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1 Introduction 

Though the methodology of data mining is based on mathematical statistics, logic, and artificial 
intelligence, it also utilizes expert knowledge in the work with databases. The fundamental principle of 
the methodology is its systematic nature, both in the preparation and application of the procedure, and 
in its interpretation. The result is gradual obtaining of a foundation for making decisions on the basis 
of synthesized pieces of information from certain (usually large) collections of data. Another 
important characteristic of the methodology is heterogeneity and flexibility of available means. The 
researcher is not bound by a single “well-tried” methodology (e.g., a statistical one), but he or she can 
choose from a number of variants for a further, more detailed analysis. Software means are quite 
varied nowadays and they offer a number of levels of analysis of data ensembles consisting of various 
types of variables (both nominal and metric). Analyses are connected in a different way with statistical 
softwares (SPSS, NCSS, STATISTICA, etc.) and contain various kinds of procedures (Clementine, 
Data Miner, Neural Works, Answer Tree, Regression Tree, etc.). The present author will demonstrate 
one of the analyses elaborated with the use of the above-mentioned methodology. The results can be 
compared with its “classic” form published in [Půlpán 2003] and applied to the identical data. 

Paper [Půlpán 2002, 2003, 2004] discussed the methodology of diagnosis determination on the 
basis of the construction of a multidimensional mathematical-statistical model containing four basic 
variables: LTH (lathosterol), SIT (sitosterol), CAM (camposterol), and TCH (total cholesterol). The 
diagnosis was formulated in the alternatives healthy-ill in connection with cholesterol metabolism. The 
decision-making was based on a basic sample of 101 subjects (“healthy” as regards with cholesterol 
metabolism) and samples of altogether 189 patients with various impairments of cholesterol 
metabolism. It has been shown that the data under study make it possible to establish diagnosis with 
the use of statistical methods with a degree of uncertainty not exceeding 30% of wrong diagnoses. In 
the present paper, an attempt will be made to establish the same diagnosis, but with the use of different 
means.  

To obtain a set of measured values of the above-mentioned variables in healthy subjects is 
relatively expensive. The present author thus thinks that it is appropriate to present their more detailed 
processing, the results and possibilities of which can inspire further research. 

1 Flexible algorithm  

Let us begin with the premise that a disorder in cholesterol metabolism cannot be diagnosed from 
the measurement of only one of the variables under study, LTH, SIT, CAM, and TCH. At the same 
time, let us be aware of the fact that the weight of these variables for the above-mentioned diagnosis 
differs. For the time being, nevertheless, we will not estimate it and we will assume equivalence of the 
variables under study.   

First, we will investigate the tetrads of the values of the variables LTH, SIT, and TCH in an 
ensemble of healthy subjects in order to determine the standard of nonpathological cholesterol 
metabolism. At the same time we will make an attempt to define “the prototype” of healthy subjects in 
order to be able to partially reduce the data ensemble of the healthy subjects (without losing essential 
information), if need be. As all variables under study are metrical and of continuous type, we will 



attempt a certain reduction of information contained in it by means of monotonous transformation to 
discrete variables into five levels 0, 1, 2, 3, and 4 in such a way that the points of division of the 
original continuous scale into the discrete one will be the values 

x1 = x   -0.4 . s;  x2 = x  - 0.25 . s; 

x3 = x  + 0.25 . s;  x4 = x  + 0.84 . s, 

 

Table 1. - Basic statistical parameters of the variables under study. 
Variable 
X 

Mean 

x  

Standard deviation 
s 

LTH 7.769 4.896 
SIT 5.044 2.553 
CAM 10.244 4.249 
TCH 4,921 1.094 

 

where the symbol x denotes the value of a random variable under study, x , or s, its selective mean, or 
the standard deviation in the ensemble of healthy subjects (see Table 1). This transformation is 
employed for all variables under study (excepting the variable LTH) as at least approximately normal 
distribution is assumed in them. The variable LTH is, nevertheless, relatively well approximatable by 
log-normal distribution. The degree of agreement of the appropriate theoretical distribution with the 
experimental values can be assessed from Graphs 1, 2, 3, 4 (p-value of the pertinent χ 2 – test of good 
agreement is mostly greater than 0.01). For the sake of comparison, also Graphs 5 and 6 are presented, 
which show the degree of agreement of the experimental distribution of the variable LTH with the 
corresponding normal one and the variable CAM with the corresponding distribution of χ

