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Abstract  

Systems for predicting corporate rating have attracted considerable interest in soft computing 

research due to the requirements for both accuracy and interpretability. In addition, the high 

uncertainty associated primarily with linguistic uncertainties and disagreement among experts is 

another challenging problem. To overcome these problems, this study proposes a hybrid 

evolutionary interval-valued fuzzy rule-based system, namely IVTURS, combined with 

evolutionary feature selection component. This model is used to predict the investment/non-

investment grades of companies from four regions, namely Emerging countries, the EU, the United 

States, and other developed countries. To evaluate prediction performance, a yield measure is used 

that combines the return and default rates of companies. Here, we show that using interval-valued 

fuzzy sets leads to higher accuracy, particularly with the growing granularity at the fuzzy partition 

level. The proposed prediction model is then compared with several state-of-the-art evolutionary 

fuzzy rule-based systems. The obtained results show that the proposed model is especially suitable 

for high-dimensional problems, without facing rule base interpretability issues. This finding 

indicates that the model is preferable for investors oriented toward developed markets such as the 

EU and the United States. 

 

Keywords: interval-valued fuzzy rule-based systems; evolutionary algorithms; financial distress; 

credit rating.  
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Introduction 

Credit ratings are increasingly considered to be an important decision-making support to financial 

market participants such as investors, financial institutions and regulators. Credit ratings play an 

important role in the financial system by reducing information asymmetry between investors and 

borrowers. Credit ratings are assigned to issuers, as well as to specific debt issues, such as bonds, 

notes, and other debt securities. In issuer’s credit ratings, an issuer’s overall capacity and 

willingness to meet its financial obligations is addressed. This evaluation is based on a complex 

analysis performed by professionals who interpret both financial and non-financial information 

from multiple sources. Since this evaluation can be slow and costly, automatic credit rating 

prediction has become a central problem in artificial intelligence (AI) research [1]. Prediction 

models have been extensively developed to replicate and explain the credit rating processes 

performed by credit rating agencies [2]. 

A wide range of AI methods have been applied to predict credit ratings, including statistical 

classifiers [3], decision trees [1], neural networks (NNs) [4], [5], support vector machines (SVMs) 

with both supervised [6], [7] and semi-supervised learning [8], case-based reasoning [9], artificial 

immune systems [10], rough sets [11], fuzzy rule-based systems (FRBSs) [12], and ensemble 

approaches [10], [13]. Recent efforts have also indicated that AI methods should be integrated into 

the feature selection process to improve prediction accuracy [1]. Finally, the paradigm of soft 

computing [14] has recently provided the most encouraging results in related problems such as 

financial failure prediction [15], [16] and a consumer’s credit scoring [17]. This refers to the 

integration of different, seemingly unrelated, AI methods such as FRBSs, NNs, evolutionary 

algorithms (EAs), rough set theory and probabilistic reasoning in various combinations to exploit 

their strengths. However, significantly insufficient attention has been paid to its application in 

corporate credit rating prediction.  
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Most importantly, the hybridization between FRBSs and EAs provides advantages that are 

desirable in imitating the credit rating process. First, evolutionary FRBSs provide good 

interpretability in terms of fuzzy if-then rules (in contrast to non-if-then fuzzy classifiers) and, thus, 

simulate the credit rating decision-making process of financial experts. Note that FRBSs, similarly 

as other possibilistic classifiers, may assign a soft class label with degrees of membership in each 

class [18]. This is similar to probabilistic classifiers that usually have the posterior probabilities for 

the classes as output. However, in the credit rating process, experts use linguistic labels to represent 

the partial truth of their opinions, rather than partial knowledge. Thus, the experts are able to verify 

the classification paradigm, for example the consistency and completeness of the rule base. Second, 

EAs are employed to learn or tune different components of FRBSs such as rule bases, the 

antecedents and consequents of if-then rules, parameters of membership functions (MFs), and so 

on. Thus, EAs enable the automatic design of FRBSs through their capability to encode and evolve 

rule antecedent aggregation operators, different rule semantics, rule base aggregation operators and 

defuzzification methods [19]. In addition, decision makers can fix some components of FRBSs in 

order to improve interpretability and accuracy. Owing to these qualities, evolutionary FRBSs 

represent one of the most popular approaches in the soft computing literature [20]. However, 

determining the precise values of MFs can be problematic in many application domains due to the 

uncertainties associated with dynamic unstructured environments, linguistic uncertainties, 

disagreement among experts, and noise in the data [21]. Therefore, several generalizations of 

FRBSs have been developed to design MFs effectively. Interval-valued FRBSs (IVFRBSs) [22] 

are widely considered to be the most important representatives of these generalizations. Recently, 

methods have been developed to optimize the design of IVFRBSs that, compared with traditional 

FRBSs, provide an additional degree of freedom and flexibility in handling uncertainty [23], [24]. 
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This study evaluates IVFRBSs optimized by EAs, namely IVTURS (interval-valued fuzzy rule-

based system with tuning and rule selection) [25], to predict corporate investment/non-investment 

grade. First, the genetic feature selection process is carried out to obtain IVFRBSs with both 

comprehensible rule bases and high prediction accuracy. Second, we employ a range of state-of-

the-art evolutionary FRBSs to compare their performance with IVFRBSs when predicting the 

grades of companies in four regions, namely the United States, the EU, other developed and 

Emerging countries. To measure prediction performance, we use a yield measure that is suitable 

for investors’ decision making because it combines return and default rates. We also measure the 

interpretability of FRBSs at both the rule base and the fuzzy partition level. 

The proposed system is aimed to provide an accurate and interpretable decision-support tool mainly 

to investors. Investors may use the system to match the relative credit risk of an issuer with their 

own risk tolerance in making investment decisions and portfolio management. However, the 

system may also be useful for other market participants, such as companies to make financing 

decisions (on the cost of capital and capital structure, for example) or financial institutions to assess 

counterparty risk.  

As opposed to previous studies using AI to predict corporate rating grades, the proposed 

methodology integrates: (1) interval-valued fuzzy sets to address the issue of high linguistic 

uncertainty of expert opinions; (2) genetic feature selection to achieve high interpretability and 

verifiability of the rule base; and (3) evolutionary optimization of FRBSs to guarantee a high 

accuracy of the prediction system. In addition, this is, to our best knowledge, the first study 

comparing the performance of rating prediction models across multiple regions.The remainder of 

this paper has been organized in the following way. Section 2 provides a brief overview of soft 

computing applications in financial distress prediction. Section 3 describes the research 

methodology, including missing data treatment and the feature selection process. Section 3 also 
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introduces the design of IVFRBSs for corporate investment/non-investment grade prediction. 

Section 4 presents the datasets used in this study. Section 5 examines the performance of IVFRBSs, 

mainly in terms of the yield obtained. Section 6 concludes and discusses both the results and the 

possible future research directions. 

1. Soft Computing in Corporate Financial Distress Prediction 

Financial distress can be defined as a situation that clearly shows an enterprise’s financial 

difficulty, such as statutory bankruptcy and credit default [26]. Credit default is usually estimated 

by rating grades. In the domain of financial distress prediction using soft computing, the research 

to date has tended to focus on bankruptcy rather than rating grades prediction. Here, we review a 

large and growing body of the literature that has investigated various combinations of AI methods 

in financial distress prediction.  

Several papers have systematically reviewed recent research in this field. Kumar and Ravi [27] 

conducted a comprehensive review of the work on bankruptcy prediction during the 1968–2005 

period. Based on this overview, the authors claimed that the most successful prediction models, 

rather than using a single method, are based on hybrid soft computing systems. These were 

categorized into (1) ensemble classifiers [28], (2) intelligent feature selection combined with 

classification [29], and (3) tightly integrated hybrid systems (evolutionary NNs, fuzzy NNs, etc.) 

[30]. However, later review studies have regarded only the latter two as soft computing approaches 

[31]. In their review, Verikas et al. [31] identified the following soft computing approaches for 

financial distress prediction: (1) genetic algorithms (GAs) in hybrid techniques (to select a subset 

of input features, to find the appropriate hyper-parameter values of a predictor, or to determine 

predictor parameters) [32], [33]; (2) rough sets in hybrid techniques (to select a subset of input 

features) [34]; (3) fuzzy set theory-based techniques (to increase transparency) [12]; (4) self-
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organizing maps in hybrid systems (for data exploration and visualization) [35]; and (5) combining 

traditional and soft computing techniques [36]. Lin et al. [37] categorize four soft computing 

approaches, GAs, Group method of data handling, rough sets, and fuzzy sets. 

