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1. Introduction and Preliminaries

Sampling theorem for bandlimited signals [1], [2], as the backbone, together with
digital technology progress, allowed bringing new quality to communication networks.
Now TDM (Time Division Multiplexing) is well established and broadly used method for
the transmission of multiple signals over common communication channels. The channel
capacity is divided in time slots (for example 125 uS for telephone signal), and during a

slot the sample value is transmitted. On the receiving side there is the continuous time
signal reconstructed from received samples using analog or digital filters.

However the main challenge for today's communication networks is an integration
of TDM and packet switched networks towards next generation networks (NGN). This
brings a need of the sampling theorem generalization. Regarding deterministic signals,
we can see three main streams of such generalization: wavelets [3], [4], shift invariant
spaces [5] and parametric signals [6], [7].

The aim of this paper is to explain the principle ideas of the general sampling
required for a voice-over-packet transmission. The explanation is supported by original
proves.
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More precisely; let f(t)e Lz(—oo,oo) be the €2-bandlimited function i.e. there

exists f(a)) such, that f(a)) =0 for |a)| >0Q>0

where ]?(a)) is the Fourier transform of function f(t) :
f(w)= J- f(t)e dt

Then for f (t) the sampling theorem is applied

T

f(t)= Z f (kA)sinc(Q(t—kA)), teR, A= a

kez

where
sinc(t) = sint

t

1

t=0

In other words the set  {®, (t)=sinc(Q(t—kA)), teR, keZ} creates

the orthogonal basis of the Hilbert space S c L, (—0,0) of all Q2 -bandlimited functions.

Now, when digital technology allows real time processing of voice and video
signals, more sophisticated methods can be used. The main advantage of these methods
is decreasing of the necessary channel capacity for the same quality signal transmission.
In [8] it is shown that band limited functions with a non-compact spectrum can be

transmitted with a sample rate lower than 2€), but more complex reconstruction
procedure is necessary.
In both cases the subspace S c L,(—0,00)of band limited functions has the

orthogonal basis done by a countable set of shifted functions
@, (t)=d (t-kA) teR, keZz]

and the coordinates corresponding to this basis equal precisely the samples
f(kA), keZ. It is very good property for realization to have basis of shifted
functions, because as the time flows, the same generator creates new basis functions.
We would like to keep this property.

But if digital technology allowed real time computation during the sample interval,
coordinates of the function might be obtained by more general procedure than the
sampling.
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In this paper we would like to find several properties of the set

0, (t)=0 (t-kA) teR, keZ|

which creates a basis of a subspace S c L,(—00,0). Definitions and theorem in this

section can be found for instance in [9]. We can meet it in the modern theory for basis
and frames in Hilbert spaces.

Definition 1.1: A system {®, }cL,(-o,©), kKeZ is called a Schauder
basis in L,(—o,) if for every f eL,(—o,0) there exists a unique sequence
{Ck} such that f :Zqu)k.

kez
Definition 1.2: A Schauder basis {®,} c L,(—w,©), k € Z is called a Riesz

basis in L,(—o0,0) when the series ZCk®k with coefficients c, converges in
kez

L, (=o0,00) if and only if Y ¢, <oo.
kez

Definition 1.3: A system of the functions {®,}cL,(-w,©), keZ is

called w -independent if and only if

dYed =0 = ¢, =0 VkeZ

kez
Definition 1.4: A system of the functions {®,}cL,(-w0,©), keZ is
called a frame if there exists constants 0 < A< B <o such, that
AlLFIP<>(f,@,)P<B] f |, Vfel, (o)
kez
Following theorem explains why the @ -independent of system {®,} is
important.
Theorem 1.5: Let system of the functions {®,} be a frame in L,(—,).

Then {®,} is a Riesz basis if only if {®,} is w -independent.

2. Conditions for w -independent Property in Spectral Domain

It is useful in the communication theory to study spectral properties of the
functions. The following theorem shows a necessary and sufficient condition for
d(1) to generate the w -independent system of the functions.
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Theorem 2.1: Let A>0 and function ® eL,(—o,0). The function ®

generates the @ -independent system {®, } if and only if

;Cf)(ahtz%:j;éo a)e(—%,%j a.e. (1
where
{0, (t)=0 (t-kA)c L,(-0,0) teR, keZ|
D(w) = [O(t)edt, weR
Proof:

The functions @, (t)=®(t—kA) teR, keZ are w-independent if

and only if

ded, =0 = ¢, =0 VkeZ

kez
i.e. for almost every t € R
> @, (t)=>c@t-kA)=0 = ¢ =0 Vkez (2

kez kez

Let us apply Fourier transform to the left side of the implication (2).

