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In this paper there are established effective criteria for the existence and
uniqueness of the solution of one two-point boundary value problem for the system
of differential equations with delays :

B - ft, 20, 20,0). . %02, 0)

x(0) = (1 -pwx(@) +pc, x(t) = @) fort <0,

where for a natural number n, an integer m, y € [0, 1], and the interval
[ = [0, 8] <R, the function f : IxR"('*™ ~ R" is a vector-valued function
satisfying the local Carathéodory conditions, T, I-R (=1 .,m)are
measurable functions such that 5(1‘) st (f =1,.,m) for almost all t £ 1,
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c €R", and @:] - = 0 ~ R" is a continuous and bounded vector-valued
Sunction.

Formulation of Problem

Let # be a natural number, m be a nonnegative integer, 7 = [0, {] be a closed
interval of real numbers, and b € [0, 1]. Assume thatthe vector-valued function

Fi xR M) R 7 satisfies the local Carath&odory, i.e.,
1) the function f(', x;, x|, .., x,) € L(I; R") forany x,, x|, ..,x, € R",
2) the function f(z,) : R™*™ ~ R " is continuous for almost all ¢ € J

3) sup{{fis, xg, x5 oo X ixg, X, s X, € R, Y x| < p € LU R)
j=t

Consider the boundary value problem

% = fit, x (), x(5,(0), -, %(1 () a.1)
x(0) = (1= u(D) + pe (12)
x(t) = @(fy forre]—e=, 0[. (1.2

Under a solution to the system (1.1) we understand an absolutely continuous vector-
valued function x : / - R ", which satisfies Eq. (1.1) almost everywhere on 1. Under
the solution to the problem (1.1), (1.2), (1.2') we understand the solution to the
system (1.1} satisfying the conditions (1.2), (1.2").

Note 1.1. 1f m = 0, then the system (1.1) is the system of ordinary differential
equations (without any deviated argument).

Note 1.2.If m = 0 and ‘rj(t) € I foralmostallz € Jandeveryj = 1, ..., m, then
the condition (1.2’) becomes unimportant and the boundary value problem (1.1),
(1.2), (1.2} is the boundary value problem (1.1), (1.2).

Note 1.3. Note also that every continuous vector-valued function (i.e., continuous
in all variables) satisfies the Carathéodory conditions.
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Special cases of the problem considered are often studied in the literature that
deals with the applications of differential equations, e.g., the mathematical model
of epidemic (D. Bernoulli — 1760, Kermack, MacKendrick — 1927), the kinetics of
the fermentation (Okamoto, Nagashi — 1984), of the immunological processes
(Marchuk -- 1975), or of the chemical reactor (Finkelstein — 1971). In most cases
there are present either the systems of ordinary differential equations (1.1) with the
continuous right-hand side, or the systems with very particular delayed arguments
— especially with constant delays. The present paper supplies and extends the
domain of the solvable problems in this respect.

General questions of solvability of the boundary value problems of functional
differential equations are studied, e.g., in monograph [1], the effective criteria for
the solvability can be found in Refs [2,4,6] (as for the differential equations with
deviating argument see also Ref. [5]) and references cited therein.

The following notation is used throughout.

R =]-eo, +eo[, R_ = [0, +eo[, [ = [0, f].
R" is the space of n-dimensional real column vectors x = (x,);., with the
components x, € R ({ = I, .., n)and the norm

el = 3" x| -
i=1

R ={x= (xr')?=l €R":ix;20,i=1,.,n}.
Ifx,ye R’ thenx < y = y-x € R:, sgnx = (sg;nx,.)f:], |x| = (|x,-|)?=1-

R™" is the space of real n x n-matrices X = (x,); ., with the components x,,
(i, k = 1, .., n)and the norm

H

X = 3 Ixl
ik=1
fo" = {X = (xfk)?,kﬂ € R"x":xfk 20,i,k=1,.,n}.
IfX, 7 e R™" thn X < ¥ = Y-X & R, |X] = (Jx[Vser-

If x = (x);.,, then diag(x} is the diagonal »n x n-matrix with the diagonal
components x,, .. x .

n

C(7; R") is the space of continuous vector-valued functions x:7~ R” with the
norm

Ixle = max{x()i:t € I} .

