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Abstract
Apoptosis has been recognized as a type of programmed cell death connected with characteristic morphological and bio-
chemical changes in cells. This programmed cell death plays an important role in the genesis of a number of physiological 
and pathological processes. Thus, it can be very important to detect the signs of apoptosis in a study of cellular metabolism. 
The present paper provides an overview of methods often being used for detecting DNA fragmentation as one of the most 
specific findings in apoptosis. To date, three routine assays have been developed for detecting DNA fragmentation: DNA lad-
der assay, TUNEL assay, and comet assay. All these methods differ in their principles for detecting DNA fragmentation. DNA 
ladder assay detects the characteristic “DNA ladder pattern” formed during internucleosomal cleavage of DNA. Terminal 
deoxynUcleotidyl transferase Nick-End Labeling (TUNEL) assay detects DNA strand breaks using terminal deoxynucleoti-
dyl transferase catalyzing attachment of modified deoxynucleotides on the DNA strand breaks. Comet assay can be used for 
detecting nucleus breakdown producing single/double-strand DNA breaks. The aim of this review is to describe the present 
knowledge on these three methods, including optimized approaches, techniques, and limitations.

Keywords  Apoptosis · DNA fragmentation · Apoptosis assays · DNA ladder · TUNEL assay · Comet assay

Introduction

Apoptosis, which term was first used by Kerr, Wyllie and 
Currie in a paper from 1972, is a complex process responsi-
ble for removing damaged cells from living organisms [1]. 
Apoptosis has been characterized as a type of programmed 
cell death connected with characteristic morphological and 
biochemical changes of the cells. To date, three main activa-
tion pathways for apoptosis have been described. These are 
termed the extrinsic, intrinsic, and perforin/granzyme-medi-
ated pathways. All these pathways can lead to activation of 
caspase-3, which mediates cell death through additional cell 
damage [2, 3].

A number of different proteins participate in the apop-
totic cascade. These are detectable using common analyti-
cal methods based on protein detection. The rate and stage 

of apoptosis is frequently characterized using detection of 
the activity of caspases, which are enzymes (i.e., proteases) 
specifically cleaving peptide bonds of appropriate substrate. 
To date, 11 isoenzymes of caspases have been described in 
human whereas seven of them (i.e., caspase 2, 3, 6, 7, 8, 9, 
10) participate in apoptosis [4, 5].

Apoptosis plays a crucial role in the pathogenesis for a 
number of pathological and physiological processes. Prob-
lems also can arise either due to excessive apoptosis [6] or to 
reduced apoptosis [7]. Thus, it is very necessary to detect the 
signs of apoptosis in order to improve and expand upon the 
possibilities for slowing or even obstructing the progress of 
such diseases. Moreover, detection of apoptosis is an impor-
tant indicator in testing potential new medicaments and the 
general cell-toxicity of chemicals.

Detecting morphological changes 
in apoptotic cells

Apoptosis includes morphological and biochemical changes 
in the cell, and these can be used for its detection. The mor-
phological changes during apoptosis include shrinkage of the 
cell, pyknosis (= chromatin condensation), and karyorrhexis 
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(nucleus fragmentation) followed by DNA fragmentation. 
The cytoskeleton of the cell is damaged, thereby allowing 
membrane blebbing. In the late stage of apoptosis, the apop-
totic bodies are formed [8–10].

A number of microscopy techniques have been used for 
determining morphological changes in the cell [1, 11, 12], 
including, among others, light microscopy and electron 
microscopy [1, 12–15]. Transmission electron microscopy 
can be used for determining ultrastructural changes and 
chromatin condensation within the cells [15], and scanning 
electron microscopy is appropriate for detecting cell surface 
changes [16–18]. Even atomic force microscopy could be 
used to determine morphological changes of the cells during 
apoptosis [19, 20]. In addition, phase-contrast microscopy 
and, most often, fluorescence microscopy can be used [21].