Sun et al. [26] also categorized soft computing approaches. In the first type, one algorithm (usually 

GAs or rough sets) is applied to choose the features of another classification algorithm. Second, 

one algorithm is applied to optimize the parameters for another classification algorithm. Finally, a 

new classification algorithm is produced by integrating two or more algorithms. For example, 

Cheng et al. [38] embedded logit analysis into the output layer of radial basis function NNs, 

whereas Chaudhuri and De [39] developed fuzzy SVMs to handle uncertainty and impreciseness 

in corporate data. 

Other hybrid systems combine multiple criteria decision-making methods with soft computing 

methods. Wu and Hsu [40] employed TOPSIS to determine the optimal classifier and subsequently 

extracted knowledge from the classifier by using decision trees. Shen and Tzeng [41] combined 

feature selection using rough sets with multiple criteria decision-making methods to collect the 

knowledge of domain experts. 

Taken together, previous studies of financial distress prediction have reported that (1) the feature 

selection process improves prediction accuracy, and (2) hybrid systems improve both accuracy and 

transparency. Although extensive research has been carried out on financial distress prediction, to 

our best knowledge, no single study exists that adequately covers the advantages of evolutionary 

IVFRBSs in a financial distress prediction model. However, evolutionary IVFRBSs have recently 

been employed in related financial applications, namely credit scoring, fraud detection and stock 

market trend prediction [42]. 
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2. Research Methodology 

3.1 Rating Grades and Datasets 

A credit rating (rating grade) is an expert evaluation of the general creditworthiness of an obligor. 

This evaluation is conducted by experts from a rating agency, and it is based on a variety of 

financial and non-financial criteria. For companies, key financial indicators usually include 

profitability, leverage, cash flow, liquidity, and financial flexibility, whereas non-financial 

indicators include country risk, industry determinants, business risk, and competitive position. The 

rating grade is assigned to a company from a predefined rating scale. Higher rating grades represent 

a lower probability of default. For example, the Standard & Poor’s rating agency uses 13 long-term 

rating grades (from AAA to D, and R, SD, and NR), which can be further categorized into two 

rating grades, namely IG (investment grade, from AAA to BBB) and NG (non-investment grade, 

from BB to D, R, SD, and NR). Whereas AAA represents the highest rating grade, D stands for 

default on all obligations, SD for default on selected obligations, NR for not rated, and R denotes 

under regulatory supervision.In addition, Standard & Poor’s uses modifiers for long-term rating 

grades AA to CCC by the addition of a plus or minus sign to show relative standing within the 

major rating grades. The latter categorization is particularly important for investment decision 

making due to the restrictions imposed on investment instruments. Therefore, this two-class 

categorization is used in this study, although previous studies have examined both two-class and 

multi-class problems [5].  

Prior studies have also focused on U.S. companies due to better data availability, although several 

country-specific studies have examined Taiwanese [43], Korean [6], and European companies [2]. 

Huang et al. [4] compared prediction models for U.S. and Taiwanese corporate datasets, whereas 

Hajek and Michalak [1] performed a comparative study of U.S. and European companies. Both 
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these studies suggest that specific market-related financial ratios and their weights, respectively, 

are used as determinants in corporate rating evaluation. However, no studies have thus far 

compared the performance of rating prediction models across multiple countries or regions. Here, 

we compare the performance of IVFRBSs for four datasets, namely the United States, the EU, 

Other developed and Emerging countries. To provide consistent and comparable results, this 

categorization was adopted from the Standard & Poor’s rating agency. It is based on the fact that 

these regions differ in particular in financial reporting and asset valuation practices and accounting 

techniques. The emerging market dataset covers the following subgroups: Latin America & the 

Caribbean, China, India, Eastern Europe & Russia, Small Asia, and Africa & the Middle East. 

Australia, New Zealand and Canada are included in the dataset of other developed countries. 

The assigned corporate rating grades are comparable across these regions because a single scale is 

used by Standard & Poor’s. As regards the industries, mining companies and financial institutions 

(banks and non-bank financial institutions) were excluded from the datasets because they require 

specific input variables. 

3.2 Input Variables 

As shown in Table 1, we examined several subgroups of financial indicators: valuation ratios 

(market value ratios); dividends; growth potential; financial strength (leverage and liquidity ratios); 

and profitability ratios (management effectiveness indicators). This list of input variables is based 

on both the methodological reports released by leading rating agencies and the recent literature on 

variable selection in rating grades prediction (see, for example, [1] for an overview). Taken 

together, previous studies suggest that financial strength, profitability and valuation ratios represent 

the most important categories of the determinants of rating grades. 
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Table 1 

 

3.3 Data Preprocessing 

About 6% of the data were missing due to incomplete records. In a comparative study by [44], the 

following imputation methods performed best for the rule induction learning classifiers: fuzzy k-

means clustering, ε-SVR (support vector regression), and event covering. Using the IVTURS with 

5 membership functions as the benchmark classifier, we compared the 5×2 cross-validation 

performance of the three imputation methods in terms of classification accuracy. On average, the 

accuracy was increased by 0.45±4.63%, 6.84±6.64%, and 1.96±5.40% for fuzzy k-means 

clustering, ε-SVR, and event covering, respectively, compared with the base learner (ignoring the 

missing data). Therefore, ε-SVR  was used for their imputation, although we recognize that the 

performance improvement was achieved at the expense of hyper-parameter optimization. In the ε-

SVR model, all variables except the missing one are used to estimate the missing value as an output 

variable. The RBF kernel function with radius γ=0.4, penalty parameter C=23, and epsilon in loss 

function ε=1.0 were used as the parameters of the ε-SVR imputation model.  

The data were divided into training and testing sets by using 5×2 cross-validation (two-fold cross-

validation repeated five times), which is recommended because it directly measures variation and 

it has been found to be more powerful for comparing classifiers than 10-fold cross-validation in 

terms of statistical testing [45].  

As indicated above, financial ratios are rather specific for companies in different regions. 

Moreover, recent studies have demonstrated that the performance of financial distress prediction 

models can be significantly improved by using a feature selection/extraction scheme [29], [46]. 

Wrapper feature selection methods have provided particularly promising results compared with 
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filter approaches [1]. Therefore, we applied a genetic feature selection process developed 

specifically for FRBSs by [47]. This approach is called steady-state EA for feature selection and it 

represents a wrapper algorithm that uses accuracy provided by the k-nearest neighbors algorithm 

on training data as an evaluation function. For the experiments, the parameters of the algorithm 

were defined as follows: k=1, generations=5000, population=100, and the number of features to be 

selected={3, 5, 7, … , 15}. 

3.4 Interval-Valued Fuzzy Rule-Based Systems 

IVFRBSs utilize interval-valued fuzzy sets (IVFSs) to generalize FRBSs. IVFSs, also known as 

grey or vague sets, represent a special case of both L-fuzzy sets and type-2 fuzzy sets [48]. An 

IVFS A on a non-empty set X is an object having the form A={x, MA(x)xX}, where the function 

MA:XD[0,1] such that xMA(x)=[MAL(x), MAU(x)] defines the lower extreme and the upper 

extreme, respectively, of the interval MA(x) [49]. Hereinafter, we denote the lower bounds by xL 

and upper bounds by xU; this is x=[xL, xU]. The length of the interval x=[xL, xU] is called the degree 

of uncertainty of x and is defined as π(x)= xU– xL. 

The interval-valued restricted equivalence function (IV-REF): [0,1]2 → [0,1] was introduced to 

measure the degree of equivalence between two intervals [49]. Bustince et al. [50] proposed several 

methods for the construction of IV-REFs from automorphisms and implication operators. Most 

importantly, for any t-norm T and any t-conorm S in [0, 1], IV-REF(x, y)=[T(REF(xL, yL),REF(xU, 

yU)), S(REF(xL, yL),REF(xU, yU))] is an IV-REF.  

The IVFRBS used in this study is called IVTURS [25]. This system is composed of three stages: 

(1) initialization, (2) extension of the fuzzy reasoning method on IVFSs, and (3) tuning the 

parameters of the IVFRBS.  