If x € C(7; R"), then x| = (Ix]);.,-
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LI, R"),where 1 < g < +eo,isthespace of vector-valued functions x : - R ",
whose components can be integrated with the g-th power, and with the norm

lig

Ixl, o = f lx(Hl9dt
0

LYI; R = {x e LY, R™ : x(f) > 0 foralmostall ¢t € 1},
LI, R"™"), where | < g < +w, is the space of matrix-valued functions
x I~ R™" whose components can be integrated with the g-th power, and with the

norm

\/ig

¢
I1X1, ¢ = f X (£ dt
Iy

LULRT™ = {X e LY, R™™ : X(f) 2 0 foralmostall 1 € I}.
If xe LY, RM, Xe LYWI;R™), then |x|,, = (||xr.|l“)f=1, |X], . =

n
= (Il it -
%, is the characteristic function of the interval J, i.e.,

1 forrel
10 =

0 fort ¢l
and
o0 = {0 f‘or (1) < 0 |
o) for 0 s 1(f) < ¢
Denote by

Solt, X, x5 0 x,) = At %, 2fn 0, + (1 - x(r,(O)e(r, (1)), ..
s ULTOI%, + (L= %LT, (00, (5))

and together with the system (1.1) consider the system

dx(t)

— = e (0, X (@), -, x(TD)) (1.3)
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Then every solution x to the problem (1.1), (1.2), (1.27) is also a solution to the
problem (1.3), (1.2), and vice versa, i.e., the problems (1.1), (1.2), (1.2} and (1.3),
(1.2) are equivalent.

Main Results

Theorem 2.1. Let there exist p > 0 and the matrix-valued function
P & L{: R"™) such that the boundary value problem

dx
—dg’l = P)x(t @1
x(0) = (1 - wx() 2.2)

has only the trivial solution and every solution x to the boundary value problem

EO = px 42130, 2E0). . 260D ~POx0 ] 23)
*(0) = (1 - wx(9 +de, @4

wherel & [0, 1] admits the estimate
xfe < p. | (2.5)

Then the boundary value problem (1.1), (1.2), (1.2 ) has at least one solution,

Now let P{f) = diag(-p(t)), where the vector-valued function
p =(p,,..p,) € L{U; R]). The specification of the conditions deals with the
function fand yields the following effective criteria of the existence and uniqueness
of the solution to the problem considered.

Theorem 2.2, Let for almostall t € ] andevery x, x,, ... x, € R" the inequality
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diag(sgnx)f(t, x, x,, ., X,) <

<diag(-p(4)) [x/ +P O [x] + ,§P,,(r) fx; +w®

be fulfilled, where p, @ € L(I; R}), P, P, € LI, RY™, (G =1, ..,m)
| < g < +eo, Let, moreover, the spectral radius of the matrix

S = diag ()] _)|/Pl,s + )?/x,(r,-)P,-/U @.7)
j=
be strictly less than one, where
%
aj = (] _#)ﬂyp +(.:?_p) ? (1 = 1, . n)’
-1 -pgexp(=lpfy) \ = (2.8)

(1 ~wexp(-fpl) <1 (=1, .,n

and 2 +1 = 1. Then the boundary value problem (1.1), (1.2, (1.2 ) has at least
Pog

one solution.

Theorem 2.3, Let for almost allt € I and everyx, y, X, ¥, - Xpp ¥, € R the
inequality

diag(sgn(x -y [flt, x, x,, .. x,) ~J(t, ¥, ¥, - ¥, <

m (2.9)
s diag(-p@)fc-y/ *POf -y/ + L PO -3/

be fulfilled, where p € L(I;R]), P, P, &Ll RN, (j =1, ., m),
| £ q < +, and the specitral radius of the matrix § defined by (2.7) be strictly
less than one. Then the boundary value problem (1.1), (1.2), (1.2 ) has a unique
solution.

