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Abstract 
This paper presents a possibility of using of the rough sets theory for a reduction of attributes 
(criteria, data, information) of objects in multi-attributes decision analysis in a public 
administration system. It is investigated one natural dimension of reducing data which is to 
identify equivalence classes, i.e. objects that indiscernible using the available attributes, 
using approximation sets. 

 

Introduction 
During last few years trends in public administration management have over come more 

waves with the aim to use advantages from information technology application. Modern era is 
demanding changes in organization management philosophy. A re-engineering has become 
a well known process with organization changes of a public administration structure with aim 
to change the classical management hierarchy especially on the level of central management. 
This level has been replaced by information technologies. In connection with this fact 
structure have been created which were able to react faster to changes and decide 
independently. The re-engineering may be realized by a process (a knowledge engineering) 
which expert knowledge is obtained, represented, refined and installed in computer-based 
diagnostic and decision-making systems. The term knowledge engineering has been used in 
the field of decision analysis [5,12]. Decision analysis1 is an engineering discipline that 
addresses the pragmatics of applying decision theory to real-world problems and may be 
applied to scheduling, capital expansion, and research and development decisions. 

The five important elements of the decision analysis are: the objectives, the alternatives, 
the impact, the criteria and the model [12]. In the search for the best alternative may be 
viewed as taking place in five stages (phases) that, in logical order, are: formulation 
(clarifying and constraining the problem and determining the objective), search (identifying, 
designing, and screening the alternatives), forecasting (predicting the future environment or 
operational context), modelling (building and using models to determine the impacts), and 
synthesis (comparing and ranking the alternatives).  

Generally speaking, a decision problem [12] involves a set of objects (actions, courses of 
action, states, competitors, etc.) described or evaluated by a set of attributes (criteria, features, 
issues, etc.). Independently of further interpretation, a decision situation may be represented 
by a table rows which correspond to objects and columns to attributes; for each pair (object- 
attribute) there is known a value called descriptor. We can also say that the table represents 
knowledge about a decision situation. Typically, one or several decision makers (experts, 
agents, nature, etc.) are also involved in a decision problem. By a decision maker we 
understand a person or thing that works to reduce a result (observation, decision, evaluation, 
etc.). The attributes used to describe objects are build on some elementary features of objects. 
They may be nominal (also called categorical or quantitative, e.g. male or female) or cardinal 

                                                 
1  The discipline of decision analysis emerged in the 1960s; it grew out of a recognition that probability and 
decision theory, until now applied primarily to problems of statistical estimation, also could be applied to real-
world decision problems. 
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(also called non-nominal or quantitative, e.g. finance rations or temperature). It is possible to 
distinguish the following tree, most frequently decision problems: classification [4,9,13], 
choice and ranking. 

The aim of the decision analysis is to answer the following two basic questions [2,4,13] 
related to a decision problem. The most general question is probability about explanation of 
a decision situation. Explanation means discovering important facts and dependencies in the 
table describing a decision situation. A more specific question is about prescription of some 
basing on analysis of information from the table. If this information can be interpreted as 
preferential model which represents a decision policy of the agent and can be used to support 
new decision. 

There are two ways [13] of constructing a comprehensive preference model upon 
preferential information obtained from a decision maker involved in the decision process. The 
first one comes from mathematical decision analysis and consists in building a functional (on 
the basis a multi-attribute utility theory) or relation (on the basis an outranking relation or 
fuzzy relation) model. The second way comes from artificial intelligence up the 
comprehensive preference model via inductive knowledge acquisition (also called rule 
induction, inductive learning or learning from examples). The resulting model is a set of “if 
… then …” rules or decision tree. This way is motivated by the hypothesis that the 
comprehensive preference model can be inferred by studying global evaluations made by the 
decision maker when presented with a set of representative objects from the problem domain 
of interest (examples). 

The information about a decision situation is usually vague because of uncertainty and 
imprecision coming from many sources. Vagueness may be caused by granularity of 
representation of the information [13]. Granularity may introduce an ambiguity 
(inconsistency) to explanation or prescription based on the vague information. A formal 
framework for dealing with granularity of information has been given by the rough set 
theory2. The rough set theory assumes a representation of the information in a table form 
called information system. Rows of this table correspond to object and columns to attributes. 
The table is just an appropriate form of description of decision situation. Rough set theory has 
proved to be a useful tool for analysis of a large class of multi-attribute decision problems. 