2. Test χ 2 of 
good agreement in the first case is of a small p-value, so the above-mentioned approximation is out of 
the question, in the second case of the variable CAM, with regard to p-value, the approximation by 
division of χ 2 would be more suitable (p =   0.13). In the case of the variable CAM, we preferred 
normal distribution. It resulted from the belief that approximation by normal distribution is more 
acceptable for a directly measurable variable. Transformation divides the values of each variable under 
study with an approximately identical number (by 20 % of all values) into the individual intervals with 
the limit points according to Table 2. 

As the values of some variables in the “healthy” subjects significantly differed from their mean, we 
considered it useful from the viewpoint of the establishment of the norm to exclude several 
respondents who in at least one of the variable showed values markedly different from the mean (e.g., 
by more than ± 2) from the ensemble of the “healthy” subjects. 

Nevertheless, it was medical evaluation that decided. (It considered possible variability of the 
values of the variables under study in healthy subjects.) The subjects in the ensemble of the “healthy” 
ones who in some variable did not show the measured values between the minimal and maximal ones 
as evaluated by expert determination were excluded from the representative ensemble of the “healthy” 
subjects.  

Table 2 shows the “acceptable” maximal and minimal values which are considered possible for the 
representation of the “healthy” subjects from the medical viewpoint. Therefore subjects 82, 83, 85, 80, 
22, and 62 were excluded from the ensemble of the “healthy” ones. (They are marked with an asterisk 
in Table 3a.) 
 

Table 2. - Limits of the individual variables for transformation. 

 xmin 

-2        0  
x1 

           1 
x2 

              2 
x3 

              3  

x4 

          4 
xmax 

          6 
LTH 2.00 4.15 5.77 7.66 10.64 24.00 
SIT 0.01 2.90 4.41 5.68 7.19 13.77 
CAM 2.71 6.67 9.18 11.30 13.81 24.00 



 
 
 
 

 
 
 
 

Variable LTH, Distribution Log-normal

Chi-quadrate test = 8.16892, degrees of freedom (d.f.) = 4 (adjusted) ,p = 0.08558
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Graph 1 - Histogram of distribution of values of variable LTH (p ~ 0.09) 

 

Variable SIT, Distribution Normal

Chi-quadrate test = 13.03605, d.f. = 7 (adjusted) , p = 0.07123
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Graph 2 - Histogram of distribution of values of variable SIT (p ~ 0.07) 

 

 

 

TCH 3.00 4.00 4.65 5.19 5.84 8.00 



Variable CAM, Distribution Normal

Chi-quadrate test = 13.16311, d.f. = 5 (adjusted) , p = 0.02190
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Graph 3 - Histogram of distribution of values of variable CAM (p ~ 0.02). 

 
 
 

Variable TCH, Distribution Normal

Chi-quadrat test = 8.61426, d.f. = 5 (adjusted) , p = 0.12548
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Graph 4 - Histogram of distribution of values of variable TCH (p ~ 0.13) 

 

 
 



Variable LTH, Distribution Normal

Chi-quadrat test = 44.37258, d.f. = 6 (adjusted) , p = 0.00000
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Graph 5 - Histogram of distribution of values of variable LTH – approximation by normal distribution. 

 

 

Variable CAM, Distribution Chi-kvadrate

Chi-quadrate test = 10.97268, d.f. = 6 (adjusted) , p = 0.08922
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Graph 6 - Histogram of distribution of values of variable CAM – approximations by distribition chi- quadrate. 

 
Table 3a presents the values for 95 healthy subjects transformed from the original ones for all 

variables under study into a five-degree scale (according to Table 2). (Original data are presented in 
[1], Table 6). Now let us introduce discrete metric in the set of all arranged tetrads of transformed 
values of the five-point scale 
  
                                      d1(r, t) = maxi ( ii tr − ),                                          (1) 

where r = (r1, r2, r3, r4),  t = (t1, t2, t3, t4),  ri, ti ∈ { }4,...,1,0 , I = 1, 2, 3, 4. 
 