If we choose p = 0, and/or u = 1and specify the vector-valued function p

and the matrix-valued functions P, P, (j = 1, .., m), from Theorems 2.2 and 2.3
we obtain the following corollaries on the existence and uniqueness of the solution
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to the periodic and/or initial problem.

Corollary 2.1. Let for almost all t €l and every x,x, .,x, €R"
fand y, y,, .., v, € R"] the inequality (2.6) [(2.9)] be fulfilled, where
p.w LI R]), PP eLYI: R, (j=1,..m), [sq< +
Ipd, > 0 (i =1, .., n)and the spectral radius of the matrix

S = dfag((u”ﬁu - exp(-Ip )] (Eﬁ] 2”’] ]
T i=1

1P1Lf.' +2 \Xj(Tj)Pj“q
j=

*

be strictly less than one, and 2 +1 =] Thenthe system (1.1) has, on the interval
rod

I at least one [a unigue] solution satisfying the periodic boundary condition
x(0) = x(8) .

Corollary 2.2. Let for almost all ¢ €1 and every x, x,, ... x, €R”
fand y, y,. ..,y € R"] the inequality (2.6) [(2.9)] be fulfilled, where

p,weL(;R), P, P eLYRT), (j=1,..m), [<q< +=
dpf, = 0 (i =1, .., n)and the spectral radius of the matrix

1

S = IP|1_=I 'El |X[(Tj)Pth‘-'
-

2p
be strictly less than ( %7] , and i— +i = |. The system (1.1} has, on the interval

I, at least one [a unigue] solution satisfying the initial condition
x(0) = ¢
forany c € R",

In the case where 1 € (0, 1] we canput p = O on J, and for the constant
matrix-valued functions P, P, (j = 1, .., m) we obtain

Coroligry 2.3. Let for almost all t €I and every x,x, ., %, €R"
fand y, y,, ... ¥, € R"] the inequality
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diag(sgnx)f(t, x, x;, .., X,) <

< Plx| +Z;Pj|xj| + o(f)
e

diag(sgn(x - YDA, x, x5 s ) =S Y, ¥ s ¥,0) <
< Plx-y|+ 2Pj{xj—yj]
i-

befulfilled, where w € L(I[; R]), P, P, e R]"",(j =1, .., m)andthe spectral
radius of the matrix

S = P+ ) Il P,
i=t

' !
~ 12
18 pu +{ 3] é’] . Then the system (1.1) has, on the
U T

interval I, at least one [a unique] solution satisfying the boundary condition

be strictly less than

x(0) = (I - px(®) + pe
forany ¢ € R".

For the case when (1.1), (1.2) is the boundary value problem without
any deviation from the above-mentioned results we obtain criteria which are kmown
from the classical literature.

Corollary 2.4, Let for almost all t €1 and everyx ¢ R" [and y € R"] the
inequality ‘

diag (sgnx)f(t, x) < diag(-p(®)|x| + P(O)|x| + o)
[diag (sgn(x - )L, x) - A, )] = diag(-p(O)|x - y| + P(B)|x - y|]

be fulfilled, where p, w € LA; R}, P e LI, R™™"), I < g < +w, and the
spectral radius of the matrix [P [, , be strictly less than

(-we'  [20)* 1
el b
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where o = max{exp(-fp.f,) 1 i =1, ... A} andf +—; = 1. Then the problem

has, on the interval I, at least one [a unique] solutionforany ¢ € R”.

Proofs

Proofof Theorem2.1.Letf: C(I; R™) ~ L(I; RMyandh - C(I; R") - R" be,
in general, nonlinear continuous operators such that for every p € R,

sup [IfY(DI tx € TR, Ixl, < py € LU R)
and
sup{|A(x)| : x € CU; R"), Ixlie s p} < +=.
According to Corollary 2 [5], if there exists p > 0, a linear strongly bounded

operator p, : C(/; R") -~ L(/; R™), and a linear bounded operator
¢, : C(I; R™) —~ R" such that the boundary value problem

RO 3.

has only the trivial solution, and every solution x to the boundary value problem

dx(f)
dt

= p) (@) MO - p@) (], x) = Aeglx) - A(x)), (3.2)

where & € [0, 1] admits the estimate (2.5), then the boundary value problem

0 - 0, ke =0 (3.3)

has at least one solution.
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Put

FE® = fi{t, 20, x@ (D), -, 2T, ) = x(0) - (1= Wx(®) + ue,
Po(®) = POx (@), 1(x) = x(0) - (1 - wx(®).