The important biochemical feature of apoptosis is the 
exposure of phosphatidylserine on the outer part of the 
plasma membrane of apoptotic cells [22]. This phosphati-
dylserine exposure serves as a signal for macrophages elimi-
nating the apoptotic cells. Annexin V staining is usually used 
to detect phosphatidylserine. Annexin V binds to phosphati-
dylserine in the presence of Ca2+ ions. Because annexin V 
is labeled using fluorescein isothiocyanate (FITC) [23, 24], 
it allows the detection of phosphatidylserine using fluores-
cence microscopy. Annexin V staining can be positive dur-
ing necrotic process [24], thus double staining using annexin 
V and propidium iodide is essential to confirm apoptosis 
[25].

Fluorescence microscopy is often utilized also for evalu-
ating cell nucleus damage and DNA fragmentation in apop-
tosis using nucleus blue acid stains 4′,6′diamidino2phenylin-
dole (DAPI) or HOECHST 33258, 33342 and 34580. DAPI 
and Hoechst 33258 bind on A-T base pairs in the minor-
groove of double-stranded DNA [26, 27]. The main differ-
ence between them is that Hoechst 33258 visualizes DNA 
also in living cells and thus allows analysis of the nucleus 
in real time [27]. Flow cytometry is another technique to 
detect apoptosis in cells. Apoptotic cells can be identified 
as the fractional subG(1) population using propidium iodide 
[28–30].

Detecting DNA fragmentation in apoptotic 
cells

DNA fragmentation

DNA fragmentation is the main feature of apoptosis, and 
thus it is used as a marker of apoptosis. The mechanism 
of DNA cleavage is illustrated in Fig. 1. Double-stranded 
DNA is cleaved by DNA fragmentation factor (DFF) [31]. 
DFF is a heterodimer consisting of 40 kDa catalytic subunit 
(DFF40) and 45 kDa regulatory subunit (DFF45) [32]. DFF 
40 has endonuclease activity at neutral pH in the presence 
of Mg2+ [33] and cleaves double-stranded DNA specifically, 
with a preference for A/T-rich region [34].

Fig. 1   Mechanism of DNA 
fragmentation during apopto-
sis. DNA fragmentation factor 
catalytic subunit (DFF40) forms 
a complex with the inhibitor 
of DFF40 (DFF45). During 
apoptosis, the DFF40-DFF45 
complex is cleaved by activated 
caspase 3 (a-caspase 3), which 
is formed by cleavage of pro-
caspase 3 through the apoptotic 
stimuli. DFF40 dimerizes and 
cleaves DNA in internucleoso-
mal linkers into fragments of 
180 bp and multiples thereof
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Under normal conditions, DFF40 is inhibited by the 
inhibitor DFF45. DFF45 also serves as a chaperon for 
DFF40 during its synthesis [35]. During apoptosis, pro-
caspase 3 is cleaved to the activated caspase 3, which in 
turn cleaves the DFF45–DFF40 complex, and thus DFF40 
is activated [36]. DFF40 cleaves nuclear DNA into inter-
nucleosomal fragments about 180 bp in size and multiples 
thereof (e.g., 180, 360, 540, 720 bp). This so-called “DNA 
ladder” pattern has been used for identification of apoptosis 
in cells since 1976, when Skalka et al. proved the cleavage 
of chromatin DNA in lymphoid tissues of irradiated mice 
in vivo [37]. In 1980, Wyllie proved the cleavage of inter-
nucleosomal DNA in thymocytes treated by glucocorticoids 
undergoing apoptosis [13]. Because DNA fragmentation is a 
specific marker of apoptosis, methods have been developed 
for using it in detecting and characterizing cellular apoptotic 
processes. To date, three main methods have been devel-
oped for detecting DNA fragmentation: DNA ladder assay, 
TUNEL assay, and comet assay.

DNA ladder assay

DNA ladder assay uses the presence of the “DNA lad-
der” pattern of DNA fragments occurring during apopto-
sis. Key steps in the detection methodology are as follow: 
First, cultured cells are harvested, cells are lysed, frag-
mented genomic DNA is isolated, then contaminating RNA 
is digested. Next, the negatively charged DNA fragments 
are separated on agarose gel under direct electric current, 
whereby the DNA migrates to the anode. Finally, the DNA 
fragments are stained and visualized. A characteristic “DNA 
ladder” pattern is shown in Fig. 2.