For algorithmic reasons [4], the information regarding the objects is supplied in the form 
of an information table, whose separate refer to distinct objects (actions), and whole columns 
refer to the different attributes considered. Each cell of this table indicates, therefore, an 
evaluation (quantitative or qualitative) of object placed in that row by means of the attribute 
in the corresponding column. In the case of quantitative evaluations on an attribute q, the 
domain of this attribute is suitably divided into and then codified, e.g. by natural numbers. 
This pre-processing of data, called discretization, is commonly used in machine learning. 

 

Rough Sets Theory 
A data set may be represented as tables [1,2,3]. These tables are called an information 

system, a decision table etc. More formally, the information system is the 4-tuple S=(U, Q, V, 
f), where U is a finite sets of objectives (universe), Q= {q1, q2,…, qm} is a finite set of 
attributes, Vq is the domain of the attribute q, V = Uq∈Q Vq and f: U×Q→ V is a total function 
such that f(x,q)∈Vq for each q∈Q, x∈U, called information function. Therefore, each object x 
                                                 
2 The theory of rough sets was originated by Zdzislaw Pawlak in 1970's as a result of a long term program of 
fundamental research on logical properties of information systems, carried out by him and a group of logicians 
from Polish Academy of Sciences and the University of Warsaw, Poland. 
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of U is described by a vector (string) DesQ(x)= [f(x,q1), f(x,q2), …, f(x,qm)], called description 
of x in terms of the evaluations of attributes from Q; it represents the available information 
about x. Obviously, x ∈U can be described in terms of any non-empty subset B⊆Q. 

Let [2,6,7] R be a binary relation R⊆ X×X which is reflexive (i.e. an object is in relation 
with itself xRx), symmetric (if xRy then yRx) and transitive (if xRy and yRz then xRz) is called 
an equivalence relation. The equivalence class of an element x∈X consist of all objects y∈X 
such that xRy. Let S be a information system, then with any B⊆S there is associated an 
equivalence relation INDS(B): 

 INDS(B)= {(x,x´)∈U2 : ∀  a∈B,   a(x)=a(x´)},     (1) 

where INDS(B) is called the B-indiscernibility relation. If (x,x´)∈INDS(B), the object x and 
x´ are indiscernible from each other by attributes from B. The equivalence classes of the B-
indiscernibility relation are denote [x]B. An equivalence relation induces a partitioning of the 
universe (the set of cases in our example). The partitions can be used to build new subsets of 
the universe. Subsets that are most often of interest have the same value of the outcome 
attribute. 

If we put into the information system a posteriori knowledge is expressed by one 
distinguished attribute – decision attribute we define decision system as the kind of the 
information system. The form of the decision system is   S=(U, Q ∪ {d}, V, f), where d ∉ Q is 
the decision attribute. The elements of Q are called conditional attributes or simply 
conditions. The decision attribute may take several values though binary outcomes are rather 
frequent. A decision system (i.e. a decision table) expresses all the knowledge about the 
model. This table may be unnecessarily large in part it is redundant in at least two way. The 
same or indiscernible objects may be represented several times, or may be superfluous. 

The original rough sets idea has proved to be particularly useful in the analysis of 
multiattribute classification problem. However, rough sets theory can be used for problems of 
multicriteria decision-making, like sorting, choice or ranking [2]. The philosophy of rough 
sets is based on assumption that with every object of the universe there is associated a certain 
amount of information (data, knowledge), expressed by means of some attributes used for 
object description. Objects having the same description are indiscernible (similar) with 
respect to the constitute their description. 