The initial IVFRBS was generated by using a fuzzy association rule-based classification (FARC) 
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method [51]. This approach uses a search tree to find the most interesting base of rules. In the initial 

IVFSs, lower bounds are obtained from the initial MFs and upper bounds are initially set to have a 

50% larger amplitude than that of lower bounds (ignorance parameter W=0.25). In other words, the 

support of upper bounds is 25% larger than that of lower bounds. Initial IV-REFs are defined by 

using the identity function as automorphism φ(x)=x. The fuzzy reasoning process of the IVFRBS 

starts by using IV-REFs to compute the interval matching degree between the patterns and the 

antecedent of the rules. This is done by applying an interval-valued t-norm (
ba TT ,T ) to the 

equivalence degree between the interval membership degree and ideal interval membership degree 

1L in the antecedents of the rules can be quantified as follows  
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IVFSs, and j=1, 2, … , R are the indexes of the rules. 

Next, interval association degrees are calculated from the interval matching degrees 

)](),([ pU

j

pL

j xAxA  and rule weights wj=[wj
L, wj

U].  The rule weights are determined as follows 



 



P
p

pU

j

pL

j

p
pU

j

pL

jU

j

L

j
xAxA

Cx xAxA
ww

1 )](),([

)](,)([
],[ , (2) 

where C is class corresponding to the j-th rule, and P is the number of examples of the training set. 

A combination operator is used to combine the interval matching degrees with the rule weights. 

The interval aggregation function is then used to aggregate the positive interval association degrees 

into the interval soundness degree. In the last step, the maximum interval soundness degree is 

selected to determine the predicted class.  
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The evolutionary method CHC [52] is applied to find the most appropriate sets of both IV-REFs 

and fuzzy rules. IV-REFs are optimized by using two automorphisms φ1(x)=xa and φ2(x)=xb, where 

the values of parameters a and b are chosen from the interval [0.01, 100]. A subset of the initial 

rule base is selected by using a binary codification that expresses whether the fuzzy rule belongs 

to the rule base. Classification accuracy was used as the fitness function for chromosome 

evaluation. Note that the ignorance parameter W of IVFSs is not evolutionary tuned in the IVTURS 

used in this study, originally called IVTURS-FARC. In fact, this method has shown to be superior 

to the approach that simultaneously tuned the ignorance parameter W and IV-REFs [25]. 

3.5 Performance Evaluation 

An important consideration in evaluating financial distress prediction models is to estimate their 

ability to predict each class value. Among the standard performance measures applied in 

classification tasks, the false positive (FP) rate has been reported as being particularly important in 

financial distress prediction studies owing to its possible serious financial consequences. 

Specifically, the wrong prediction of a company that becomes financially distressed may eventually 

lead to the loss of investment. On the contrary, predicting financial distress for a healthy company 

may lead to the loss of potential return. However, this problem of cost-sensitive classification has 

not been adequately addressed in previous studies.  

In this study, we use a performance measure that is suitable for the classification of IG/NG because 

it maximizes an investor’s yield. This yield measure combines the return and default rates of the 

IG and NG classes, respectively. Standard & Poor’s reported a 0.03% default rate (the probability 

of default) for IG and 1.71% for NG in 2011. Consequently, the return rates for NG are higher due 

to the higher credit risk. In this case, Standard & Poor’s reported an average return (between 1983 
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and 2013) of 8.1% for IG and 9.4% for NG. By combining these default and return rates, we use a 

yield measure that takes into consideration the probabilities of both returns and losses as follows 

Yield [%]=(TP×(8.1×(1-0.0003)-100×0.0003)+TN×(9.4×(1-0.0171)-

100×0.0171)+FN×0.0+FP×(8.1×(1-0.0171)-100×0.0171) / (TP+FP+FN+TN), (3) 

where TP is the true positive, FP is the false positive, FN is the false negative and TN is the true 

negative rate (see Table 2). 

 

Table 2 

 

In other words, we calculate the yield as the expected rate of return (return rate × survival rate – 

loss in case of default × default rate) for TP (return rate=8.1%, survival rate=99.97%, loss in case 

of default=100%, and default rate=0.03%) and TN (return rate=9.4%, survival rate=98.29%, loss 

in case of default=100%, and default rate=1.71%), whereas it is assumed that the investment  would 

not be realized at all (actual return would be lower than expected return) for FN (return rate=0.0%) 

and as (expected return rate for IG × actual survival rate for NG – expected loss in case of IG 

default × actual default rate for NG) for FP, respectively. Note that for simplification, we assume 

100% loss in case of IG/NG default. Hence, the objective of the classification is to maximize the 

yield matrix defined in Table 3. Hereinafter, we mainly report the yield in terms of percentages 

because of its easy interpretability to investors. However, to achieve easy comparability of the 

results, it is also possible to express this yield metric in the [0,1] range as the normalized yield: 

Yieldnorm=(Yield – Yieldmin)/(Yieldmax – Yieldmin), (4) 

where Yieldmin is the yield for the classification accuracy of 0%, and Yieldmax is that for 100% 

accurate classifier, respectively. 
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Table 3 

 

Interpretability measures represent other important criteria of an FRBS’s performance. However, 

there is an inverse relation between the accuracy and interpretability of FRBSs. The optimal trade-

off between accuracy and interpretability largely depends on a user’s requirements. Gacto et al. 

[53] presented an overview of interpretability measures, categorizing them according to 

knowledge-based components (rule base/fuzzy partition) and complexity/semantic interpretability. 

Here, we focus on traditional complexity measures, mainly due to the lack of semantic measures 

developed specifically for IVFSs. At the rule base level, we use two traditional measures, namely 

the number of rules and the number of conditions in the antecedent of a rule. The number of MFs 

is also used to control the complexity (granularity) at the fuzzy partition level.   

3. Datasets 

Since rating grades are assigned by the agency based on financial ratios covering a longer time 

period, we collected data from the publicly available Reuters Global Market Data for three 

consecutive years (2008–2010) and calculated the average values to overcome the business cycle 

effect (see Table 4). The three-year perspective was adopted to mimic the “rating through the cycle” 

process used by rating agencies to achieve rating stability [54]. 

The companies selected in the datasets were required to have a rating grade assigned by the 

Standard & Poor’s rating agency in 2011 and, at the same time, they had financial statements 

available at the Reuters Global Market Data for 2008–2010. All the companies from the United 

States were listed on the New York Stock Exchange or Nasdaq. Most of the EU companies were 

from the United Kingdom (47), Germany (36) and France (29). Canada (50) and Australia & New 

Zealand (25) were included in the other developed countries. Emerging countries were mostly 
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represented by the following sub-regions: Latin America & Caribbean (30), Small Asia (22), Africa 

and Middle East (8) and China (8). Regarding the industry breakdown, the following industries 

were most frequent in the datasets: retail (the U.S. dataset), telecom. services (the EU dataset), 

paper/forest products (Other developed), and construction (Emerging). 

The rating categories (IG/NG classes) were obtained from Standard & Poor’s for 2011. The 

collected rating grades can be classified as long-term issuer credit ratings (company’s long-term 

overall creditworthiness expressed in foreign currency). Therefore, issue-specific characteristics 

such as maturity or seniority were excluded. Consistently for all datasets (the United States, the 

EU, Other developed and Emerging), the IG class was associated with higher market capitalization, 

a higher stock price to sales ratio and a higher price to book value ratio, but lower market risk Beta 

and leverage ratios. Regarding the frequencies of rating grades, 46.3% of all companies were 

classified into the IG class, although this proportion varied from 39.4% (U.S. dataset) to 68.7% 

(EU dataset) (see Table 4). These differences may be partially explained by the size of the 

companies in the datasets. Even smaller U.S. companies have rating grades assigned by rating 

agencies, whereas it is mostly large companies in other regions.   

 

Table 4 

 

Fig. 1 shows the results of the genetic feature selection process. Since 5×2 cross-validation led to 

10 pairs of training/testing sets, the steady-state EA was employed for the feature selection in the 

10 training datasets. The evaluation function in Fig. 1 is represented by the classification accuracy 

Acc [%] of the k-NN algorithm for the training data. For further experiments, those sets of variables 

were chosen for which the highest accuracies were achieved. On average, the number of variables 

varied: 4.2 for the Emerging, 5.4 for the Other developed, 8.2 for the EU and 9.4 for the U.S. 
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dataset.  

