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Abstract  
      The problem of number of parametric bootstrap replications that are necessary to realize 
at bias estimation is solved in this paper. It shows results of simulations demonstrating extent 
of error that we can cause at different number of bootstrap replications. 
 

      There are many methods in statistics that solve how to cope with the problem of small 
number of statistical data. All these methods have common lack. Although each of them can 
react to the same initial conditions in a different way but generally all of these methods are 
characterized by low reliability of their results. 
 

      That is reason why new methods, that solve this problem in the most general way, are 
explored. The bootstrap methods belong to relatively new methods [3], whose practical use 
started with a mass introduction of computer technology. The basic idea of bootstrap method 
is generation of a great number of new samples on the base of information obtained from 
original sample, but its size is insufficient for statistical inferences. 
 

      In principle there are two methods of bootstrap – parametric and nonparametric [3]. 
Parametric bootstrap is used in this paper, where the resampled samples are realized by 
generating values from distribution , that is estimate of a real population with distribution 
F. Differences between  and F in parametric bootstrap consist in the fact that parameters Θ 
of distribution F are in replaced with their estimates Θ .   
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      Our target is to examine the accuracy of bootstrap estimation in dependence on number of 
bootstrap replications. We will deal with properties of bias of sample average in the concrete 
way. In order to evaluate the results obtained by simulations, the basic sample has to be 
generated from some known distribution.  
 

      Let’s assume that x1, x2, …, xn  is some realization of random sample from N(µ, σ) 
distribution. When parameter µ is estimated with sample average x  and parameter σ with 
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obtain R realizations of bootstrap samples after R bootstrap replications.  
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      Random variable ∑
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*1  is approximately normally distributed with mean x  and 

standard deviation Rn
s2

. Then the bootstrap bias ∑
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R
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*1 - x  is approximately normally 

distributed with mean 0 and standard deviation Rn
s2

 as well. 

      We are interested in bootstrap bias distribution and mean of bias E*(BR) distribution, 
also BR - E*(BR) in the following step. This bootstrap bias is obtained from R bootstrap 

replications. But E*(BR) = 0 in our case. Therefore BR -E*(BR) = BR = xXR
R

r
r −∑

=1

*1 . 
 

      Random variable BR is approximately normally distributed with mean 0 and standard 

deviation Rn
s2

. Then random variable BR  - E*(BR) is also approximately normally distributed 

with mean 0 and standard deviation Rn
s2

. This random variable exactly expresses the 

estimation of an error that is made after finite number of bootstrap replications. After normal 

transformation Rns
BR  we obtain normally distributed random variable with mean 0 and 

standard deviation 1.  
Interval estimate of variable E*(BR) is then  

              <+ α Rn
szBR  E*(BR)  < 

Rn
szBR α−+ 1 , 

where zα is quantile of N(0,1) distribution. zα = ⎟
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      We can estimate by means of this relation extent of the error that we can cause at given 
number R of bootstrap replications, at given extent of n of original random sample and at 
chosen value of α. 
 

      We used two normally distributed random samples, the first one with mean 100, standard 
deviation 10 and size 15 and the second one with mean 0, standard deviation 1 and size 15 to 
illustrate solved problem. 10 000 bootstrap replications were made for each of above samples 
and basic statistical characteristics were computed. These characteristics are presented in 
table 1.  
 

Tab.1 
parameter N(100,10) distribution N(0,1) distribution 

x  101,267 0,1007 
s2 117,662 1,0614 

*
Rx  101,238 0,0982 
*2

Rs  109,947 0,9971 
 
 

Figures 1 and 2 show the results from several simulations, changes of bias with 
increasing number of bootstrap replications at sampling from N(100,10) and N(0,1) 
distributions.  
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The problem is demonstrated at 5 repetitions of 2000 replications. Empirical biases were 
calculated for each value of R. We can note how the variability decreases as the simulation 
size increases and how the simulated values converge to the exact value.  To answer the 
question, how large a value of R is needed, figures 1 and 2 suggest that R = 300 bootstrap 
replications could be adequate. Values of bias don’t markedly change at larger value of R .  
 
 
 
 
 
 
 
 
 
 
 
 
                                  Fig.1                                Fig.2 
 
Let’s simulate Q repetitions of R bootstrap replications. Bias estimates are calculated for each 
of Q repetitions and we calculate sample average of absolute values of these biases.  We 

obtain variable ∑ ∑
= =
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*11  that can be considered to be measure of bias 

estimate error. Results of these simulations are presented in figures 3 and 4.  
 

 
                               Fig.3                                                                Fig.4 
     
Figures 3 and 4 show that bias estimate error for 600 bootstraps replications from N(100,10) 
distribution was approximately 0,05, for 600 bootstraps replications from N(0,1) distribution 
it was approximately 0,007 and it was smaller than 0,005 for R >1100. Next the error didn’t 
markedly change in both cases.  
 