If we mark the symbols r1, r2, … , r95 of the arranged tetrad of transformed values of variables 
LTH, SIT, CAM, and TCH gradually for all healthy subjects, we define on the set {r1, r2, … , r95 } 
matrix D1 by means of  (1) thus: 
 
                                  D1 = (d1(r

i
, r

j)),  i, j = 1, 2, …, 95.                                (2) 
 

Matrix D1 is symmetrical and with zeros in the diagonal; the following expression holds true for its 
elements 



                                            0 ≤   d1(r
i
, r 

j  ) ≤  4.                                             (3) 
 

The space of all possible tetrads of scores r = (r1, … , r 4) possesses 54 = 625 elements and it is 
expected that not all of the possibilities will appear in the sample under investigation. If in some of the 
more extensive sets of data of the “healthy” subjects nearly all tetrads of reduced data under study 
would be covered by their experimental values, it would not be possible inside the above-mentioned 
set of scale values to separate the set of the “healthy” subjects from patients. The cause can be then 
either incorrect selection of the variables under study, the width of the interval of possible values, or 
too rough discretisation of the selected continuous variables. Here only 95 subjects are available in 
whose group, in addition, there can be two subjects equivalent from the viewpoint of metric d1. For 
reasons of economy, we will therefore exclude from the table of healthy subjects the subjects with the 
result rj, who with the fixed i ≠ j have the value d1(ri, rj) = 0; i = 1, 2, … , 95; j = i +1. Of the subjects 
with the mutual value of metric equal to zero, only one has thus remained. 

Let us now compare the reduced set of all healthy subjects Z =  { i1, i2, … , im }with the set of all 
patients N. Prior to it, we will extend the five-level scale of the transformed values of variables to 
further levels. It will be carried out (again only with regard to the ensemble of healthy subjects) in 
such a way that when the measured values in the ensemble of patients will be smaller than the minimal 
value of this variable in the ensemble of healthy subjects, we will assign to this value transformed –2 
and in case the value of the pertinent variable will be greater than the maximum of the value of this 
variable in the set of the healthy subjects, we will assign to it the transformed value equal to 6 (see 
Table 2). We will thus obtain a set of patients N, newly represented by 189 tetrads of values 
transformed to a seven-degree scale: 
 
                        TN  = { }18921 ,...,, ttt  ,  ti = (ti

1, t
i
2, t

i
3, t

i
4, )                               (4) 

tj
i 
∈ { }6,...,1,0,2− , i = 1, 2, …, 189, j = 1, 2, 3, 4. 

Let us calculate all d(r, t), where r = (r1, … , r4) goes through all tetrads of values of the pertinent 
variables of the healthy subjects from Z and t = (t1, … , t4) goes through all tetrads of the values of the 
variables in patients from in N. Let us now discard from the already reduced group of healthy subjects 
Z all subjects who will have for some j (where j goes through all patients from N) the value of the 
metric d1 in the interval 

                                                0 ≤  d1(r
i
, t

j) ≤  1,  i ∈Z.                                           (5) 

If there is a new, hitherto not included subject A with the tetrad of the originally found values xA = 
(xA1, xA2, xA3, xA4 ) = (LTHA, SITA, CAMA, TCHA), we transform his or her tetrad of 
measurements xA according to Table 2 to the transformed values rA = (rA1 , …, rA4). Then we take 
the reduced repertory of healthy subjects and step by step determine the values d1(rA, ri), I ∈  Z. If 
there holds true for some i that 0 ≤ d1(rA, ri) ≤  1, we include the subject into the healthy ones. If the 
subject is included into the healthy ones, we examine whether in the patients from N there is at least 
one, e.g., the j-th, with results represented by the tetrad tj of the character that 
 

0 ≤  d1(r
A
, t

j) ≤  1,  j = 1, 2, …, 189. 
 