 

Fig. 1: The accuracy of wrapper feature selection for different numbers of selected variables. 

 

Only those input variables that appeared in at least 60% of the 10 datasets are presented in Table 

5. Interestingly, the profitability ratios were the least important determinants despite the fact that 

ROA (or alternatively ROE) has been considered to be a significant determinant of rating grades 

in most prior studies [4]. This inconsistency may be due to the high variation in profitability in the 

monitored period 2008–2010, which was strongly affected by the financial crisis. This explanation 

is also supported by the higher importance of the determinants of resilience to the financial crisis 

such as company size (market capitalization) and financial market volatility (beta regression 

coefficient). Specifically, the volatility was reported to have critical implications for long-term 

resilience, whereas ROA is no match for assessing the resilience [55]. In most studies, market 

capitalization is regarded to be a significant determinant of firm survival during the financial crisis 

[56]. Market capitalization was selected for all the datasets, which corresponds to the significantly 

lower values observed for NG class in Table 4. Similarly, higher financial market volatility was 

observed for NG class across regions, indicating a high importance of Beta variable in feature 

selection. Overall, the informative value of the selected variables was in agreement with the 

differences between IG and NG classes detected in Table 4. 

 

Table 5 

 

The behaviour of prediction models strongly depends on the complexity of the datasets. To control 
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the problem’s complexity, we used several of the measures suggested by [57] and performed the 

complexity analysis of the datasets using the Keel software [58]. Specifically, these measures 

included (1) Fisher’s discriminant ratio (F1) to measure overlaps in the feature values from 

different classes; (2) linear separability (L1); (3) the fraction of the points lying next to the class 

boundary (N1) to measure the separability of classes’ distributions; and (4) the average number of 

samples per dimension (T2) to evaluate the curse of dimensionality. The high value of Fisher’s 

discriminant ratio (F1) in Fig. 2 suggests that the EU dataset represents a more linear problem 

compared with the other three. By contrast, the lower value of F1 for the Emerging dataset indicates 

a strongly nonlinear problem, probably attributed to the greater variety of countries (markets) 

included in this dataset. The values of the L1 and N1 measures suggest that the EU dataset is more 

linearly separable and has larger margins between classes, respectively. Finally, the curse of 

dimensionality is the most severe for the U.S. dataset. 

 

Fig. 2: Complexity measures of datasets, F1 (overlap of individual feature values), N1 and L1 

(separability of classes), and T2 (curse of dimensionality). 

 

4. Experimental Results 

In this section, we compare the performance of IVTURS, a representative of IVFRBSs, with state-

of-the-art evolutionary FRBSs. All experiments were performed by using the KEEL software [58]. 

In this study, IVTURS was trained by using the following set of parameters (these values were 

adopted from [25] and [51]: triangular MFs; the support of upper bounds 25% greater than lower 

bounds; t-norm minimum and t-conorm maximum; initial parameters of automorphisms a=1 and 
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b=1; population size=50; number of evaluations=20000; and bits per gene=30. An example of the 

triangular MFs (MFs=5) generated for the Div input variable is presented in Fig. 3. 

 

Fig. 3: An example of the IVFSs for the Div input variable. The solid lines are the lower bounds, 

dashed lines are the upper bounds, and values of the linguistic variable Div are denoted by VS 

(very small), S (small), M (medium), L (large) and VL (very large). 

 

In the first set of experiments, we examined the effect of granularity at the fuzzy partition level on 

both prediction performance (represented by the Acc [%] and Yield [%] measures) and the 

interpretability of the rule base (the number of rules R and number of conditions in the antecedent 

of a rule Ant). Specifically, we tested the performance of IVTURS for MFs={3, 5, 7}. The results 

in Table 6 suggest that a low number of MFs (3) was not sufficient for any of the datasets in terms 

of Yield. In fact, a substantial increase in Yield (and Acc) was achieved for MFs=5 (Other 

developed and EU datasets) and MFs=7 (Emerging and U.S. datasets), respectively. Regarding the 

relationship between fuzzy partition and rule base interpretability, a higher number of rules were 

required for higher granularity. On the other hand, the number of conditions in the antecedent 

remained low across all datasets irrespective of granularity. The higher dimensionality of the U.S. 

datasets accounts for the lower rule base interpretability. The sample of the rule base for the U.S. 

dataset for MFs=5 is presented in Appendix 2. Nevertheless, not even this case exceeds the 

recommended limit values of Ant=7±2 [50]. 

 

Table 6 
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We further compared IVTURS with other state-of-the art evolutionary FRBSs to demonstrate that 

IVFSs present a more efficient tool to handle the strong uncertainty in the evaluation process of 

rating grades. In FRBSs, EAs can be used to tune [21]: (1) fuzzy sets represented by MFs; (2) rule 

base; or (3) both these components simultaneously. In the first case, EAs mostly modify the shapes 

of MFs. Three strategies have been developed to optimize the rule base, namely the Michigan 

approach, Pittsburgh approach and iterative rule learning. The Michigan approach utilizes concept 

classifier systems, where each individual represents one coded rule. In the Pittsburgh approach, on 

the other hand, the whole rule base is coded in one chromosome. Iterative rule learning combines 

both approaches, coding one rule in one chromosome and generating the whole rule base gradually. 

In the comparative analysis, we used representatives of all three approaches: 

The Michigan approach: 

 An FRBS based on genetic cooperative-competitive learning (GCCL) [59], where the MFs for 

each input variable in the antecedents are fixed. The GCCL method was examined by using the 

following setting: MFs={3, 5, 7}, population=100, generations=10000, individuals replaced in 

the population=20, crossover probability pc={0.8, 0.9, 1.0}, mutation probability pm=0.1. 

 Genetic Programming-based learning of COmpact and ACcurate fuzzy rule-based classification 

systems for High-dimensional problems (GP-COACH) [60]. The GP-COACH method was 

trained by using the following values of parameters: MFs={3, 5, 7}, population (initial number 

of rules R)=200, generations=20000, crossover probability pc=0.5, mutation probability pm=0.2. 

 

The Pittsburgh approach: 
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 Fuzzy learning based on genetic programming grammar operators and simulated annealing (SP) 

[61], where the number of rules R must be given. Parameters for execution: MFs={3, 5, 7}, R={4, 

8, 16, 32}, iterations=10000, mutation probability pm=0.5, subpopulations=10. 

 

Iterative rule learning:  

 Fuzzy genetics-based machine learning (FHGBML) [62]. Parameters for execution: R={4, 8, 16, 

32}, rule bases=200, generations=1000, crossover probability pc=0.9, probability for a Michigan 

iteration=0.5, “do not care” probability for inactive variables=0.5. 

 Structural learning algorithm in a vague environment with feature selection (SLAVE) [63] which 

extracts the best rule in each iteration. Parameters for execution: population=100, iterations 

without change=500, mutation probability pm=0.5, crossover probability pc=0.1. 

 Improved SLAVE (NSVL) [64] extends the iterative model of SLAVE for learning both the 

antecedent and the consequent of the rule in each iteration. Parameters: population=100, 

iterations without change=500, mutation probability pm=1.0, crossover probability pc={0.8, 0.9, 

1.0}. 

 Steady-state genetic algorithm for extracting fuzzy classification rules (SGERD) [65]. 

Parameters: the number of rules per class in the final population Q=min[(14×n)/(2×M), 20] from 

14×n candidate rules, where n is the number of input variables, and M is the number of classes. 

 

Regarding the granularity of the above-mentioned iterative rule learning approaches, multiple 

fuzzy partitions with different granularities (MFs={2,3,4,5}) were simultaneously applied to 

generate fuzzy rules. Thus, the appropriate granularity of the fuzzy partition can be obtained for 
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each attribute (see e.g. [62]). To compare the complexity of the models at the fuzzy partition level, 

only the Michigan and Pittsburg approaches were therefore employed (Table 7).  

 

Table 7 

 

Table 8 shows average performance across all datasets. Weighted average of values from Table 6 

and Table 7 was used in the case of Acc and Yield, where the weights corresponded to the 

frequencies of companies in the datasets. Note, however, that overall performance generally 

depends on the structure of an investor’s portfolio.  