Then we get

D(@)).ce =0 = ¢ =0, VkeZ

kez

The sum ch e '“** can be rewritten Zdn e’”™, where n=—k and d, =c_,.
k n

The sum Zdn e’“"™ is the Fourier series of a periodical function f €L, (— oo,oo)
n

2
with the period Xﬂ (i.e. f Zd el "),

nez

Then (2) is true if and only if for every periodical function f € Lz(—oo,oo)

with period 2% holds:
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It is equivalent to

of=0 = f=0 3)
Due to periodicity of f(a)) implication (3) may be rewritten to
~ 27N T T

f Olo+— =0 = flw)=0, -—,— | ae. 4

@)% [a) Aj () a)( - Ajae @

Sufficient condition:
If d)k(t) are w-independent, implication (4) is valid for all

f(w)el, ~Z Z | Then it has to be valid for a function f, el ~Z 2| such,
A A AA

that f,#0,ie. f,(0)=0 a)e<—£,£>.
fo(a))z Cf)(a)+%j¢0 we(—%,%)a.e.
2

nez
) a)+27[—n 20 we|-Z%ae.
ez A A A
Necessary condition:
If > |® 0+ 20 we 27 e
A A A

neZ
oo+ -0 = fl@)=0, we[-2.2|ae.
A A A

Last implication is equivalent to the definition of the @ -independent of the
system {®,,keZ}.

Due to (4), it has to be valid that

Therefore

then

o)

neZ

Following examples illustrate the condition proved in theorem 2.1.
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Example 2.2: Function ®(t)=c ! creates the w -independent system of

. —|t-kA
functions @, =e | ‘,

because &D(w): 2 ->0 Voe —Z,z
l+o A A
In fact ZCK e =0 = c, =0 VkeZ
kez

Example 2.3: Function ®(t)=sinc(Qt) where Q :% does not create the
 -independent system ®(t)= sinc(%(t - kA)j .

Fourier transform of the function ®(t) is ®(w)=2A for w e (—L Lj

2A°2A
( Zﬂnj

for e (—%,%} and according theorem 2.1. the system {®,,k € Z} is not

=0

B(w)= -2,
and ®(w)=0 for weR\<( 2A’2AJ> So ).

nez

o -independent.
Really the function CDl(t): sinc —(t —A) is — -bandlimited
2A 2A
and we can write

)= D(2kA) smc(ZA —2kAj > D(2kAND,, (t)

kez kez

itimplied  0=®,(t)- > ®(2kA)D,, (t)=>d @, (t

kez meZ

but d, # 0 i.e. system {®,,k € Z} is not @ -independent.
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3. Conditions for the Orthogonality of System {®,,k € Z}

The procedure of coordinate calculation is simpler, if dJ(t) generates the
orthogonal basis.

(@, @)= [O(t—kAW(t-1A)dt =0, Vk,IeZ; k=l

R

The equivalent condition for @, (t)=®(t—kA) teR, keZ is

(@, ®,)=[@t-kAW(t)t=0, VkeZ; k=0
R
In the following text we suppose orthonormal basis with
(@,,0,) jcp t)dt=1, Vkez

If the function f satisfies f = chq)k then coefficients C, can be calculated as
kez

¢ =(f,@)=[ftyp(t—ka)dt, vkez

R
Theorem 3.1: Let A>0 and function @ e L,(~o,00). Function ®(t)
generates the orthonormal basis {CI)k ) =d(t-kA), teR, ke Z} if and only if

Z&D(w+2%Anj =A a)e(—z,zj (5)

neZ A A
The basis is orthonormal if and only if the foIIowing holds

(@, @) jCDt kayp(t)dt={ | 5. v (6)

Proof:

Let ®"(t) be a convolution ®(t) with d(-t)

- [o(e(e-

Fourier transform of convolution is

= I(I)*(t)e‘j“’tdt = ‘@(w)‘z weR
R
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Then relation (6) can be rewritten as

(@,,,) cht kAYD(t)dt = @"(ka)={ | <

0 VkeZ; k=0
or by using inverse Fourier transform
jokA _f1 k=0
q)k’q) .”q) X S da)_{ 0 VkeZ; k#0

Dividing R to intervals with length 2= , we can write

2
CT)(a) il J
A
Let us change order of summation and integration and denote
2
&)(a) L2 j
A

S(a))ej’”“da) = { Lok

0 VkeZ: k=0 (7)

/4

A
1 jok A 1 k=0
I el do = {

27[ nezZ 4
A

0 VkeZ; k=0

neZ

1
we obtain —
27

>\=u'—-l>‘“

Coordinates of the Fourier series of the function S(a)) can be calculated as

C, =

2A S(a))e‘j“’kAda)