If it is so, we include the subject into the group of patients. Otherwise, the patient is unclassified.  
As d1 is metric, for each healthy subject of the reduced group Z with the values of the tetrad of 

transformed measurements rZ, for each patient of N with the above-mentioned tetrad rN, and for each 
of the unclassified subjects A with the tetrad rA , the following inequalities hold true (with regard to 
(5)) 
 

                    2 ≤  d1(r
Z
, r

N) ≤  d1(r
A
, r

Z) + d1(r
A
, r

N).                                     (6) 
 
If then 0 ≤ d1(r

A, rZ) ≤ 1, d1(r
A, rN) must be equal to at least 1. 



 When tightening up condition (5) to the form 
 
                                            0 ≤  d1(r

i
, t

j) ≤  2,  i∈ Z,   j∈ N                                    (7) 
 
then (6) would be changed into the form  
 
                                                 3 ≤  d1(r

Z
, r

N) ≤  d1(r
A
, r

Z) + d1(r
A
, r

N)                                 (8) 
 
and if 0 ≤ d1(r

A, rZ) ≤ 1, then d1(r
A, rN) must be at least 2. 

This consideration means that in the first case some subject can fulfil the condition for the inclusion 
both in the healthy subjects and in patients. But in the second case every subject classified as a healthy 
one cannot fulfil the condition of inclusion in patients. 

The decision about the classification of the patient as healthy in the first case would therefore 
deserve an evaluation using the quantitative index of certainty of correct classification. 

Inclusion of the subject A into the “healthy” subjects under the condition 

  
                                0 ≤  d1(r

A
, r

z) ≤   1, z ∈   Z,                                           (9) 
 
can be evaluated by the measure of certainty under the presumption that the set of the “healthy” 
subjects in the original values of variables can be represented as a defined region (characteristic of the 
healthy subjects) and each subject is the “healthier”, the “further” his or her data are from the limit 
values of the “healthy” subjects towards the “centre” of this region; e.g., a subject is the “healthier”, 
the larger the radius of the “circle” with the centre given by the coordinates of the healthy subject, 
containing only the values of the healthy ones, is. (The “circle” Ka,ρ  with the radius ρ and the centre rA 
in the metric space (M, d1) is 
 
                                       Ka,ρ = { }.),(; 1 ρ≤∈ rrdMr A  
 

To each “healthy” subject of z ∈ Z, represented by the pertinent tetrad of the values of the 
transformed scale rz, the weight v(r2) is assigned in the form 

                         v(rz) = 
)(

)(

Zcard

Icard Z ,  v(rZ) ∈ 1;
)(

1

Zcard
,                               (10) 

 

where Iz = {j ∈ Z; d1(r
z, rj  ≤ 1}; the symbol card(M) means the number of the elements of the set M. 

Then by the measure of certainty of the inclusion of the subject A into the “healthy” ones we 
understand the number JA ∈ 1;0 , which is derived from (11): 

 
 
        0, when z0 ∈ Z does not exist, so that d1(r

z0, rA ) ≤ 1, 
     JA =  maxz Z∈ { }1),();( ≤AZz rrdrv ;                                                                            (11)    

the greater JA, the higher the certainty of the inclusion of subject A into the healthy ones. 

The values of indices (10) and (11) depend on the reduced sample of the “healthy“ ones. The more 
and in greater detail (i.e., when the transformed scale has more levels in each variable) this sample 
“covers” possible variability of the healthy population, the more reliable the derived measure of 
certainty of the pertinent decision is. 

In Table 3b, each healthy subject z ∈ Z with the diagnosis rz is assigned the weight v (rz) according 
to (10). 



Now let us have the subject A with the diagnosis, e.g., rA = (4,2,2,3). Let us calculate all d1(rA, rz), 
z ∈ Z. We see that, e.g., d1(rA, r15) = 0. The subject A is then included into the healthy ones with the 
weight v(r15) = 0.099 (see Table 3b). 

Besides metric (1), which is shown here as “very strict”, in the space of all tetrads of transformed 
values we can introduce also metric (12): 

                                               d
p

2 (r, t) = ( pp

i

ii tr

1

)∑ − ,                                     (12)                      

r =  (r1, r2, r3, r4), t = (t1, t2, t3, t4), where ri, ti ∈ {–2,0,1,…,6} , i = 1,2,3,4, p is a random 
number  p ≥ 1. (A suitable selection of p makes it possible to change the metric, for p = 2 the 
Euclidean metric is selected.) 