 

Table 8 

 

Although the GCCL method performed worst in terms of both Acc and Yield, the experimental 

results for the individual datasets showed that it performed well for the Other developed dataset 

(Table 7), indicating that this algorithm is suitable for low-dimensional financial distress prediction 

problems.  

The GP-COACH method performed particularly well for the higher granularity of the fuzzy 

partition with a prediction performance close to that of IVTURS. In fact, GP-COACH with MFs=7 

achieved Acc=84.21% and Yield=6.32% for the Other developed dataset and Acc=90.91% and 

Yield=7.48% for the EU dataset (Table 7). However, in the case of the U.S. dataset, this was at the 

expense of rule base interpretability (R=17.60 and Ant=11.56).  

The SP method also provided good performance for both the Other developed (Acc=84.74% and 

Yield=6.89%) and the EU datasets (Acc=89.29% and Yield=7.52%) (Table 7). However, these 

results were achieved for lower complexity at the fuzzy partition level (MFs=3). Interestingly, the 
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increasing granularity did not lead to better prediction performance. As indicated above, the 

prediction performance of IVTURS increased with growing complexity at the fuzzy partition level. 

The advantages of lower and upper MFs are thus apparent for higher numbers of MFs. 

In a further set of experiments, the granularity of the fuzzy partition was fixed at MFs=5 for the 

purpose of comparability with the iterative rule learning approaches (Table 9). In addition, five 

linguistic labels (from very small/very weak to very large/very strong) are also used by experts 

from leading rating agencies such as Moody’s or Standard & Poor’s in their rating methodologies 

(available at their web pages). It is therefore appropriate to set this level of fuzzy partition to enable 

the verification of the FRBSs by the experts. As indicated above, the GCCL method performed 

well for the Other developed dataset with Acc=85.26% and Yield=7.06% for MFs=5; however, it 

resulted in both low prediction performance and low interpretability for the U.S. dataset. On the 

other hand, the FHGBML method performed particularly well for the Emerging and U.S. datasets 

in terms of prediction performance, indicating good data performance with narrow margins 

between the classes. However, these results were achieved at the expense of the interpretability 

measures. Consistent with the findings of [58], we observed that the NSVL method dominated the 

original SLAVE method in terms of both prediction performance and interpretability. Although 

NSVL did not perform the best in terms of prediction performance, it provided highly interpretable 

FRBSs for all the datasets. Similarly, the SGERD method resulted in highly interpretable rule bases 

but low prediction performance in contrast to NSVL. Finally, IVTURS performed best for the EU 

and U.S. datasets, suggesting that it is particularly suitable for more linearly separable datasets. 

 

Table 9 
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Again, we compared average performance across all datasets in Table 10. Similarly as in Table 8, 

weighted average of values from Table 9 was used in the case of Acc and Yield. An average 

prediction performance close to that of IVTURS was achieved by both the Pittsburgh approach 

(SP) and iterative rule learning (FHGBML and NSVL). In contrast to FHGBML, NSVL also 

performed well in terms of interpretability. 

To compare the performance of FRBSs in terms of Yield, we employed the Friedman test [66], 

which is the most common nonparametric procedure for performing multiple statistical 

comparisons between more than two algorithms. This procedure first ranks the algorithms for each 

problem separately and then it tests the equality of the average ranks of the algorithms. In addition 

to evolutionary FRBSs, we also provide the performance for (1) FURIA [67] (the state-of-the-art 

FRBS extending the well-known RIPPER algorithm, the rule optimization process was carried out 

two times), (2) multilayer perceptron (MLP) (trained using one hidden layer with the number of 

neurons={5, 10, 15, 20} and 1000 iterations of backpropagation algorithm [68]), (3) SVM 

(Sequential Minimal Optimization algorithm [69] with polynomial kernel function and complexity 

parameter C={20, 21, … , 28}), and (4) probabilistic SVM (PSVM) [70] (trained with Gaussian 

RBF kernel function, the width of the Gaussian kernel θ={0.1,0.3, … ,10} and complexity 

parameter C={20, 21, … , 28}).  

Table 11 shows that the existence of statistical differences among the tested methods was 

confirmed for multiple datasets with p=0.001. To detect pairwise differences between two 

algorithms within the Friedman test, we used the post-hoc Li procedure, which has proved superior 

in comparative empirical studies [70]. IVTURS performed the same as the SP, FHGBML, NSVL, 

FURIA, MLP, SVM and PSVM statistically in terms of pairwise differences. 

 

Table 11 
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To compare the classification accuracy of evolutionary FRBSs and other methods with that of 

IVTURS on individual datasets, we used McNemar χ2 test, which has proved reliable for comparing 

different classifiers based on the contingency table of misclassified testing data [45]. The results 

of the test indicate that the FHGBML, SVM and PSVM methods performed the same as IVTURS 

statistically for all the datasets. However, regarding interpretability at the rule base level, FHGBML 

had the disadvantage of high numbers of conditions in the antecedent of a rule, which exceeded the 

recommended limit value of 7±2 for the EU and U.S. datasets. 

To test for the robustness of the results, we first examined the performance of the methods on more 

recent data. Considering both the stability of rating grades in time and the temporal sequence of 

the patterns, we verified the learnt models on data from 2011-2013 to predict IG/NG classes from 

2014 (see Table 12). Since the stability of rating grades leads to high autocorrelation of the 

predicted classes, we have to overcome the problem of sample selection bias. Therefore, we used 

only the data from the original testing samples for this validation procedure.  

The results in Table 13 summarize the performance of the methods in terms of average Acc, Yield 

and Yieldnorm for both periods. Although the performance of Yield was statistically comparable for 

the SP and FHGBML methods, even small differences in Yield may be critical from a financial 

point of view. Considering the weighted average Yield for classes from 2014, IVTURS achieved 

a mean value of 7.02%, the highest along with that of FURIA, but 0.15% greater than that of 

FHGBML and 0.78% greater than that of NSVL (Table 13). These differences would be even 

greater in the case of an investor oriented toward developed markets owing to the dominance of 

IVTURS for the EU and U.S. datasets. On the other hand, IVTURS provided the lowest Yield for 

the Emerging dataset compared with the other two methods. This finding may be attributed to the 

fact that the Emerging data represent the most nonlinear problem with the lowest number of input 



 

25 

 

 

variables (4.2 on average), indicating that (1) the number of rules generated by IVTURS was not 

sufficient (compared with FHGBML, for example) and (2) the advantages of IVFSs become 

evident for prediction problems with higher dimensionality. 

 

Table 12 

Table 13 

 

We further examined the performance of IVTURS using Yield as the fitness function. The effect 

of using this fitness function was twofold. First, as expected, Yield was increased to 8.10% on 

average across regions, while accuracy decreased to Acc=80.37%. Second, the rule base 

complexity increased to the number of rules R=9.88 on average. Moreover, these effects became 

stronger with growing complexity of the datasets, with the strongest effect on the U.S. dataset 

(Yield=8.01%, Acc=78.94%, and R=11.91). 

5. Conclusion 

The present study was designed to determine the effect of using IVFSs to predict corporate rating 

grades. Our work allows us to conclude that additional freedom and design flexibility in 

determining MFs can be used to achieve higher accuracy in financial distress prediction problems. 

The findings of this study indicate that this advantage increases with growing complexity at the 

fuzzy partition level.  

To take advantage of hybrid systems, that is combining EAs and FRBSs, we employed evolutionary 

IVFRBSs. Thus, we were able to obtain highly interpretable and accurate IVFRBSs. To 

demonstrate the advantage of using IVFSs, we compared them with state-of-the-art evolutionary 

FRBSs. To measure prediction performance, we used a performance measure that maximizes an 
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investor’s yield by using historical data on return and default rates. Thus, the direct financial 

interpretability of prediction performance was provided. In addition to prediction performance, we 

measured the interpretability of the FRBSs at the fuzzy partition and rule base levels. 

Taken together, our findings suggest that IVTURS is especially suitable for high-dimensional 

problems with sufficient granularity at the fuzzy partition level. By contrast, GCCL performed best 

for low-dimensional problems, while facing rule base interpretability issues in the case of higher 

dimensionality, similar to the GP-COACH algorithm. The SP algorithm provided the most 

promising results in terms of fuzzy partition interpretability, although it was outperformed by 

IVTURS with higher granularity in terms of prediction performance. Several state-of-the-art 

evolutionary FRBSs performed statistically the same as IVTURS in terms of the Yield obtained, 

namely the SP and FHGBML methods. However, SP and FHGBML suffered from rule base 

interpretability issues. 

