
Some Introducing Definition for Optimization

Jan Panuš

Ústav systémového inženýrství a informatiky, FES, UPa

Abstract

We can meet all the time with dilemmas of shortening of waiting time in different ways. What
we mean is waiting time in automotive transportation. There are many theoretical pieces of
knowledge for simplification of these dilemmas. We would like to introduce some basic
optimization problems.

Results of optimization problems
There are only a finite number of feasible solutions to each of solving optimization

problems. For example, in a graph with m arcs and n nodes there are no more than 2m possible
subsets that might be arc coverings, no more than mm possible arc colorings, no more than 2m
possible cuts, no more than nn-2 possible spanning trees, no more than 2m possible paths, and
no more than (2m)! tours of the type required for the Chinese Postman’s Problem. There are
no more than n! feasible solutions to the assignment problem, no more than n! feasible
sequences for n jobs, no more than (n!) 2 solutions to the Twenty Questions problems, no
more than 2n possible assignments of values to n Boolean variables in the satisfiable
problem[1]. In order to solve any one of these problems, why do we not just program
a computer to make a list of all the possible solutions and pick out the best solution from the
list?

As a matter of fact, there may still be a few mathematicians who would maintain that
the problems we have listed are not actually problems, devoid of any real mathematical
content. They would say that whenever a problem requires the consideration of only a finite
number of possibilities the problem is mathematically trivial.

This line of reasoning is hardly satisfying to one who is actually confronted with the
necessity of finding an optimal solution to one of these problems. A naïve, brute force
approach simply will not work. Suppose that a computer can be programmed to examine
feasible solutions at the rate of one each nanosecond, i.e., one billion solutions per second.
Then if there are n! feasible solutions, the computer will complete its task, for n = 20 in about
800 years, for n = 21 in about 16,800 years, and so on. Clearly, the running time of such
a computation is effectively infinite[2]. A combinatorial problem is not “solved” if we cannot
live long enough to see the answer!

The challenge of combinatorial optimization is to develop algorithms for which the
number of elementary computational steps is acceptably small. If this challenge is not of
interest to “mathematicians”, it most certainly is to computer scientists. More over, the
challenge will be met only through study of the fundamental nature of combinatorial
algorithm, and not by any conceivable advance in computer technology.

Introduction to a dilemma
We can use many methods to solve some problems indicated in the text above.

Starting point for understanding of these problems is compute shortest (or longest) paths in
the network. That is why we would like to describe this method called shortest paths.

 135

 Suppose each arc (i, j) of a directed graph is assigned a numerical “length” ai, j.
A natural and intuitively appealing problem is to find a shortest possible directed path with no
repeated nodes, from a specified origin to a specified destination.

Problems of this type are possibly the most fundamental and important of all
combinatorial optimization problems. A great variety of optimization problems can be
formulated and solved as shortest-path problems. In addition, a number of more complex
problems can be solved by procedures which call upon shortest-path algorithms as
subroutines.

One of the first observations we make in this paper is that it appears to be as easy to
compute shortest paths from a specified origin to all other nodes as it is to compute a shortest
path from the origin to one specified destination. We shall discover that there is a very real
difference between shortest-path problems in which arc lengths are restricted to positive
values and problems in which arc lengths may be positive or negative. We shall also discover
that, in the latter case, there is no efficient procedure known for solving the problem, if the
network contains directed cycles which are negative in length. The detection of such negative
cycles is an important problem in its own right.

We shall discuss several other variations of the basic shortest path problem in practice.
Among these is the problem in which “transit times” are assigned to the arcs, and, in effect,
we wish to find a directed cycle around which one can travel at the fastest possible velocity.

The dominant ideas in the solution of these shortest-path problems are those of
dynamic programming. We invoke the “Principle of Optimality” to formulate a set of
equations which must be satisfied by shortest path lengths. We then proceed to solve these
equations by methods that are, for the most part, standard dynamic programming techniques.

This situation is hardly surprising. It is not inaccurate to claim that, in the deterministic
and combinatorial realm, dynamic programming is primarily concerned with the computation
of shortest paths in networks with one type of special structure or another. What distinguishes
the networks dealt with in this chapter is that they have no distinguishing structure.

Finally, at the risk of introducing confusion where clarity prevails, we must emphasize
that this paper is concerned exclusively with introducing of shortest-path problems in directed
networks and some problem formulations.

Some problematic formulations
Let us consider some optimization problems that can be formulated as shortest-path

problems and variations.

Most reliable paths

In a communications network, the probability that the link from i to j is operative is pij.
Hence the probability that all the links in any given path are operative is the product of the
link probabilities. What is the most reliable path from one designated node to another?

This problem becomes a shortest path problem in the convectional sense by replacing
each probability pij with a “length” aij = - log pij.

PERT Networks

A large project is divisible into many unit “tasks”. Each task requires a certain amount
of time for its completion, and the tasks are partially ordered. For example, the exterior walls
of a house must be framed in before the rafters can be raises.