The primary notions of the rough sets theory are the approximation space and lower and 
upper approximations of a set. The approximation space is a classification of the domain of 
interest into disjoint categories. The classification formally represents our knowledge about 
the domain, i.e. the knowledge is understood here as an ability to characterize all classes of 
the classification, for example, in terms of features of objects belonging to the domain. 
Objects belonging to the same category are not distinguishable, which means that their 
membership status with respect to an arbitrary subset of the domain may not always be clearly 
definable [16]. This fact leads to the definition of a set in terms of lower and upper 
approximations. The lower approximation is a description of the domain objects which are 
known with certainty to belong to the subset of interest, whereas the upper approximation is 
a description of the objects which possibly belong to the subset. Any subset defined through 
its lower and upper approximations is called rough set. It must be emphasized that the concept 
of rough should not be confused with the idea of fuzzy set as they are fundamentally different, 
although in some sense complementary, notions. 

Let S be a information system [6,14] and let B⊆S and X⊆U. We can approximate X using 
only the information contained in B by constructing the B-lower and B-upper approximations 
of  X, denoted B*(X)  and  B*(X) respectively [8,10,11,14], where 
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 B*(X) = {x : [x]B⊆U } and  B*(X)={ x : [x]B ∩ X≠∅}.    (2) 

The objects in B*(X) can be with certainty classified as members of X on the basis of 
knowledge in B, while the objects in B*(X) can be only classified as possible members of X on 
the basis of knowledge in B. The set 

 BNB(X) = B*(X) - B*(X)         (3) 

is called the boundary region of X [6], and thus consists of those objects that we can’t 
decisively classify into X on the basis of knowledge in B. The set 

 OUTB(X) = U - B*(X)         (4) 

is called the B-outside region of X and consists of those objects which can be with 
certainty classified as do not belonging to X (on the basis of knowledge  in B). A set is said to 
be rough (respectively crisp) if the boundary region in non-empty (respectively empty)3.  

One can easily show the following properties of approximation [6] (where -X denote U-X): 

 B*(X)⊆ X⊆ B*(X),         (5) 

 B*(∅)= B*(∅)=∅ , B*(U)=B*(U)=U,      (6) 

 B*(X∪Y)= B*(X)∪ B*(Y) , B*(X ∩Y) = B*(X)∩ B*(Y),     (7) 

 X⊆ Y implies B*(X)⊆ B*(Y) and B*(X)⊆ B*(Y),     (8) 

 B*(X∪Y)⊇ B*(X)∪ B*(Y) , B*(X∩Y) ⊆ B*(X)∩ B*(Y),    (9) 

B*(-X)= B*(U-X) = -B*(X) , B*(-X)= B*(U-X) = -B*(X),    (10) 

 B*(B*(X))= B*(B*(X))= B*(X) , B*(B*(X))= B*(B*(X))= B*(X).   (11) 

It is easily seen that the lower and the upper approximations of a set , are respectively, the 
interior  and the closure of this set in topology generated by the indiscernibility relations. 

One can define the following four basic classes of rough sets, i.e. four categories of 
vagueness [6]: 

 X is roughly B-definable, if  B*(X)≠ ∅ and B*(X)≠ U,    (12) 

 X is internally B-undefinable, if  B*(X)= ∅ and B*(X)≠ U,    (13) 

 X is externally B-undefinable, if  B*(X)≠ ∅ and B*(X)= U,    (14) 

 X is totally B-undefinable, if  B*(X)= ∅ and B*(X)= U.    (15) 

The intuitive meaning of this classification is the following: X is roughly B-definable 
means that with the help of B we are able to decide for some elements of U that they belong to 
X and for some elements of U that they belong to –X; X is internally B-undefinable means that 
using B we are able to decide for some elements of U that they belong to –X, but we are to 
decide for any element of U whether it belong to X; X is externally B-undefinable means that 
using B we are able to decide for some elements of U that they belong to X, but we are unable 
to decide for any element of U whether it belongs to –X; X is totally B-undefinable means that 
using B we are unable to decide for any element of U whether it belongs to X or –X. 

Rough set can be also characterized [6] numerically by the following coefficient 

 αB(X)= ⎜B*(X)⎜ / ⎜B*(X)⎜ ,   0≤ αB(X)≤ 1,      (16) 

                                                 
3 The letter B refers to the subset B of the attributes Q. If another subset were chosen , e.g. F⊆Q, the corres- 
ponding names of the relations would have been F-boundary region, F-lower and F-upper approximations. 
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called the accuracy of approximation, where ⎜X⎜ denoted the cardinality of X≠∅. If 
αB(X)=1, X is crisp with respect to B (X is precise with respect to B), and otherwise, if 
αB(X)<1, X is rough with respect to B (X is vague with respect to B). 