Finally, a number of important limitations need to be considered. First, the datasets apply only to 

non-financial companies. However, financial companies are also attracting considerable interest in 

the financial distress prediction literature. Specific input variables must be designed for financial 

companies and, therefore, further investigation into IVFRBSs in the financial distress prediction of 

these companies is strongly recommended. Second, although country risk was considered by using 

the datasets from different regions, industry risk was not considered in this study. Industry risk is 

thought to be an important component of business risk profile. Moreover, different industry 

breakdown may also affect feature selection and classification performance. As demonstrated in 

[12], a higher accuracy can be achieved for some industries and, financial strength variables are 

more important for manufacturing companies, while sales and growth rates are critical for retail 

industry. Future research should therefore consider additional variables, such as industry-specific 

growth trends or market structure. Third, the system was proposed for binary class prediction, 
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ignoring the ordinal nature of rating grades. Indeed, multiple class prediction is a challenging 

problem, requiring a more complex model to distinguish the minor differences of determinants’ 

values between adjacent rating grades. Fourth, IVTURS performed effectively on the tested 

datasets mainly due to the initial fuzzy association rule-based classification method. Thus, the most 

interesting rules were preselected to decrease the computational cost. Although IVTURS (with an 

average computational time of 105 s) was more effective than the SP (168 s) and FHGBML (223 

s) algorithms, the NSVL algorithm performed significantly more effectively (12 s). In addition to 

the more effective modification of IVFRBSs, further work needs to be carried out to develop 

IVFRBSs for strong nonlinear problems. It would, for example, be interesting to assess the effects 

of using ensembles of IVFRBSs in technology credit scoring [72] or financial distress prediction 

[73]. Another future direction is the use of intervals’ numbers to design arbitrary MFs because (1) 

good generalizability and interpretability can be obtained and (2) this approach is straightforward 

applicable to IVFSs [74], [75]. Finally, the performance evaluation of FRBSs in our study was 

limited to several (mostly conflicting) objectives. Therefore, a future study investigating 

multiobjective evolutionary FRBSs [76], [77] would also be interesting. Moreover, the results in 

terms of yield were strongly affected by the balance of IG/NG classes in the data. As a result, a 

higher yield was achieved for the datasets with a higher proportion of IG companies (the EU dataset 

with 68.7%), as opposed to the U.S. dataset with 39.4% of IG companies. The normalized version 

of the yield measure overcomes this problem, but the study of the effect of imbalanced datasets 

remains an open question for future research.    
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Appendix 1: List of abbreviations and acronyms 

Acc accuracy IVFRBS interval-valued fuzzy rule-based 

system 

AI artificial intelligence IVFS interval-valued fuzzy sets 

EA evolutionary algorithm IV-REF interval-valued restricted equivalence 

function 

FARC fuzzy association rule-based 

classification 

IVTURS interval-valued FRBS with tuning 

and rule selection 

FHGBML fuzzy genetics-based machine 

learning 

MF 

NN 

membership function  

neural network 

FRBS fuzzy rule-based system PSVM probabilistic support vector machine 

GA genetic algorithm SGERD steady-state genetic algorithm 

GCCL genetic cooperative-competitive 

learning 

SLAVE structural learning algorithm in a 

vague environment 

GP-

COACH 

genetic programming-based learning 

of compact and accurate FRBS 

SVM support vector machine 

IVFRBS interval-valued fuzzy rule-based 

system 

SVR support vector regression 

 

 

Appendix 2: Sample of IVTURS’ if-then rules for U.S. region 

Symbol Rule 

R1 If Beta is M Then Class is NG with CF=[0.89,0.94] 

R2 If TD/E is L Then Class is NG with CF=[0.88,0.90] 

R3 If MC is VS and Beta is S and IH is M Then Class is NG with CF=[0.64,0.77] 

R4 If QR is VS and Beta is S and IH is VL Then Class is NG with CF=[0.69,0.77] 

R5 If QR is VS and PS is S and ROA is S Then Class is NG with CF=[0.46,0.55] 

R6 If TD/E is M and Div is VS Then Class is NG with CF=[0.78,0.87] 

R7 If Div is M Then Class is IG with CF=[0.85,0.97] 

R8 If PR is M Then Class is IG with CF=[0.49,0.86] 

R9 If MC is S Then Class is IG with CF=[0.49,0.86] 

R10 If QR is M and Beta is VS and Div is S Then Class is IG with CF=[0.55,0.73] 

R11 If Beta is VS and Div is S and IH is L Then Class is IG with CF=[0.51,0.78] 

R12 If Beta is S and PS is S and IH is L Then Class is IG with CF=[0.44,0.51] 

VS is very small, S is small, M is medium, L is large, VL is very large, and CF denotes certainty factor’s 

interval 
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Table 1: Input variables for IG/NG classes’ prediction 

Valuation ratios 

Beta beta regression coefficient 

PS stock price to sales 

PBV price to book value ratio 

MC market capitalization 

IH shares held by institutional holders 

Dividends 

Div dividend yield 

PR payout ratio 

Growth rates 

EPS expected growth in earnings per share 

PEG (stock price / earnings) / EPS growth 

S growth in sales last year 

Financial strength 

QR quick ratio 

TD/E total debt to equity 

TD/EBITD market debt to EBITD 

Profitability ratios 

ETR effective tax rate 

ROA return on assets 

 

Table 2: Confusion matrix for the prediction of IG/NG classes 

Prediction/Target IG NG 

IG TP FP 

NG FN TN 

 

Table 3: Yield matrix for the prediction of IG/NG classes 

Prediction/Target IG NG 

IG 8.07 6.25 

NG 0 7.53 
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Table 4: Mean values ± St. Dev. of the input variables for the IG and NG classes  