DNA-ladder assay involves culturing the tested cells 
under defined conditions and with a chemical substance 
of interest for an appropriate duration. Before cell lysis of 
adherent cells, it may be necessary to take into account also 
that some cells had previously detached themselves from the 
cultivation surface. Thus, the cell medium might be centri-
fuged to assemble floating apoptotic cells [38].

Lysis buffers of varying composition are used for lys-
ing mammalian cells. Lysis buffers generally contain 
tris(hydroxymethyl)aminomethane (Tris) and ethylenedi-
aminetetraacetic acid (EDTA) [39, 40] with sodium chlo-
ride (NaCl) [12, 38, 41] as the main components at pH 7.5. 
Dimethyl sulfoxide (DMSO) also can be used for cell lysis 
[42]. Isolation of the fragmented DNA is then done using 
such common methods for genomic DNA isolation as phe-
nol–chloroform [15, 41, 43, 44], or phenol–chloroform–isoa-
myl alcohol extraction [45]. A number of isolation proce-
dures based on various physical and chemical principles are 
used for isolating apoptotic low molecular weight DNA frag-
ments from apoptotic cells [46–52]. Commercial kits for this 
purpose mostly use solid-phase extraction on, for example, 

silica gel or glass fiber fleece. Isolation of apoptotic DNA 
fragments using commercial kits is faster, safer, more sensi-
tive [46], and simpler in comparison to the standard phenol-
chloroform extractions. A disadvantage of using commercial 
kits is their greater cost.

Usually, purification of fragmented DNA from RNA is 
included in the DNA ladder assay methodology. The diges-
tion of contaminating RNA is performed using RNase A in 
different concentrations up to 0.1 mg/mL [15, 43, 53–56].

After DNA isolation and purification, electrophoresis is 
performed on agarose gel. Agarose gel is used at varying 
concentrations within the range of 1–2% [15, 38, 45, 48, 
50–53, 55–63]. The voltage applied depends upon the size 
of the DNA fragments to be distinguished, but the usual rate 
is in the range of 2–15 V/cm [44, 55, 64]. Because smaller 
DNA fragments are more sensitive to heating, lower volt-
age should be used where these are involved. The DNA is 
most often visualized using ethidium bromide that is added 
to the agarose gel during preparation [12, 15, 44, 45, 48, 
50–53, 56–58, 64]. Because ethidium bromide is a strong 
mutagen, a safer and environmentally friendlier alternative, 
SYBR-Safe, may be preferred for DNA gel staining [38]. 
The standard visualization is performed using an ultravio-
let transilluminator with excitation/emission wavelengths 
depending on the fluorescent dye used. The characteristic 
“DNA ladder” pattern (Fig. 2) can then be observed.

DNA ladder assay is relatively easy to perform and does 
not require special equipment. It has sensitivity on the order 

Fig. 2   DNA ladder pattern. a 
Control cells, b cells exposed to 
a apoptotic agent
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of 106 cells [39–41, 57], thus making it an inappropriate 
method for samples having lower numbers of apoptotic 
cells but very useful for experiments on cell cultures or tis-
sues with high numbers of cells. The crucial limitation of 
DNA ladder assay for use in apoptosis estimation is that 
DNA fragments could occur also during necrosis [65, 66], 
and thus a “smear pattern” could be observed in the case of 
necrosis [67].

Another drawback is that an absence of DNA ladder pat-
tern does not prove that no apoptotic cells were occurring 
in a tested sample [2, 68]. This test should be used only for 
proving apoptosis at a later stage when apoptosis is believed 
to have been ongoing, because the internucleosomal cleav-
age of DNA is an event occurring late in the apoptotic pro-
cess [69]. Thus, it is necessary and very common to confirm 
the apoptosis in tested cells using another assay based on a 
different principle.

Comet assay

Comet assay, also known as “single cell gel electrophoresis 
assay” (SCGE), is a rapid method used for detecting DNA 
damage or repair in a single cell [70]. It has been increas-
ingly used in genotoxicity testing [71].