      Figures 5 and 6 illustrate values of variance of bias estimates from simulated bootstrap 
samples (scatter diagram) and values of variance of bootstrap bias, calculated from 

D*(BR) = 
nR
s2

 (continuous curve). When R = 2000, these values don’t differ significantly.  
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                                 Fig.5                                        Fig.6 
 
Next two figures 7 and 8 demonstrate absolute values of differences between the bias variance 
obtained after R replications of original realization of random sample and theoretical value 

obtained by calculation. Its value is 
nR
s2

. This difference is called the error of estimate of bias 

variance. Figures 7 and 8 suggest that this error is smaller than 0,01 for R > 600 at simulations 
from N(100,10) distribution and smaller than 0,0001 at N(0,1) distribution. 
 
 
 
 
 
 
 
 
 
 
 
 
                                    Fig.7                                  Fig.8 
      
Tab. 2 Confidence interval for bias mean E*BR  
           N(100,10) distribution 
          (LL,UL are lower,upper limits of the confidence intervals) 

R bias LL UL  R bias LL UL 
100 -0,379 -0,928 0,170  1000 -0,110 -0,284 0,063 
200 -0,131 -0,519 0,257  2000 -0,083 -0,206 0,040 
300 -0,085 -0,402 0,232  3000 -0,082 -0,182 0,018 
400 -0,039 -0,313 0,236  4000 -0,037 -0,124 0,049 
500 -0,130 -0,376 0,115  5000 -0,050 -0,128 0,027 
600 -0,184 -0,408 0,040  6000 -0,046 -0,117 0,025 
700 -0,125 -0,333 0,082  7000 -0,039 -0,105 0,026 
800 -0,119 -0,313 0,075  8000 -0,039 -0,100 0,023 
900 -0,129 -0,312 0,054  9000 -0,038 -0,095 0,020 
1000 -0,110 -0,284 0,063  10000 -0,029 -0,084 0,026 
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      Table 2 shows 1 - α - percentage confidence interval [4], for the bias mean E*BR for 
100 −1 000 bootstrap replications (left part) and for 1000 – 10000 bootstrap replications (right 
part) from  N(100,10) distribution and for α = 0,05. The results of calculations are expressed 
in a graphic way in the figures 9 and 10. 
 
      Limits of 95% confidence intervals for E*BR after 100 – 1 000 bootstrap replications from 
N(100,10) distribution are presented in the figure 9, in the figure 10 is the parallel confidence 
interval from 1000 till 10 000 replications. Two figures were constructed by the reason of 
different y scale and better lucidity. 
Figures 9 and 10 suggest, that in case of simulation from N(100,10) distribution, the error of 
bias estimate is smaller than 0,3 when R > 300, smaller than 0,2 when R > 750 and smaller 
than 0,1 when R > 3000. When R = 10 000, the error is 0,055. 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                    Fig.9                                          Fig.10 
 
Tab. 3 Confidence interval for bias mean E*BR  
            N(0,1) distribution 
(LL,UL are lower, upper limits of the confidence intervals) 
 

R bias LL UL  R bias LL UL 
100 -0,0209 -0,0730 0,0312  1000 -0,0010 -0,0175 0,0155 
200 -0,0120 -0,0489 0,0249  2000 -0,0053 -0,0169 0,0064 
300 -0,0162 -0,0463 0,0139  3000 -0,0027 -0,0122 0,0068 
400 -0,0161 -0,0422 0,0099  4000 -0,0033 -0,0115 0,0050 
500 -0,0138 -0,0371 0,0095  5000 -0,0042 -0,0116 0,0031 
600 -0,0092 -0,0305 0,0121  6000 -0,0037 -0,0104 0,0030 
700 -0,0064 -0,0261 0,0133  7000 -0,0027 -0,0090 0,0035 
800 -0,0030 -0,0215 0,0154  8000 -0,0022 -0,0080 0,0037 
900 -0,0021 -0,0195 0,0153  9000 -0,0018 -0,0073 0,0037 
1000 -0,0010 -0,0175 0,0155  10000 -0,0025 -0,0077 0,0027 

 
Limits of 95% confidence intervals for E*BR after 100 – 1 000 bootstrap replications from 
N(0,1) distribution are presented in the figure 11, in the figure 12 is the parallel confidence 
interval from 1000 till 10 000 replications. Analogically to previous case, two figures were 
created. 
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                                  Fig.11                     Fig.12 
 

Figures 11 and 12 suggest, that in case of simulation from N(0,1) distribution, the error 
of bias estimate is smaller than 0,03 when R > 300, smaller than 0,02 when R > 700 and 
smaller than 0,01 when R > 2800. When R = 10 000, the error is 0,0052. 

 

Finally it is possible to say that when the presumptions of normal distribution 
formulated in preliminary part of this paper were fulfilled, then we found out that 300 
bootstrap replications were sufficient for the estimate of bias mean. Properties of estimated 
parameters weren’t significantly improved when more bootstrap replications were made. 

We tried to make bootstrap simulations for different values of µ and σ. The results 
obtained in these cases verified that 300 bootstrap replications are adequate for good estimate 
of bias mean. 
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