We also define a quality of the approximation of X by means of the attributes as [4] 

 γB(X)= ⎜B*(X)⎜ / ⎜X⎜.         (17) 

The quality γB(X) represents the relative frequency of the objects correctly classified using 
the attributes from B. Moreover, we have 0≤ αB(X)≤ γB(X)≤ 1, γB(X)= 0  if αB(X)= 0 and 
γB(X)= 1  if αB(X)= 1.  

The definition of approximations of a subset X⊆ U can be extended to a classification, i.e. 
a partition Y= {Y1, Y2, …, Yn} of U. Subsets Yi , i= 1, 2, …, n, are disjunctive classes of Y. By 
B-lower and B-upper approximation of Y in S we means sets  B*(X)Y= {B*(X)Y1, B*(X)Y2, …, 
B*(X)Yn} and B*(X)Y = {B*(X)Y1, B*(X)Y2 , …, B*(X)Yn}  respectively. The coefficient 

 γB(Y) = Σn
i=1 ⎜B* (X)Yi ⎜ / ⎜U⎜        (18) 

is called [4] quality of the approximation of classification Y by set of attributes B, or in short 
quality of classification. It expresses the ratio of all B-correctly classified objects to all object 
in the system. 

The value of µB
X(x) (rough membership function) may be interpreted analogously to 

conditional probability and may be understood as the degree of certainty (credibility) to which 
x belong to X. Between the rough membership function and the approximation of X the 
following relation ships are valid [2]: 

 B*(X)= {x∈ U : µB
X(x)= 1},        (19) 

 B*(X)= {x∈ U : µB
X(x)> 0},        (20) 

 BNB(X)= {x∈ U :0< µB
X(x)< 1},       (21) 

 B*(-X)= B*(U-X)= {x∈ U : µB
X(x)= 0}.      (22) 

In the rough sets theory there is, therefore, a close link between vagueness (granularity) 
connected with rough approximation of sets and uncertainty connected with rough 
membership of object to sets. 

 

Conclusions 
A decision analysis is a important part of a judgement or decision in the contemporary 

public administration where decision makers have to make decisions on the basis of huge 
data. These data are complicated and uncertainty in generally. To be successful that means to 
choose the best decision, the decision makers have worked with a modern soft computing 
methods, for example: fuzzy systems, neural networks, genetic algorithms and rough logic4. 

The main specific problems addressed by the theory of rough sets are: representation of 
uncertain or imprecise knowledge; empirical learning and knowledge acquisition from 
experience; knowledge analysis in discovery in data; analysis of conflicts; evaluation of the 
quality of the available information with respect to its consistency and the presence or 
absence of repetitive data patterns; identification and evaluation of data dependencies; 
                                                 
4 p.5, Fig.1.2. Paradigm shifts from probabilistic uncertainty to general uncertainty: complex reduction. It was 
published in Chen S. H., Computation Intelligence in Economics and Finance. Heidelberg: Springer, 2004, 
480pp.  
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approximate pattern classification; reasoning with uncertainty; information-preserving data or 
attributes reduction [16]. 

The other dimension in reduction is to keep only those attributes that preserve the 
indiscernibility relation and, consequently, set approximation. The rejected attributes are 
redundant since their removal can’t worsen the classification. There is usually several such 
subsets of attributes and those which are minimal are called reducts. Computing equivalence 
classes is straightforward. This means that computing reducts it is a non-trivial task that can’t 
be solved by a simple minded increase of computational resources [10,15]. 

The fact that we work with uncertainty, fuzzy, incomplete and differently structured data 
and information causes the lack of the presented groups of methods. It is possible to avoid it 
by applying the theory of rough sets may be used for reduction of attributes in formulation of 
multi-attribute decision-making during the creation of the classification model of the 
economic processes (e.g. gross domestic product, an unemployment rate, an agricultural index 
etc.). 
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