The principle underlying comet assay originated in the 
1970s [72], but the assay itself was introduced in 1984 by 
Östlink and Johanson [73]. These authors used comet assay 
for detecting DNA strand breaks caused by ionizing radia-
tion of mammalian cells, and they improved the sensitivity 
of the original method by using agarose gel electrophoresis 
for DNA fragments distribution. After separation of DNA 
on the agarose gel, the DNA pool has the appearance of 
a comet, thus giving the assay its name. The assay was 
first described for apoptosis detection by Olive et al. [74]. 
Comet assay has been used for detecting both single-strand 
(ssDNA) breaks under alkaline conditions and double-strand 
DNA (dsDNA) breaks under neutral conditions [75].

Alkaline conditions at pH 10 [76] or higher [77] ena-
ble the detection of single-strand DNA (ssDNA) breaks. 
Alkaline pH disrupts the nonbinding interactions between 
nitrogenous bases in DNA so that DNA strains are separated. 
Thus, ssDNA breaks are released and become detectable. 
Neutral pH (~ 7) is appropriate for detecting dsDNA breaks 
because the separation of DNA strains does not occur under 
neutral pH [74]. Recently, this separation has been shown 
to occur also within a combination of denaturing and non-
denaturing conditions. This approach enables simultaneous 
evaluation of ssDNA and dsDNA strand breaks and thus is 
called 2T-comet assay, short for “two-dimensional perpen-
dicular tail comet assay” [78]. It has been used for detecting 
DNA strand breaks in human spermatozoa.

The comet assay procedure consists of (1) fixation of the 
analyzed cells on a microscope slide, (2) cell lysis, and (3) 

agarose gel electrophoresis in direct electric current. Finally 
(4), the DNA is stained and visualized. If DNA strand breaks 
exist, the comet is observed on the gel (Fig. 3).

The detailed experimental procedure consists of the four 
steps listed above. The estimated cells are mixed with up to 
1% low melting point agarose (LMPA) [79–86], which (in 
contrast to commonly used agarose) is liquid under normal 
conditions. The mixture of cells and LMPA is placed on a 
microscope slide covered with normal melting point aga-
rose (NMPA) in concentration ranging between 0.5% and 
1% [79–82, 84, 86, 87]. The cover glass is placed over the 
mixture and agarose and the slide and contents are tempered 
at 4 °C for 5 min to cause solidification of the LMPA. To 
lyse cells, the slide is submerged in lysis buffer, which has a 
composition similar to those of lysis buffers used for DNA 
ladder assay. Tris (pH ~ 10), EDTA, and NaCl lysis buffer 
containing sodium sarcosinate can be used as well as triton 
X-100 [79–81, 83, 84, 88]. DMSO also could be included 
into lysis buffers [79, 80, 83, 88]. Also commercial kits and 
coated microscopic slides are available for neutral and alka-
line Comet assay [77]. Next, agarose gel electrophoresis is 
carried out in direct electrical current under low voltage. For 
DNA staining, ethidium bromide, propidium iodide, DAPI, 
acridine orange [72], or SYBR staining [77, 83–85] can be 
used. It has been proven that the comets also can be stained 
with a permanent silver stain [89].

The characteristic comet-like image then can be observed 
in cells with DNA strand breaks and nucleus fragmentation 
(Fig. 4). The comet consists of a head and a tail representing 
different DNA structures. The head contains the nuclear core 
with macromolecules and unfragmented DNA and the tail 
consists predominantly of singlestranded DNA. The size of 
the tail shows the level of DNA damage associated with cell 
damage. The appearance of the tail can be induced by both 
necrosis and apoptosis [74, 90], but a characteristic for the 

Fig. 3   Comet assay. The comet originates from a single cell after gel 
electrophoresis
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shape of a comet in apoptotic cells is that most of the DNA 
moves into the comet’s tail [91].

Because the evaluation of these comets can be problem-
atic, it is mostly performed using special software for the 
visual comet scoring [92]. The scoring is based on meas-
urement as to the magnitude of the comet core and the tail, 
quantification of fluorescent signal in the core and the tail, 
and other parameters. The comets are then categorized into 
groups (Fig. 4) according to the level of DNA damage [68, 
93].

