more details in original publications.
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