D‘N'—.D\N

and comparing C, to (7), we can say that all of the coordinates except the
average value (k=0) equal zero and C, =A. Then

2
@ a)+27z—n =A we —£,£
A A A

OZZ

nezZ
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Example 3.2.: Any function @ € L,(—,0), such that ”&)(a)rdt =1 and
R
®(t) =0 |t|> 5 >0 generates orthonormal basis

{®, (1) =D(t-kA), teR, keZ},

for k=0
for k=0

0 | >

(D,, @, )= | PH)D(t—kA)dt = {1)

0>

because of the definition the theorem 3.1. then implies that for these functions it
holds
2
(i)(a)Jrzﬂ—nj =A a)e(—z,zj.
A A A

Lektoroval: Prof.Ing. Karel Sotek, CSc.
Predlozeno: 3.5.2004

Co=,

neZ

References

1. SHANNON C. E. Communications in the presence of noise, Proc. IRE, vol. 37,pp. 10-21,
(1949).

2. UNSER M. Sampling - 50 year after Shannon, Proc. of IEEE, vol. 42, no. 11, pp. 2915-2925,
(1995).

3. WALNUT D. F. An Introduction to Wavelet Analysis, Birkhauser Boston, (2001).

4. PERCIVAL D. B., WALDEN A. T. Wavelet Methods for Time Series, Cambridge University
Press, (2000).

5. CHEN W., ITOH S., SHIKI J. On sampling in shift invariant spaces, IEEE Trans. Information
Theory, vol. 48, no. 10, pp. 2802-2810, (2002).

6. VETTERLI M., MARZILIANO P., BLU T. Sampling signals with finite rate of innovation, IEEE
Trans. Signal Processing, vol. 50, pp. 1417-1428, June (2002).

7. MARAVIC® I, VETTERLI M. Exact Sampling Results for Some Classes of Parametric
Nonbandlimited 2-D Signals, IEEE Trans. Signal Processing, vol. 52, no. 1, Jan. (2004), pp.
175-189

8. KLUVANEK |. Sampling theorem in abstract harmonic analysis, Matematicky Casopis
Slovenskej Akadémie Vied, 15:43-48, (1965).

9. ZHIDKOV P. E. Sufficient conditions for functions to form Riesz bases in L2 and applications to
nonlinear boundary-value problems, Electronic Journal of Differential Equations, Vol. (2001),
No.74.

Scientific Papers of the University of Pardubice
Series B - The Jan Perner Transport Faculty 9 (2003) -171 -



Summary
BASIS OF REGULARLY SHIFTED FUNCTIONS

Martin KLIMO, Katarina BACHRATA

We have explained the basic ideas of the generalized sampling, which can be used for the
voice-over-packet transmission if packet loss can occur. Basic properties of the basis generating
signal in the spectral domain are given and proved. The paper explains when the set of regularly
shifted functions creates a general Riesz basis or an orthogonal basis. Basis examples support an
easy view to this structure.

Resumé
BAZE TVORENE PRAVIDELNYM POSOUVANIM FUNKCI

Martin KLIMO, Katarina BACHRATA

Clanek vysvétluje zakladni myslenky zevSeobecn&ného vzorkovani, které se d& pouzit pro
prenos hlasu pomoci paketl, jestlize se muze vyskytnout ztrata paketll. Vysvétleny a dokazany
jsou zakladni vlastnosti které ma mit signal v spektralni oblasti, jestlize ma generovat bazi spolu se
signaly, které vzniknou jeho rovnomérnym posouvanim v &ase. Clanek vysvétluje tyto vlastnosti jak
pro vSeobecnou Rieszovu bazi, stejné tak pro bazi ortogonalni. Pro nazornéjsi vyklad jsou v €lanku
uvedeny priklady funkci s pozadovanymi vlastnostmi.

Zusammenfassung

BASEN GEBILDET MIT DER REGULAREN FUNCTIONENVERSCHIEBUNG

Martin KLIMO, Katarina BACHRATA

In diesem Artikel verden fundamentale Ideen der verallgemienesten Abtastung dasgestellt.
Grundlegende Eigenschaften des basiserzeugenden Signals werden im Spektralberuch erlauten
und beweisen. Der Artikel zeigt auf unter welchen Voraussetzungen die regular verschobenen
Funktionen eine Riesz-Basis sovie eine ortogonale Basis erzeugen. Einige Beispiele verdeutlichen
diesen Sachverhalt. Diese Abtastung kann zur Sprachpaketubertragung mit moglichen Paketverlust
augewendet werden.
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