Comet assay is a very useful method for detecting DNA 
strand breaks. It is inexpensive and rapid, with no need for 
special laboratory equipment when following the protocol by 
Singh et al. [76]. A disadvantage is that the standard experi-
mental protocols do not allow distinguishing between geno-
toxicity and early apoptosis [94]. Moreover, comet assay is 
the only method useful for detecting late stage apoptosis [83, 
94]. Therefore, comet assay ought to be used as an additional 
tool for apoptosis detection [14].

TUNEL assay

The other method based on detection of apoptotic DNA 
fragmentation is the Terminal deoxynUcleotidyl transferase 
Nick-End Labeling (TUNEL) technique. It was designed in 
1992 by Gorczyca et al. [57] and Gavrieli et al. [53] inde-
pendently. The key role in the TUNEL assay is played by 
an endonuclease, in particular terminal deoxynucleotidyl 
transferase (TdT), catalyzing the attachment of a modified 

analogue of deoxynucleotides (dUTPs) to the free -OH 
terminus of the DNA strand breaks [95]. These dUTPs are 
labeled using various markers that either allow for the detec-
tion of DNA strand breaks directly or are able to interact 
with one or more other detectable markers.

The main workflow of the assay consists of cultivating 
and harvesting the cells, fixing and permeabilizing cells to 
allow penetration of the TUNEL reaction reagents into the 
nucleus, binding of labeled dUTPs onto the -OH moieties of 
fragmented DNA using TdT, and visualization of the labeled 
dUTPs. Depending upon the label, the visualization may be 
fluorescent (most commonly) or enzymatic.

As described also for the DNA ladder assay, the tested 
cells are cultivated under defined conditions with a spe-
cific chemical substance of interest. After cultivation, the 
cells are fixed using up to 4% formaldehyde [30, 57, 59, 82, 
95–98] to prevent leakage of the DNA fragments during 
the repeated rinsing that is necessary for properly carrying 
out the TUNEL assay. The cells are then treated in 70% 
ethanol [57, 59, 95] in order to permeabilize the cells. The 
permeabilization is necessary for penetration of the TUNEL 
enzyme TdT into cell nuclei. Various solutions are used to 
produce the proper functioning of TdT, which catalyzes the 
incorporation of labeled dUTPs into the DNA strand breaks. 
In addition to labeled dUTPs, these solutions usually contain 
sodium or potassium cacodylate [53, 57, 59, 95, 99], cobalt 
chloride [53, 59, 99], and bovine serum albumin [53, 57, 59, 
95, 99]. Some authors also have reported that dithiothreitol 
[57, 99] can be beneficial for TUNEL reaction.

Fig. 4   Visual scoring of comets. Comets are classified into five categories according to the DNA damage: a class 0—no or very low damage, b 
low damage, c medium damage, d long DNA migration, e apoptotic or necrotic DNA migration

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327



UNCORRECTED PROOF

Journal : Large 11033 Article No : 4258 Pages : 10 MS Code : MOLE-D-18-00271 Dispatch : 17-7-2018

	 Molecular Biology Reports

1 3

Two main dUTPs labeling strategies are used in the 
TUNEL assay: direct labeling and labeling using bromode-
oxyuridine (BrdU), which is a thymidine analogue. The main 
difference between direct labeling and labeling using BrdU 
is that in the first case the label can be detected directly. 
When using BrdU labeling, it is necessary to use an antibody 
system. The labeling strategies are depicted in Fig. 5.

Direct labeling of dNTPs by fluorescein is a common 
labeling strategy [59, 100]. In the two original research stud-
ies on TUNEL assay, the labeling of dNTPs was performed 
using biotin, a protein with an affinity for avidin [53, 57]. 
The paper by Gorczyca et al. [57] describes fluorescently 
labeled avidin allowing the detection of DNA strand breaks. 
Gavrieli et al. [53], meanwhile, presented the use of peroxi-
dase-labeled avidin allowing colorimetric detection of DNA 
strand breaks after adding a specific substrate. Labeling of 
dNTPs using digoxigenin also has been used in the direct 
labeling strategy [99, 101]. For BrdU labeling of dNTPs, it 
is necessary to use anti-BrdU antibodies. These proteins can 
be labeled by FITC, [59, 95, 102] or by Alexa Fluor™ 488 
[103, 104]. In addition to the most widely used BrdU labe-
ling, labeling using another thymidine analogue, 5′-ethynyl-
2-deoxyuridine (EdU), also has been developed [105].