We can proceed in a similar way, i.e., we will first reduce the number of the “healthy” ones Z 
(represented by the tetrads of discrete transformed values according to Table 1) in such a way that only 
those subjects will remain who differ from each other in metric (12). Then, by comparing with the 
ensemble of patients N , we will discard from the ensemble of the “healthy” ones Z those subjects with 
diagnosis rZ, for whom there exists in the ensemble of patients at least one with the diagnosis t of such 
a character that 

                                                     0 ≤  dp
2 (r

Z
, t) ≤  1.                                           (13) 

 
Then we declare as “healthy” the subject A with the diagnosis rA, which for some z ∈ Z possesses 

the value of metric dp2, fulfilling the condition 

                                                      0 ≤  dp
2 (r

z
, r

A) ≤  1.                                         (14) 
 

The measure of certainty JA of this decision is again determined according (11), where v (rz) for z 

∈ Z is determined from (10), where, however, IZ = { }.1),(; 2 =∈ jzp
rrdZj . 

Note: For the reference set of patients A the measure of certainty can be constructed similarly by 
including the subject into patients (when dp2(rz ,rA) >1 for all z ∈ Z). 

 
 
 
 
 
 
 
 
 
 
 

Table 3a. - Transformed values of the group of the “healthy” subjects. 

Sample LTH SIT CAM TCH  Sample LTH SIT CAM TCH 

1 1 3 2 0  31 4 1 1 2 
2 3 3 1 3  32 4 4 4 3 
3 3 4 4 3  33 4 2 3 2 
4 2 4 4 2  34 1 2 2 0 
5 0 4 3 0  35 2 1 0 1 
6 2 4 4 3  36 1 2 3 1 
7 2 4 2 4  37 1 0 0 1 
8 4 3 2 3  38 0 1 0 0 
9 2 3 3 0  39 3 1 2 3 
10 1 3 2 0  40 0 1 0 0 
11 1 3 4 1  41 2 1 1 2 
12 2 4 4 2  42 2 3 3 3 
13 1 1 2 0  43 3 2 1 0 



14 3 3 3 1  44 1 3 3 2 
15 4 2 2 3  45 2 4 4 3 
16 3 0 0 0  46 1 1 2 1 
17 1 4 4 1  47 2 3 3 3 
18 2 1 2 2  48 2 0 0 1 
19 4 2 2 3  49 3 1 0 3 
20 4 4 3 3  50 2 1 1 2 
21 3 3 3 1  51 1 2 2 4 
22* 1 1 1 0  52 2 1 2 4 
23 4 3 2 1  53 2 1 0 3 
24 2 2 2 0  54 1 3 1 4 
25 3 3 4 0  55 1 1 0 2 
26 3 3 3 1  56 0 2 1 4 
27 2 2 3 0  57 0 0 0 2 
28 1 1 3 0  58 1 2 1 3 
29 4 0 0 0  59 1 1 0 2 
30 2 3 3 1  60 3 1 0 2 

 
Sample LTH SIT CAM TCH  Sample LTH SIT CAM TCH 

61 0 1 0 1  81 3 0 0 2 
62* 0 3 2 4  82* 0 0 2 2 
63 2 1 1 2  83* 4 0 2 0 
64 3 3 3 4  84 4 2 2 1 
65 2 2 3 4  85* 4 3 3 3 
66 1 2 3 3  86 2 1 2 3 
67 3 2 4 2  87 0 2 3 3 
68 1 2 2 2  88 2 0 1 3 
69 1 3 3 2  89 4 0 0 4 
70 2 0 0 2  90 4 0 0 1 
71 0 2 1 3  91 2 2 4 2 
72 0 3 2 4  92 3 0 0 0 
73 2 3 3 4  93 1 2 3 0 
74 2 0 0 0  94 0 0 1 0 
75 0 2 2 4  95 2 3 4 3 
76 2 1 0 1  96 0 3 4 3 
77 1 0 1 0  97 1 0 3 1 
78 0 1 2 1  98 1 0 1 3 
79 3 3 3 3  99 4 0 1 2 
80* 4 4 4 4  100 3 1 1 3 
      101 1 3 3 3 