 136

One can form a network in which each arc (i, j) is identified with a task and the nodes
are identified with “events”, i.e., the completion of various tasks. If (i, j) and (j, k) are arcs,
then task (i, j) must be completed before task (j, k) is begun. It may be necessary to insert
“dummy” arcs with zero completion times in order to properly represent the partial ordering
of task[3].

This network is sometimes called a PERT (for Project Evaluation and Review
Technique) or CPM (Critical Path Method) network. Many types of analyses can be
performed with such a network. For example, we may determine the shortest possible time in
which the entire project can be completed.

Let aij ≥ 0 denote the length of time required to complete the task identified with
arc (i,j) of the PERT network. The shortest possible completion time for the project is
determined by a longest (or “critical”) path from a specified origin (corresponding to the
“event” of starting) to a specified destination (corresponding to the event of completion).

A PERT network is necessarily acyclic. Otherwise there would be an inconsistent
ordering of the tasks; e.g., job (1, 2) precedes job (2, 1). Thus, the PERT problem illustrates
a situation in which it is important to be able to find optimal paths in acyclic networks. It also
illustrates a case in which it is desired to find a longest path (with respect to nonnegative arc
lengths). The acyclic network happens to be one exceptional type of network for which this is
possible.

A tramp steamer

A tramp steamer is free to choose its ports of call and the order in which it call on
them. A voyage from port i to port j earns pij dollars profit. Presumably, pij > 0 if there is
a cargo available at port i to be taken to port j and pij < 0 if the steamer must sail empty. The
most profitable path from one designated node to another corresponds to a shortest path in
a network in which each arc (i, j) has a length aij = -pij.

This problem illustrates a case in which it is reasonable for arc lengths to be either
positive or negative. Unfortunately, the network for the tramp steamer problem is almost
certain to have directed cycles which are negative in length (positive in profit), and this causes
great computational difficulties.

The knapsack problem

Suppose there are n objects, the jth object having a positive integer “weight” aj and
“value” pj. It is desired to find the most valuable subset of objects, subject to the restriction
that their total weight does not exceed b, the capacity of a “knapsack”. This problem can be
formulated as an integer linear programming problem of the form

maximize ∑
j

jj xp

subject to ∑ ≤
j

jj bxa

where xj = 1 if object j is chosen

 = 0 otherwise

This problem can be formulated as one of finding a longest path in an acyclic network.
Let the network have n(b + 1) nodes denoted j(k), where j = 1, 2, …,n and k = 0, 1, 2, …, b.
The node j(k) has two arcs directed into it, one from (j – 1)(k), the other from (j – 1) j(k- aj),
provided these nodes exist. The length of the first arc is zero, and that of the second is pj. An
origin node s is also provided, and it is joined to 1 (0)

 and 1 (a1)
 by arcs of length zero and p1.

 137

Then each path from node s to node j (k) corresponds to a subset of the first j objects whose
total weight is exactly k, the length of the path being the value of the subset.

A destination node t is also provided, with an arc of length zero from each node n(k)
to t. Then paths from s to t are identified with subsets of the n objects whose total weight is at
most b. The length of a longest path from s to t is equal to the value of an optimal solution to
the knapsack problem.

The traveling salesman problem

Recall that the traveling salesman problem is to find a minimum-length Hamiltonian
cycle, i.e., a cycle passing through each node exactly once.

Suppose we replace some node of the network, say node n, by two nodes s and t,
where s has incident into it all of the arcs which were directed into n. Then the traveling
salesman problem becomes that of finding a shortest path from s to t, subject to the restriction
that the path passes through each of the nodes 1, 2, …, n – 1 exactly ones.

Now suppose in this same network we replace aij, the length of arc (i, j), by aij – K
where K is a suitably large number. The problem now becomes that of finding a shortest path
from s to t, subject to the restriction that the path passes through each node at most once. If
a shortest path contains fewer than n arcs, then no Hamiltonian cycle exists.

The difficulty in finding a shortest path with no repeated nodes is that the network has
negative directed cycles. The problem of finding such a shortest path is a perfectly
well-defined problem, and it can, of course, be “solved” by various methods. However, it
cannot be solved efficiently, unless it has a very special structure.

We can, equivalently, let each arc have length K – aij and view this as a longest path problem,
with all arc lengths positive. But, as we have commented, there is no efficient method for
solving a longest path problem, unless the network is acyclic.

 Literature:
[1] Karp, R. M.: Reducibility among Combinatorial Problems. Oxford and New York, Pergamon Press,
1972

[2] Lawer, E.: Combinatorial Optimization – Network and Matroids, Dover Publications, Inc. –
Mineola, New York 2001, p. 374

[3] Trudeau, R. J.: Introduction to Graph Theory. Dover Publications, Inc., New York 1993, p.209

Kontaktní adresa:
Ing. Jan Panuš
Univerzita Pardubice, FES,Ústav systémového inženýrství a informatiky
Studentská 84
532 10 Pardubice

e-mail: jan.panus@upce.cz
telefon: 46 603 6001

Recenzovala: Ing. Hana Jonášová, Ph.D., ÚSII, FES, Univerzita Pardubice

 138

mailto:jan.panus@upce.cz