Then evidently, the operators £, h, p,, and {, satisfy the above-mentioned conditions
of Corollary 2 [6], and, in addition, p(x){(D) < a(f)jx|. for almostall / € I and
every x € C(I; R™, and|t(x)] < ajxl. for x e CI;R"), where
oty = |P(5)] for t € [ and a; = (2 - u). Furthermore, the problem (2.1), (2.2),
and consequently the problem (3.1) have only the trivial solution. Finally, every
solution x to the problem (2.3), (2.4), and consequently to the problem (3.2), where
A € [0, 1], admits the estimate (2.5).

According to Corollary 2 [6], the problem (3.3) has at least one solution, and,
consequently, the problem (1.3), (1.2) has also at least one solution. Since the
problems (1.3), (1.2), and (1.1), (1.2), (1.2") are equivalent, the theorem is valid.

Proof of Theorem 2.2. According to Theorem 2.1. we will show that under the
assumption of Theorem 2.2 the problem (2.1), (2.2) has only the trivial solution, and
that there exists such p > 0 that every solution x to the problem (2.3), (2.4) for
A € [0, 1] admits the estimate (2.5).

In our case the problem (2.1), (2.2) has the form

i"ggﬂ = diag(-p(H)x (@), x(0) = (1 - px(®).

The solution to this problem is a vector-valued function x(f) =
f

= (cpexp(- fp(s)cz’s));'=], wherec,, € R (i = 1, .., n), satisfying the given
0

boundary condition. However, from the assumption of theorem (see (2.8)) it follows

that c,, = 0 (i = 1, .., n}, and consequently, the problem (2.1), (2.2) has only the
trivial solution.

Nowlet A € [0, 1] and x be an arbitrary solution to the problem (2.3), (2.4).
Then in view of (2.6) we have

dfag(sgnx((t»)%fﬂ < diag(-p®)|x®)] + PO)|x(0)] +

Z POXLx (] + @)
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where w, € L(/; RD.
The integration of the last inequality results in

()] = diag| exp| - [p(s)ds | | [x(O) +
0

+ fP(s)a’ia exp —fp(é)d}; |x(s)|ds +
[} I

j=1

+ Y [Plomfrfs)diag) expf - [p@EE| | ¥ Dds + ol
¢ £

Hence, using the boundary conditions, applying the norm |x|. and Hélder’s
inequality we obtain

|x|(7 = Sixch“ |0)0|‘,_,

where § is the matrix defined by (2.7). Since the spectral radius of S is strictly less
than one, there exists an inverse matrix to the matrix £ - S, and from the last
inequality it follows that the estimate (2.5) holds, where p = (£ - S eyl

Proof of Theorem 2.3.Puty = y, .. = ¥, = 0. Then from the inequality (2.9) in
Theorem 2.3 it follows that the inequality (2.6) in Theorem 2.2 is fuifilled, where
w(f) = f(t,0,.,0) € L{U; R). Therefore, according to Theorem 2.2, the
boundary value problem (1.1), (1.2), (1.2’} has at least one solution.

Suppose now that the considered problem has two solutions x and y. Denote
by z(#) = x(f) - y(©) for + € I. From the inequality (2.9) it follows that

diag (sgn () 2L < diag (-p()] 20} + POI=0] +
+ Z; P (e ()2 (5 @)
=
and analogously to the proof of Theorem 2.2 we have

|z|c 2 S|z|c~

Hence, in view of the properties of the matrix § defined by (2.7), it follows that
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[z]. = 0 and consequently, x(f) = y{#) for t € I.
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