 Other developed Emerging U.S. EU 

Variable IG NG IG NG IG NG IG NG 

Beta 0.75 

±0.47 

1.36 

±0.65 

0.81 

±0.46 

1.13 

±0.55 

1.04 

±0.29 

1.36 

±0.39 

0.98 

±0.38 

1.38 

±0.59 

PS 3.53 

±4.55 

1.35 

±1.61 

2.88 

±2.71 

2.48 

±2.83 

1.55 

±1.12 

1.06 

±1.66 

1.40 

±1.20 

0.92 

±1.08 

PBV 2.81 

±1.84 

1.66 

±1.18 

3.00 

±2.93 

2.71 

±2.28 

3.52 

±3.72 

2.89 

±4.10 

3.34 

±5.43 

2.45 

±3.60 

MCa 23,226 

±40,705 

1,469 

±3,360 

17,355 

±15,943 

2,961 

±4,742 

21,744 

±41,265 

2,030 

±3,280 

31,267 

±47,374 

4,088 

±9,985 

IH [%] 41.0 

±18.2 

45.7 

±23.2 

35.5 

±21.5 

34.4 

±20.5 

71.6 

±22.2 

73.5 

±24.0 

39.3 

±16.2 

52.3 

±19.0 

Div [%] 3.30 

±2.27 

1.26 

±2.11 

1.64 

±1.87 

1.10 

±2.20 

8.25 

±14.21 

2.42 

±9.01 

2.86 

±2.35 

2.16 

±2.91 

PR 0.7 

±0.5 

1.9 

±1.1 

0.3 

±0.2 

0.2 

±0.2 

1.5 

±4.8 

0.8 

±2.4 

0.8 

±1.0 

2.5 

±2.5 

EPS [%] 6.4 

±7.07 

14.0 

±10.4 

16.9 

±13.5 

28.5 

±17.6 

6.6 

±7.7 

9.9 

±11.6 

6.2 

±9.8 

17.5 

±48.0 

PEG 2.96 

±1.63 

7.53 

±28.6 

2.39 

±2.59 

1.34 

±1.98 

3.40 

±4.43 

2.61 

±3.61 

2.92 

±2.02 

1.57 

±1.06 

S [%] 8.0 

±9.3 

1.9 

±3.2 

11.0 

±22.1 

22.9 

±71.8 

9.9 

±20.2 

8.2 

±19.7 

1.4 

±3.9 

5.5 

±14.1 

QR 8.11 

±11.30 

3.94 

±5.63 

8.59 

±9.51 

4.22 

±5.58 

8.56 

±12.39 

7.33 

±13.37 

9.89 

±8.62 

9.02 

±15.97 

TD/E 0.44 

±0.21 

0.76 

±0.41 

0.23 

±0.13 

0.47 

±0.14 

0.30 

±0.23 

0.77 

±0.39 

0.46 

±0.22 

0.90 

±0.48 

TD/EBITD 15.5 

±81.9 

13.9 

±84.3 

13.8 

±75.9 

22.3 

±85.5 

1.08 

±7.95 

2.38 

±3.59 

24.3 

±102.7 

5.51 

±21.60 

ETR 17.7 

±15.1 

9.3 

±16.0 

18.9 

±14.0 

18.3 

±17.6 

26.2 

±13.8 

21.3 

±19.2 

24.7 

±15.4 

14.4 

±18.8 

ROA [%] 11.7 

±16.5 

8.0 

±18.2 

20.6 

±15.7 

15.1 

±15.2 

24.3 

±22.0 

22.0 

±44.1 

22.2 

±22.0 

24.9 

±99.6 

N 37 38 43 59 239 368 136 62 

N [%] 49.3 50.7 42.2 57.8 39.4 60.6 68.7 31.3 
a in mil. US dollars 

 

Table 5: Most frequently selected input variables 

Region Valuation ratios Dividends Growth Financial strength 

Emerging Beta, PBV, MC  PEG TD/E, TD/EBITD 

EU Beta, PS, MC PR PEG  

U.S. Beta, MC Div EPS, S TD/E, TD/EBITD 

Other developed PS, PBV, MC Div, PR S QR  
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Table 6: Prediction Performance of IVTURS 

MFs=3 Emerging EU U.S. Other developed 

Acc [%] 80.39±5.82 86.87±4.29 83.16±0.76 76.32±1.66 

Yield [%] 6.76±0.36 7.52±0.15 6.90±0.11 6.66±0.38 

R 4.80±1.60 5.00±1.90 7.00±2.10 6.00±1.67 

Ant 1.93±0.29 2.13±0.44 2.19±0.51 1.92±0.32 

MFs=5     

Acc [%] 79.61±5.35 88.69±1.74 83.29±1.39 82.11±4.21 

Yield [%] 6.79±0.39 7.59±0.23 6.94±0.09 6.87±0.49 

R 6.80±2.04 9.80±1.60 9.80±2.79 8.00±2.45 

Ant 1.72±0.23 1.93±0.25 2.11±0.48 1.38±0.15 

MFs=7     

Acc [%] 83.14±4.22 89.49±1.45 85.13±1.45 82.63±9.93 

Yield [%] 6.85±0.30 7.63±0.21 7.02±0.06 6.64±0.68 

R 8.20±2.48 11.20±3.82 13.80±5.08 10.20±3.06 

Ant 1.78±0.14 1.71±0.29 2.24±0.21 1.37±0.17 

MFs is the number of membership functions, Acc is accuracy, R is the number of rules, and Ant is the number 

conditions in the antecedent of a rule. 
 

Table 7: Prediction performance of IVTURS compared with evolutionary FRBSs (Michigan and Pittsburgh 

approaches) – Average across regions 

MFs=3 GCCL GP-COACH SP IVTURS 

Acc [%] 68.25±5.44 75.32±4.50 82.28±3.00 83.09±2.06 

Yield [%] 5.65±1.08 6.26±1.06 6.84±0.50 6.96±0.44 

R 12.30±6.65 5.75±1.73 7.00±1.38 5.70±1.82 

Ant 1.61±0.47 2.76±1.03 6.80±2.68 2.04±0.39 

MFs=5     

Acc [%] 72.76±4.95 78.94±5.00 82.72±3.70 83.90±2.09 

Yield [%] 6.16±0.97 6.69±0.77 6.98±0.59 7.05±0.46 

R 23.60±8.74 6.80±2.87 8.60±2.18 8.60±2.22 

Ant 1.61±0.33 4.71±1.87 6.80±2.68 1.78±0.28 

MFs=7     

Acc [%] 76.83±4.55 83.82±3.13 82.56±2.63 85.61±2.82 

Yield [%] 6.44±0.99 6.82±0.61 6.80±0.46 7.04±0.54 

R 22.80±12.27 8.70±2.23 5.20±1.78 10.85±3.61 

Ant 1.46±0.37 7.68±2.65 6.80±2.68 1.77±0.20 
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Table 8: Prediction performance of evolutionary FRBS (Michigan and Pittsburgh approaches) 

GCCL 

MFs=3 Emerging EU U.S. Other developed 

Acc [%] 69.80±7.08 72.73±8.74 66.25±4.01 70.53±6.09 

Yield [%] 5.57±0.73 7.57±0.12 4.99±0.24 5.99±0.59 

R 6.60±2.15 9.80±5.56 22.20±15.07 10.60±3.83 

Ant 1.40±0.37 1.32±0.21 2.12±1.04 1.61±0.26 

MFs=5     

Acc [%] 69.80±4.57 79.80±7.90 69.41±4.13 85.26±4.28 

Yield [%] 5.73±0.54 7.60±0.15 5.35±0.37 7.06±0.30 

R 10.20±3.54 21.60±8.14 52.20±20.86 10.40±2.42 

Ant 1.46±0.39 1.43±0.29 2.46±0.53 1.10±0.10 

MFs=7     

Acc [%] 69.41±5.90 89.09±2.34 73.42±4.46 82.11±9.18 

Yield [%] 4.13±0.58 7.61±0.14 5.64±0.34 5.74±0.69 

R 13.40±4.50 26.00±10.99 38.40±31.27 13.40±2.33 

Ant 1.55±0.39 1.35±0.20 1.59±0.64 1.34±0.24 

GP-COACH 

MFs=3 Emerging EU U.S. Other developed 

Acc [%] 73.33±5.76 87.07±3.69 72.76±4.30 67.89±6.53 

Yield [%] 5.73±0.60 7.77±0.09 5.94±0.75 5.62±0.71 

R 5.00±1.55 4.20±0.75 8.60±2.58 5.20±2.04 

Ant 1.84±0.33 2.64±0.71 3.55±1.94 2.99±1.14 

MFs=5     

Acc [%] 78.43±4.11 87.68±1.96 75.86±6.01 81.58±6.00 

Yield [%] 6.22±0.48 7.60±0.13 6.28±0.80 6.65±0.52 

R 5.20±1.60 5.20±2.40 11.20±7.00 5.60±0.49 

Ant 2.62±0.66 5.07±1.56 6.58±3.79 4.57±1.47 

MFs=7     

Acc [%] 78.04±3.80 90.91±1.43 82.43±3.10 84.21±6.86 

Yield [%] 5.08±0.30 7.48±0.08 6.68±0.38 6.32±0.46 

R 5.80±1.83 6.60±1.50 17.60±4.41 4.80±1.17 

Ant 6.38±2.16 7.00±2.30 11.56±4.56 5.77±1.59 

SP 

MFs=3 Emerging EU U.S. Other developed 

Acc [%] 80.78±4.37 89.29±3.04 79.93±2.13 84.74±8.05 

Yield [%] 6.46±0.31 7.52±0.29 6.68±0.19 6.89±0.39 

R 6.40±1.96 6.40±1.96 8.00±0.00 7.20±1.60 

Ant 4.20±1.60 8.20±3.49 9.40±3.67 5.40±1.96 

MFs=5     

Acc [%] 81.18±4.22 88.48±2.44 81.12±3.74 82.63±5.91 

Yield [%] 6.67±0.35 7.64±0.08 6.65±0.39 6.97±0.67 

R 12.80±3.92 7.20±1.60 7.20±1.60 7.20±1.60 

Ant 4.20±1.60 8.20±3.49 9.40±3.67 5.40±1.96 

MFs=7     

Acc [%] 81.96±5.87 85.86±5.42 81.78±0.94 81.05±4.53 

Yield [%] 6.69±0.38 7.39±0.26 6.66±0.21 6.50±0.35 

R 5.60±1.96 4.80±1.60 5.60±1.96 4.80±1.60 

Ant 4.20±1.60 8.20±3.49 9.40±3.67 5.40±1.96 
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Table 9: Prediction performance of IVTURS compared with evolutionary FRBSs for MFs=5 

Dataset GCCL GP-COACH SP FHGBML 

Emerging     

Acc [%] 69.80±4.57 78.43±4.11 81.18±4.22 81.57±2.66 

Yield [%] 5.73±0.54 6.22±0.48 6.67±0.35 6.99±0.38 

R 10.20±3.54 5.20±1.60 12.80±3.92 22.00±5.97 

Ant 1.46±0.39 2.62±0.66 4.20±1.60 4.20±1.60 

EU     

Acc [%] 79.80±7.90 87.68±1.96 88.48±2.44 87.27±4.81 

Yield [%] 7.60±0.15 7.60±0.13 7.64±0.08 7.57±0.19 

R 21.60±8.14 5.20±2.40 7.20±1.60 18.80±4.45 

Ant 1.43±0.29 5.07±1.56 8.20±3.49 8.20±3.49 

U.S.     