 
 
 

Table 3b - Each healthy subject from z ∈ Z is assigned the weight v(r
z
). 

z 

v(rz) 
card(IZ)) 

1 
0.089 
9 

2 
0.04 
4 

3 
0.129 
13 

4 
0.158 
16 

5 
0.04 
4 

6 
0.109 
11 

7 
0.079 
8 

8 
0.079 
8 

9 
0.149 
15 

10 
0.089 
9 

z 

v(rz) 
card(IZ)) 

11 
0.119 
12 
 

12 
0.149 
15 

13 
0.119 
12 

14 
0.139 
14 

15 
0.099 
10 

16 
0.069 
7 

17 
0.079 
8 

18 
0.139 
14 

19 
0.099 
10 

20 
0.059 
6 

z 

v(rz) 
card(IZ)) 

21 
0.139 
14 

22* 
0.149 
15 

23 
0.059 
6 

24 
0.158 
16 

25 
0.069 
7 

26 
0.139 
14 

27 
0.158 
16 

28 
0.089 
9 

29 
0.003 
3 

30 
0.208 
21 

z 

v(rz) 
card(IZ)) 

31 
0.099 
10 

32 
0.005 
5 

33 
0.119 
12 

34 
0.119 
12 

35 
0.168 
17 

36 
0.168 
17 

37 
0.168 
17 

38 
0.059 
6 

39 
0.139 
14 

40 
0.059 
6 

z 

v(rz) 
card(IZ)) 

41 
0.218 
22 

42 
0.188 
19 

43 
0.05 
5 

44 
0.168 
17 

45 
0.119 
12 

46 
0.158 
16 

47 
0.188 
19 

48 
0.158 
16 

49 
0.119 
12 

50 
0.218 
22 



z 

v(rz) 
card(IZ)) 

51 
0.158 
16 

52 
0.089 
9 

53 
0.129 
13 

54 
0.079 
8 

55 
0.158 
16 

56 
0.069 
7 

57 
0.05 
5 

58 
0.168 
17 

59 
0.158 
16 

60 
0.149 
15 

z 

v(rz) 
card(IZ)) 

61 
0.089 
9 

62* 
0.099 
10 

63 
0.218 
22 

64 
0.168 
17 

65 
0.119 
12 

66 
0.188 
19 

67 
0.109 
11 

68 
0.178 
18 

69 
0.168 
17 

70 
0.158 
16 

z 

v(rz) 
card(IZ)) 

71 
0.099 
10 

72 
0.099 
10 

73 
0.129 
13 

74 
0.079 
8 

75 
0.099 
10 

76 
0.168 
17 

77 
0.129 
13 

78 
0.109 
11 

79 
0.198 
20 

80* 
0.059 
6 

z 

v(rz) 
card(IZ)) 

81 
0.149 
15 

82* 
0.04 
4 

83* 
0 
0 

84 
0.069 
7 

85* 
0.099 
10 

86 
0.139 
14 

87 
0.099 
10 

88 
0.158 
16 

89 
0.02 
2 

90 
0.069 
7 

z 

v(rz) 
card(IZ)) 

91 
0.139 
14 

92 
0.069 
7 

93 
0.119 
12 

94 
0.089 
9 

95 
0.149 
15 

96 
0.05 
5 

97 
0.05 
5 

98 
0.129 
13 

99 
0.069 
7 

100 
0.178 
18 

z 

v(rz) 
card(IZ)) 

101 
0.198 
20 

         

 
2 Conclusion 

We have demonstrated mathematical model (and therefore necessarily formalized method) which 
under different conditions analyzed a set of measurements of several variables simultaneously. The 
analysis aimed to find the relation between the variables under study and the variable categorial Y 
characterizing the condition of a statistical unit (a respondent). The variable Y was categorized into 
two levels – “healthy” (Y = 1) or “ill” (Y = 0).  
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