The detection of incorporated EdU is performed using 
so-called “click” reaction, which is covalent conjugation 
of the ethynyl group of EdU and fluorescent azide as cata-
lyzed by copper [106]. In contrast to BrdU, this EdU assay 
is not antibody based. The advantage of using 5′-ethynyl-
2-deoxyuridine is that EdU’s incorporation does not require 

disruption of the helical DNA structure, as in the case of 
BrdU. This is due to the fluorescent azide’s small size [107].

As mentioned above, the detection of labeled dUTPs 
together with DNA strand breaks depends on the chosen 
label and the researcher’s requirements. Although light 
microscopy can be used after staining with horseradish per-
oxidase-conjugated avidin–biotin complex together with a 
colorimetric substrate [53, 101], the fluorescence detection 
has been used most often together with a number of other 
techniques, including flow cytometry [59, 95, 100], laser 
scanning cytometry [59, 95, 99], or fluorescence microscopy 
[95, 97, 98, 108].

TUNEL assay can be regarded as one of the standard his-
tochemical methods for detecting and quantitating apoptotic 
cells from cell suspensions, adherent cell lines, and tissues 
in later stages of programmed cell death [101, 109, 110]. 
TUNEL assay is an accepted assay for establishing apop-
tosis in vitro and in situ. When confirmed by other meth-
ods, it is a reliable test for apoptosis [111]. In comparison 
with DNA ladder assay, TUNEL staining is more sensitive 
because it precedes the appearance of the internucleosomal 
cleavage of DNA detected on the agarose gel [53]. On the 
other hand, TUNEL assay is able to detect DNA fragmenta-
tion not only in apoptotic cells. It is known that DNA dam-
age appears not only during apoptosis but also is linked to 
necrosis and is caused by toxic compounds or other insults. 
DNA damage from other sources can thus cause false posi-
tive TUNEL assay results [65]. False positivity has been 
proven also in cells undergoing active DNA repair [112], 

Fig. 5   Options for dNTPs 
labeling in the TUNEL reaction. 
Depicted in A and B are direct 
labeling options, which are: 
direct binding of a label onto 
dNTPs (a) and binding of the 
receptor onto dNTPs (b). This 
receptor is able to interact with 
the ligand, which is fluores-
cently or enzymatically labeled 
and allows the detection of 
DNA strand breaks. Depicted in 
c and d are labeling possibilities 
using BrdU: direct binding of 
BrdU, which interacts with anti-
BrdU antibodies labeled with a 
detectable label (c); and binding 
of BrdU (d), which interacts 
with anti-BrdU antibodies that 
are themselves labeled with a 
receptor able to interact with the 
ligand. That ligand is fluores-
cently or enzymatically labeled 
and allows the detection of 
DNA strand breaks
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in cells undergoing autolysis post mortem [99], and in the 
degenerating cells appearing in the neonatal brain during the 
development of acute myocardial infarction [113]. Because 
TUNEL assay performed in situ is not a method specific 
only for apoptotic DNA fragmentation [99], it is necessary, 
as in the case of DNA ladder assay, to compare the results of 
TUNEL assay also with those from another method.

Conclusion

Apoptosis is a complex process responsible for removing 
damaged cells from living organisms, and it is connected 
with characteristic morphological and biochemical changes 
of the cells. DNA fragmentation occurs during later stages 
of the apoptotic process. The methods most commonly used 
for detecting DNA fragmentation are DNA ladder assay, 
comet assay, and TUNEL assay. These methods are rela-
tively inexpensive and easy to perform. On the other hand, 
they also can have some limitations, including false positiv-
ity. In detecting apoptosis, TUNEL assay is the most sensi-
tive because it is able to detect apoptosis at the phase pre-
ceding appearance of the internucleosomal DNA cleavage 
detected as the DNA ladder and precedes also the shrinkage 
and destruction of cell nucleus detected using comet assay. 
All these methods are very useful in apoptosis detection 
and characterization, but it is appropriate to complement 
their results using additional methods based on different 
principles.
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