Acc [%] 69.41±4.13 75.86±6.01 81.12±3.74 81.78±3.21 

Yield [%] 5.35±0.37 6.28±0.80 6.65±0.39 6.86±0.24 

R 52.20±20.86 11.20±6.70 7.20±1.60 17.60±4.50 

Ant 2.46±0.53 6.58±3.79 9.40±3.67 9.40±3.67 

Other developed     

Acc [%] 85.26±4.28 81.58±6.00 82.63±5.91 80.00±5.67 

Yield [%] 7.06±0.30 6.65±0.52 6.97±0.67 6.81±0.57 

R 10.40±2.42 5.60±0.49 7.20±1.60 22.20±5.31 

Ant 1.10±0.10 4.57±1.47 5.40±1.96 5.40±1.96 

 SLAVE NSVL SGERD IVTURS 

Emerging     

Acc [%] 78.82±4.87 79.61±2.66 74.51±6.32 79.61±5.35 

Yield [%] 6.55±0.42 6.55±0.20 5.72±1.08 6.79±0.39 

R 3.80±1.60 2.00±0.00 2.40±0.80 6.80±2.04 

Ant 3.68±1.80 1.70±0.51 1.90±0.20 1.72±0.23 

EU     

Acc [%] 87.47±2.68 87.27±2.18 84.24±4.31 88.69±1.74 

Yield [%] 7.57±0.10 7.41±0.32 7.11±0.95 7.59±0.23 

R 5.60±2.06 3.60±0.80 2.60±0.80 9.80±1.60 

Ant 6.96±3.12 2.72±0.77 1.95±0.10 1.93±0.25 

U.S.     

Acc [%] 78.36±2.60 79.87±4.06 69.93±3.76 83.29±1.39 

Yield [%] 6.51±0.16 6.59±0.31 5.42±0.32 6.94±0.09 

R 9.60±3.07 6.80±2.48 2.80±0.75 9.80±2.79 

Ant 8.37±3.40 3.47±0.62 2.00±0.00 2.11±0.48 

Other developed     

Acc [%] 75.26±3.57 80.00±5.91 76.32±9.42 82.11±4.21 

Yield [%] 6.39±0.44 6.77±0.31 6.44±0.88 6.87±0.49 

R 5.20±0.75 3.00±0.89 2.60±0.49 8.00±2.45 

Ant 4.85±1.82 1.68±0.43 1.93±0.13 1.38±0.15 
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Table 10: Prediction performance of IVTURS compared with evolutionary FRBSs for MFs=5 – Average 

across regions 

 GCCL GP-COACH SP FHGBML 

Acc [%] 76.76±4.95 78.94±5.00 82.72±3.70 82.72±3.67 

Yield [%] 5.98±0.99 6.57±0.77 6.88±0.59 7.03±0.48 

R 23.60±8.74 6.80±2.87 8.60±2.18 20.15±5.05 

Ant 1.61±0.033 4.71±1.87 6.80±2.68 6.80±2.68 

 SLAVE NSVL SGERD IVTURS 

Acc [%] 80.00±2.93 81.34±3.68 73.78±4.57 83.90±2.09 

Yield [%] 6.72±0.58 6.76±0.45 5.87±1.08 7.05±0.54 

R 6.05±1.87 3.85±1.04 2.60±0.71 8.60±2.22 

Ant 5.97±2.53 2.39±0.58 1.95±0.11 1.78±0.28 

 

 

Table 11: Statistical comparison of accuracy (McNemar χ2 test) and yield performance (Friedman and Li 

test) 

 Accuracy Yield 

 Emerging EU U.S. Other developed Multiple 

 χ2 χ2
 χ2

 χ2
 aver. rank p-value 

GCCL 9.763*** 24.329*** 106.265*** 2.750# 8.3 0.0044*** 

GP-COACH 0.082 0.390 43.107*** 0.029 7.8 0.0159** 

SP 0.070 0.000 4.614** 1.531 5.5 0.6610 

FHGBML 0.552 0.837 2.294 1.114 5.8 0.5107 

SLAVE 0.000 1.841 17.579*** 8.446*** 7.7 0.0201** 

NSVL 0.000 1.029 10.404*** 1.021 7.0 0.0872* 

SGERD 6.961*** 22.012*** 100.765*** 5.959** 9.4 0.0001*** 

FURIA 1.114 14.792*** 1.853 2.914# 4.8 0.8094 

MLP 1.161 20.779*** 6.500** 0.000 6.3 0.2826 

SVM 0.265 0.028 0.403 0.500 5.4 0.7422 

PSVM 0.250 0.028 0.388 0.180 5.2 0.8608 

IVTURS     5.0  

Friedman  

p-value 
    0.0001 

 

McNemar χ2 test and post-hoc Li procedure was performed vs. IVTURS, *** IVTURS performed significantly better 

at p=0.01, ** at p=0.05, * at p=0.1 and # significantly worse at p=0.1. 
 

Table 12: Frequencies of companies in the IG/NG classes from years 2011 and 2014 

  Emerging EU U.S. Other developed 

Year Frequency IG NG IG NG IG NG IG NG 

2011 N 43 59 136 62 239 368 37 38 

 N [%] 42.2 57.8 68.7 31.3 39.4 60.6 49.3 50.7 

2014 N 42 58 135 62 245 344 36 36 

 N [%] 42.0 58.0 68.5 31.5 41.6 58.4 50.0 50.0 
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Table 13: Prediction performance of IVTURS with evolutionary FRBSs and other methods on IG/NG from 

2011 and 2014 – Average across regions 

 IG/NG from 2011 IG/NG from 2014 

 Acc [%] Yield [%] Yieldnorm Acc [%] Yield [%] Yieldnorm 

GCCL 76.76±4.95 6.44±0.99 0.79±0.22 68.29±3.49 6.04±0.26 0.68±0.23 

GP-COACH 78.94±5.00 6.69±0.77 0.73±0.11 72.19±4.60 6.26±0.57 0.74±0.13 

SP 82.72±3.70 6.98±0.59 0.83±0.09 76.90±4.48 6.73±0.22 0.81±0.09 

FHGBML 82.72±3.67 7.04±0.48 0.84±0.09 75.09±2.91 6.87±0.19 0.83±0.07 

SLAVE 80.00±2.93 6.76±0.58 0.75±0.21 65.38±2.42 6.00±0.57 0.76±0.11 

NSVL 81.34±3.68 6.83±0.45 0.75±0.16 70.81±3.55 6.24±0.52 0.78±0.09 

SGERD 73.78±4.57 6.17±1.08 0.71±0.20 67.97±14.01 5.88±0.50 0.63±0.18 

FURIA 84.02±3.45 7.06±0.38 0.86±0.05 80.99±4.20 7.02±0.16 0.84±0.05 

MLP 80.89±5.93 6.96±0.52 0.80±0.04 70.86±2.37 6.13±0.14 0.72±0.15 

SVM 83.23±3.08 7.05±0.82 0.83±0.07 74.54±10.40 6.62±0.14 0.80±0.22 

PSVM 84.64±4.62 7.07±0.55 0.87±0.09 79.03±2.21 6.93±0.12 0.83±0.09 

IVTURS 83.90±2.09 7.05±0.54 0.86±0.07 78.68±2.79 7.02±0.15 0.83±0.07 
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